From simple innate biases to complex visual concepts

This image is in the public domain.

© Reuters. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

How it all starts

Image removed due to copyright restrictions. Please see the video.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Start without world knowledge
- Watch many movies of the world
- Develop representations of various concepts

© Harry L Anthony. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© ciifka at Flickr.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Hands

Gaze

Difficult, appear early, important for subsequent learning of agents, goals, interactions,

Hands and body parts are important

© Somesai via Flickr.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Action recognition Gesture and communication Agents interactions

Hands are difficult

© Joe Amaro. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Multiple appearances

This image is in the public domain.

Van Gogh

© Ernst Kerchner. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Kirchner

Small and inconspicuous

Difficult to extract in unsupervised schemes

Informative fragments from people / no-people

Figure removed due to copyright restrictions. Please see the video.

Unsupervised Deep Learning

'The problem of recovering human body configurations in a general setting is arguably the most difficult recognition problem in computer vision'

Mori, Malik, CVPR 2004

Unsupervised learning does not discover hands

Building High-level Features Using Large Scale Unsupervised Learning Ng et al Stanford and Google ICML 2012

Figure removed due to copyright restrictions. Please see the video. Source: Le, Quoc V. "Building high-level features using large scale unsupervised learning." In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp. 8595-8598. IEEE, 2013.

1B connections, 10M YouTube images, 1000 machines, 16,000 cores, 3 days

Some statistically significant structures emerge with large data

In humans: Selectivity to hands appear early in infancy

Using a Head Camera to Study Visual Experience.

© Wiley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Yoshida, Hanako, and Linda B. Smith. "What's in view for toddlers? Using a head camera to study visual experience." Infancy 13, no. 3 (2008): 229-248.

'Overall...hand were in view and dynamically acting on an object in over 80% of the frames'.

Yoshida & Smith 2008

What makes hands learnable by humans?

Motion, Hand as 'mover' (7-months old)

© fotosearch. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

See: Saxe, Carey The perception of causality in infancy. *Acta Psychologica* 2006

Early sensitivity to special motion types

- High sensitivity to motion in general (detecting motion, motion segmentation, tracking)
- Specific sub-classes of motion: self-motion, passive, and 'mover'

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

A specific motion even is highly indicative of hands

Detecting 'Mover' Events

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Ullman, Shimon, Daniel Harari, and Nimrod Dorfman. "From simple innatebiases to complex visual concepts." Proceedings of the National Academy of Sciences 109, no. 44 (2012): 18215-18220. Copyright © 2012 National Academy of Sciences, U.S.A.

A moving image region causing a stationary region to move or change after contact.

Simple and primitive, prior to objects or figure-ground segmentation

Movers detection

'Mover' as an innate teaching signal for hand

Motion alone is insufficient

'Mover' events extracted from videos

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Ullman, Shimon, Daniel Harari, and Nimrod Dorfman. "From simple innatebiases to complex visual concepts." Proceedings of the National Academy of Sciences 109, no. 44 (2012): 18215-18220. Copyright © 2012 National Academy of Sciences, U.S.A.

High fraction of Hand images (90% recall 65% precision) Internal supervision by movers and by tracking

Training Videos

Movies of scenes, people moving, manipulating objects, moving hands.

'Mover' events are detected in all movies and used for training

Hand detection in still images

© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Ullman, Shimon, Daniel Harari, and Nimrod Dorfman. "From simple innate biases to complex visual concepts." Proceedings of the National Academy of Sciences 109, no. 44 (2012): 18215-18220.

Detection mainly of hands in object manipulation scenes

Continued learning

• Two detection algorithms:

Hands by their appearance

• Hands by the body context

Figure removed due to copyright restrictions. Please see the video. Source: Karlinsky, Leonid, Michael Dinerstein, Daniel Harari, and Shimon Ullman. "The chains model for detecting parts by their context." In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 25-32. IEEE, 2010.

Hand by Surrounding Context

Face \longrightarrow Shoulder \longrightarrow Upper-arm \longrightarrow Lower-arm \longrightarrow Hand

Amano, Kezuka, Yamamoto 2004 Slaughter Heron-Delaney 2010 Slaughter, Neary 2011

Co-training

Two supervised classifiers Internal co-supervision

The chains computation:

© The Weizmann Institute. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Chains model

(e) Context

(d) Appearance

Courtesy of National Academy of Sciences, U. S. A. Used with permission. Source: Ullman, Shimon, Daniel Harari, and Nimrod Dorfman. "From simple innatebiases to complex visual concepts." Proceedings of the National Academy of Sciences 109, no. 44 (2012): 18215-18220. Copyright © 2012 National Academy of Sciences, U.S.A.

0.8

initial model phase 1

phase 3 supervised

(c)

Own Hands

(A)

(B)

© Wiley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Yoshida, Hanako, and Linda B. Smith. "What's in view for toddlers? Using a head camera to study visual experience." Infancy 13, no. 3 (2008): 229-248.

Yoshida & Smith

A learned class, not the basis of hands in general Caregiver's hands

Own Hands

Gaze

© ciifka at Flickr.com. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Infants follow the gaze of others Starting at 3-6 months and continues to develop Head orientation first, eye cues later Important in the development of communication and language Modeling mainly head direction

Wollaston 1824

This image is in the public domain.

W.H. Wollaston, "On the Apparent Direction of Eyes in a Portrait," Philosophical Trans. Royal Soc. of London, 1824.

Gaze cues are subtle and inconspicuous

Mover supplies the teaching signal

Using hand 'mover' events to learn gaze direction

HoG description

Gaze extraction 2D

Gaze results, 700 test images 8 people, leave-one-out

Emerging Interpretation

© Shutterstock. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Both agents are manipulating objects; The one on the left is interested in the other's object

Internal supervision Learning 'trajectories'

© Psychology Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Source: Nappa, Rebecca, Allison Wessel, Katherine L. McEldoon, Lila R. Gleitman, and John C. Trueswell. "Use of speaker's gaze and syntax in verb learning." Language Learning and Development 5, no. 4 (2009): 203-234.

When infants hear 'He was mooping him' they look in the gaze direction of the speaker and use this.

Nappa et al 2009

'Digital Baby'

184	113	118	105	117	82	2
151	95	122	131	87	100	
160	156	159	197	178	172	ŀ
136	219	188	218	204	202	
184	190	235	215	198	186	
175	163	223	218	199	203	:
221	210	774	167	170	134	

Figure removed due to copyright restrictions. Please see the video. Source: Karlinsky, Leonid, Michael Dinerstein, Daniel Harari, and Shimon Ullman. "The chains model for detecting parts by their context." In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 25-32. IEEE, 2010.

Concepts Hand – appearance Hand – context Gaze Nouns, verbs

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Rational imitation in preverbal infants

Reprinted by permission from Macmillan Publishers Ltd: Nature. Source: Gergely, György, Harold Bekkering, and Ildikó Király. "Developmental psychology: Rational imitation in preverbal infants." Nature 415, no. 6873 (2002): 755. © 2002.

Gyorgy Gergely, Harold Bekkering, Ildiko Kiraly, Nature 415, 2002

Learning and innate structures

- Complex concept neither learned on its own nor innate.
- Domain-specific innate structures
- Not full solutions, but proto-concepts and strategies
- Not hands, but movers etc.
- Guide the system to develop meaningful representations
- Provide internal supervision
- 'Learning trajectories': mover hand gaze reference
- Can extract meaningful concepts event when they are nonsalient in the input
- From cognition to AI: incorporate similar structures in computational systems

Resource: Brains, Minds and Machines Summer Course Tomaso Poggio and Gabriel Kreiman

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.