INDEX

Addition, vector, 9-10
Admittance, characteristic, 579
A field, 336. See also Vector potential
Amber, 50
Ampere, unit, 55
Ampere's circuital law, 334
displacement current correction to, 488
Ampere's experiments, 322
Amperian currents, 348
Analyzer, 518
Angular momentum, 350
Anisotropic media, 516-520
Antennas:
long dipole, 687-695
N element array, 685-687
point electric dipole, 667-677
point magnetic dipole, 679-681
two element array, 681-685
Array:
broadside, 683
endfire, 685
factor, 683, 685, 687
N element, 685-687
two element, 681-685
Atmosphere, as leaky spherical capacitor, 195-197
Atom, binding energy of, 211-212
Attenuation constant:
dielectric waveguide, 646-648
lossy transmission line, 602-606
lossy rectangular waveguide, 644
non-uniform plane waves, 531-532
Autotransformer, 474
Avogadro's number, 136
Axisymmetric solutions to Laplace's equation, 286-288

Backward wave distributed system, 651
Barium titanate, 150
Base units, 55
Batteries due to lightning, 197
Bessel's equation, 280, 482
functions, 281
Betatron, 402-404
oscillations, 404
Bewley, L. V., 433, 475
B field, see Magnetic field
Binding energy, of atom, 211-212
of crystal, 205-206
Biot-Savart law, 322-323
Birefringence, 518-520
Bohr atomic model, 111-112

Bohr magneton, 350
Bohr radius, 63
Boltzmann constant, 155
Boltzmann distribution, 156
Boundary conditions:
normal component of: current density J, 168-169
displacement field $D, 163-164$
magnetic field $B, 366$
polarization P, 165-1 66
$\epsilon_{0} E, 165-166$
tangential component of:
electric field E, 162-163
magnetic field $H, 359-360$
magnetization M, 360
Breakdown, electric strength, 93, 223
‘electromechanical, 252
Brewster's angle, 540-543
and polarization by reflection, 547
Broadside array, 683

Capacitance:
as approximation to short transmission line, 589-592, 601
coaxial cylindrical electrodes, 176-177
concentric spherical electrodes, 176 . 177
energy stored in, 212-213
force on, 219-223
any geometry, 172
isolated sphere, 178,213
parallel plate electrodes, 173-177
per unit length on transmission line, 570, 572
power flow in, 491-493
reflections from at end of transmission line, 593-594
and resistance, 177
in series or parallel, 242-243
slanted conducting planes, 273
two contacting spheres, 178-181
two wire line, 101-103
Cartesian coordinates, 29-30
Cauchy's equation, 563
Cauchy-Riemann equations, 305
Chalmers, J. A., 293
Characteristic admittance, 579
Characteristic impedance, 579
Charge:
by contact, 50
differential elements, 60
distributions, 59-63
and electric field, 56-57
force between two electrons, 56
forces on, 51-52
and Gauss's law, 74-76
polarization, 140-142, 149
Charge relaxation, series lossy capacitor, 184-189
time, 182-184
transient, 182
uniformly charged sphere, 183-184
Child-Langmuir law, 200
Circuit theory as quasi-static approximation, 490
Circular polarization, 515-516
Circulation, 29
differential sized contour, 30
and Stokes' theorem, 35
Coaxial cable, capacitance, 176-177
inductance, 456-458
resistance, 172
Coefficient of coupling, 415
Coercive electric field, 151
Coercive magnetic field, 356-357
Cole-Cole plot, 234
Collision frequency, 154
Commutator, 429
Complex permittivity, 509, 524
Complex Poynting's theorem, 494-496
Complex propagation constant, 530-532
Conductance per unit length, 190
Conduction, 51
drift-diffusion, 156-159
Ohmic, 159-160
superconductors, 160-161
Conductivity, 159-160
of earth's atmosphere, 195
and resistance, 170
Conjugate functions, 305
Conservation of charge, 152-154
boundary condition, 168-169
inconsistency with Ampere's law, 488489
on perfect conductor with time varying surface charge, 537
Conservation of energy, 199
Constitutive laws:
linear dielectrics, 143-146
linear magnetic materials, 352, 356
Ohm's law, 159-160
superconductors, 160-161
Convection currents, 182, 194-195
Coordinate systems, 2-7
Cartesian (rectangular), 2-4
circular cylindrical, 4-7
inertial, 417
spherical, 4-7
Coulomb's force law, 54-55
Critical angle, 541-544
Cross (Vector) product, 13-16
and curl operation, 30
Crystal binding energy, 205-206
Curl:
Cartesian (rectangular) coordinates, 29-30
circulation, 29-31
curvilinear coordinates, 31
cylindrical coordinates, 31-33
of electric field, 86
of gradient, 38-39
of magnetic field, 333
spherical coordinates, 33-35
and Stokes' theorem, 35-38
Current, 152-154
boundary condition, 168-169
density, 153-154
over earth, 196
between electrodes, 169-170
through lossless capacitor, 178
through series lossy capacitor, 187-189
sheet, as source of non-uniform plane waves, 532-534
as source of uniform plane waves, 500-503
Curvilinear coordinates, general, 46
Cut-off in rectangular waveguides, 638 641
Cyclotron, 319-321
frequency, 316
Cylinder:
magnetically permeable, 357-359
and method of images, 97-103
permanently polarized, 166-168
surface charged, 80-82
with surface current, 335-336
in uniform electric field, 273-277
perfectly conducting, 278
perfectly insulating, 279
volume charged, 72,82
with volume current, 336
Cylindrical coordinates, curl, 31
divergence, 24-26
gradient, 17
Debye length, 157-159
Debye unit, 139
Dees, 319
Del operator, 16
and complex propagation vector, 531
and curl, 30
and divergence, 24
and gradient, 16
Delta function, 187
Diamagnetism, 349-352
Dichroism, 517
Dielectric, 143
coating, 525-528
constant, 146-147
linear, 146-147
modeled as dilute suspension of conducting spheres, 293
and point charge, 164-165
waveguide, 644-648
Difference equations:
capacitance of two contacting spheres, 179-181
distributed circuits, 47-48
self-excited electrostatic induction machines, 227-230
transient transmission line waves, 586587
Differential:
charge elements, 60
current elements, 323
cylindrical charge element, 81-82
lengths and del operator, 16-17
line, surface, and volume elements, 4
planar charge element, 68
spherical charge element, 79-80
Diffusion, coefficient, 156
equation, 191
Diode, vacuum tube, 198-201
Dipole electric field:
far from permanently polarized cylinder, 168
far from two oppositely charged electrodes, 169, 172
along symmetry axis, 58-59
two dimensional, 231, 274
Dipole moment, electric, 137
magnetic, 345
Directional cosines, 41
Dispersion, complex waves, 531
light, 563
Displacement current, 154, 178
as correction to Ampere's law, 488-489
Displacement field, 143
boundary condition, 163-164
parallel plate capacitor, 175
permanently polarized cylinder, 166168
in series capacitor, 185
Distortionless transmission line, 603
Distributed circuits:
backward wave, 650
inductive-capacitive, 47-48
resistive-capacitive, 189-194
transmission line model, 575-576
Divergence:
Cartesian (rectangular) coordinates, 2324
of curl, 39
curvilinear coordinates, 24
cylindrical coordinates, 24-26
of electric field, 83
of magnetic field, 333
spherical coordinates, 26
theorem, 26-28
and Gauss's law, 82-83
relating curl over volume to surface integral, 44
relating gradient over volume to surface integral, 43
Domains, ferroelectric, 50
ferromagnetic, 356-357
Dominant waveguide mode, 640
Doppler frequency shifts, 507-508
Dot (scalar) product, 11-13
and divergence operation, 24
and gradient operation, 16
Double refraction, 518-520
Double stub matching, 625-629
Drift-diffusion conduction, 156-159
Earth, fair weather electric field, 195
magnetic field, 424-425
Eddy currents, 401
Effective length of radiating electric dipole, 676-677
Einstein's relation, 156
Einstein's theory of relativity, 207
Electrets, 151
force on, 218
measurement of polarization, 239-240
Electric breakdown, 93, 223-224
mechanical, 252
Electric dipole, 136
electric field, 139
moment, 137-140, 231
potential, 136-137
radiating, 667-671
units, 139
Electric field, 56-57
boundary conditions, normal component, 83, 165-166
tangential component, 162-163
of charge distribution, 63-64
of charged particle precipitation onto sphere, 293
of cylinder with, surface charge, 71, 80-82
volume charge, 72, 82
in conducting box, 269
discontinuity across surface charge, 83
of disk with surface charge, 69-71
due to lossy charged sphere, 183
due to spatially periodic potential sheet, 266
due to superposition of point charges, 57-58
energy density, 208-209
and Faraday's law, 395
of finite length line charge, 89
and gradient of potential, 86
around high voltage insulator bushing, 284
of hoop with line charge, 69
between hyperbolic electrodes, 262
of infinitely long line charge, 64-65
of infinite sheets of surface charge, 6569
line integral, 85-86
local field around electric dipole, 145146
around lossy cylinder, 276
around lossy sphere, 289
numerical method, 298
around permanently polarized cylinder, 166-168
of permanently polarized cylinder, 166168
of point charge above dielectric boundary, 165
of point charge near grounded plane, 107
of point charge near grounded sphere, 106
of radiating electric dipole, 671
in resistive box, 263
in resistor, coaxial cylinder, 172
concentric sphere, 173
parallel plate, 171
of sphere with, surface charge, 76-79
volume charge, 79-80
transformation, 417
between two cones, 286
of two infinitely long opposite polarity line charges, 94
of two point charges, 58-59
of uniformly charged volume, 68-69
Electric field lines:
around charged sphere in uniform field, 297
around cylinder in uniform field, 276277
due to spatially periodic potential
sheet, 267
of electric dipole, 139
around high voltage insulator bushing, 284
between hyperbolic electrodes, 262
of radiating electric dipole, 671-673
within rectangular waveguide, 636,639
around two infinitely long opposite polarity line charges, 95-96
around uncharged sphere in uniform field, 290-291
Electric potential, 86-87
of charge distribution, 87
within closed conducting box, 268, 300
due to spatially periodic potential sheet, 266
and electric field, 86-87
of finite length line charge, 88-89
around high voltage insulator bushing, 282-284
between hyperbolic electrodes, 262
of infinitely long line charge, 94
inside square conducting box, 299-301
of isolated sphere with charge, 109
around lossy cylinder in uniform electric field, 274
around lossy sphere in uniform electric field, 288
within open resistive box, 263
of point charge, 87
of point charge above dielectric boundary, 165
of point charge and grounded plane, 107
of point charge and grounded sphere, 103
of sphere with, surface charge, 90-91
volume charge, 90-91
between two cones, 286
of two infinitely long line charges, 94
between upper atmosphere and earth's surface, 196-197
and zero potential reference, ground, 87
Electric susceptibility, 146
Electromechanical breakdown, 252
Electromotive force (EMF), 395
due to switching, 433
due to time varying number of coil turns, 433-435
in magnetic circuits, 406
Electron, beam injection into dielectrics, 201
charge and mass of, 56
radius of, 207

Electronic polarization, 136
Electron volts, 206
Electroscope, 53-54
Electrostatic generators, and Faraday's
ice pail experiment, 53-54
induction machines, 224-230
Van de Graaff, 223-224
Electrostatic induction, 51-53
Faraday's ice pail experiment, 53-54
machines, 224-230
Electrostatic precipitation, 293, 307
Electrostatic radiating field, 671
Electrostriction, 151
Elliptical polarization, 515
Element factor, 683
Endfire array, 685
Energy:
binding, of atom, 211-212
of crystal, 205-206
and capacitance, 212-213, 220
and charge distributions, 204-208
conservation theorem, 199
and current distributions, 454
density, electric field, 208-209
magnetic field, 441-455
and inductance, 454
stored in charged spheres, 210
Equipotential, 84-85
Euerle, W. C., 227
Exponential transmission line, 649
External inductance, 456-457
Fair weather electric field, 195
Farad, 175
Faraday, M., 394
cage, 78
disk, 420-422
ice pail experiment, 53-54
Faraday's law of induction, 394-397, 489
and betatron, 403
for moving media, 417
and paradoxes, 430-435
and resistive loop, 412
and Stokes' theorem, 404
Far field radiation, 671
Fermat's principle, 562
Ferroelectrics, 149-151
Ferromagnetism, 357
Fiber optics, 550-552
Field emission, 109
Field lines, see Electric field lines; Magnetic field lines
Flux, 22
and divergence, 2I-26
and divergence theorem, 26-28
and Gauss's law, 74-75
and magnetic field, 338
magnetic through square loop, 342-343
and sources, 21-22
and vector potential, 338
Force:
on capacitor, 219-223
Coulomb's law, 54-56
on current carrying slab, 441, 444
between current sheets, 329
due to pressure gradient, 155
on electric dipole, 216
gravitational, 56
on inductor, 461
interfacial, 264
on linear induction machine, 449-450
between line charge and cylinder, 99
between line charge and plane, 97
between line current and perfect conductor or infinitely permeable medium, 363
between line currents, 314-315
on magnetically permeable medium, 363
on magnetic block, 465
on magnetic dipole, 352, 368-370
on magnetizable current loop, 370-375
on MHD machine, 430
on moving charge, 314-315
on one turn loop, 464
between point charge and dielectric boundary, 165
between point charge and grounded plane, 108
between point charge and grounded sphere, 105
between point charges, 51-56
between point charge and sphere of constant charge, 109
between point charge and sphere of constant potential, 110
on polarizable medium, 215-219
on relay, 463
on surface charge, 213-215
between two contacting spheres, 181
between two cylinders, 100
Fourier series, 267
Frequency, 505-506
Fringing fields, 173-175
Fundamental waveguide mode, 640
Galilean coordinate transformation, 505
Galilean electric field transformation, 417
Garton, C. G., 252

Gas conduction model, 154-155
Gauge, setting, 665
Gauss's law, 75, 489
and boundary conditions:
normal component of current density, 168
normal component of displacement field, 163-164
normal component of polarization, 165-166
normal component of $\epsilon_{0} \mathrm{E}, 83,165$ 166
and charge distributions, 75
and charge injection into dielectrics, 201-202
and conservation of charge, 154
and cylinders of charge, 80-82
and displacement field, 143
and divergence theorem, 82-83
and lossy charged spheres, 183-184
for magnetic field, 333
and point charge inside or outside volume, 74-7.5
and polarization field, 142
and resistors, coaxial cylinder, 172
parallel plate, 171
spherical, 173
and spheres of charge, 76-80
Generalized reflection coefficient, 607608
Generators, 427-429
Geometric relations between coordinate systems, 7
Gibbs phenomenon, 269
Gradient:
in Cartesian (rectangular) coordinates, 16-17
in cylindrical coordinates, 17
and del operator, 16
and electric potential, 86
and line integral, 18-21
of reciprocal distance, 73
in spherical coordinates, 17-18
theorem, 43-44, 334, 370
Gravitational force, 56
Green's reciprocity theorem, 124
Green's theorem, 44
Ground, 87
Group velocity, 513
on distortionless transmission line, 603
in waveguide, 641
Guard ring, 173-174
Gyromagnetic ratio, 385
Half wave plate, 519

Hall effect, 321-322
Hall voltage, 322
Harmonics, 267-269
Helix, 317
Helmholtz coil, 331
Helmholtz equation, 631
Helmholtz theorem, 337-338, 665
H field, see Magnetic field
High voltage bushing, 282-284
Holes, 154, 321
Homopolar generator, 420-422
periodic speed reversals, 426-427
self-excited, 422-424
self-excited ac operation, 424-425
Horenstein, M. N., 282
Hyperbolic electrodes, 261-262
Hyperbolic functions, 264-265
Hysteresis, ferroelectric, 150-151
magnetic, 356-357
and Poynting's theorem, 553
Identities, vector, 38-39, 46-47
Images, see Method of Images
Impedance, characteristic, 579
of free space, 498
wave, 498
Impulse current, 187
Index of refraction, 540
Inductance:
of coaxial cable, 456-458, 575
external, 456-457
and ideal transformer, 414-415
internal, 457-458
and magnetic circuits, 407-411
mutual, 398
as quasi-static approximations to transmission lines, 589-592, 601
reflections from at end of transmission line, 594-595
and resistance and capacitance, 458459
self, 407
of solenoid, 408
of square loop, 343
of toroid, 409
per unit length on transmission line, 570, 572
Induction, electromagnetic, 394-395
electrostatic, 51-54, 224-230
machine, 446-450
Inertial coordinate system, 417
Internal inductance, 457-458
International system of units, 55
Ionic crystal energy, 205-206
Ionic polarization, 136-137

Ionosphere plane wave propagation, 511512,557
Isotopes, 318-319
Kelvin's dynamo, 227
Kerr effect, 520, 558
Kinetic energy, 199
Kirchoff's current law, 154, 490
Kirchoff's laws on transmission lines, 569-570
Kirchoff's voltage law, 86, 490
Laminations, 401-402, 470-471
Lange's Handbook of Chemistry, 147
Langevin equation, 251
for magnetic dipoles, 355
Langmuir- Child law, 200
Laplace's equation, 93, 258
Cartesian (rectangular) coordinates, 260
cylindrical coordinates, 271
and magnetic scalar potential, 365
spherical coordinates, 284
Laplacian of reciprocal distance, 73-74
Larmor angular velocity, 316
Laser, 517
Law of sines and cosines, 41
Leakage flux, 415
Left circular polarization, 516
Legendre's equation, 287
Legendre's polynomials, 287-288
Lenz's law, 395-397
and betatron, 403
Leyden jar, 227
L'Hôpital's rule, 589
Lightning producing atmospheric charge, 197
Light pipe, 550-552, 565
Light velocity, 56, 497
Linear dielectrics, 143-147
Linear induction machine, 446-450
Linear magnetic material, 352, 356
Linear polarization, 515
Line charge:
distributions, 60
finite length, 88-89
hoop, 69
infinitely long, 64-65
method of images, 96-103
near conducting plane, 96-97
near cylinder, 97-99
two parallel, 93-96
two wire line, 99-103
Line current, 324
Line integral, 18-21
of electric field, 85
of gradient, 19-20
and Stokes' theorem, 36
and work, 18-19
Local electric field, 145-146
Lord Kelvin's dynamo, 227
Lorentz field, 238
Lorentz force law, 314-316
Lorentz gauge, 665
Lorentz transformation, 417,505
Lossy capacitor, 184-189
Madelung, electrostatic energy, 205
Magnesium isotopes, 319
Magnetic charge, 489
Magnetic circuits, 405-407
Magnetic diffusion, 435
with convection, 444-446
equation, 437
Reynold's number, 446
skin depth, 442-443
transient, 438-441
Magnetic dipole, 344
field of, 346
radiation from, 679-681
vector potential, 345, 680
Magnetic energy:
density, 455
and electrical work, 452
and forces, 460-461
and inductance, 454
and mechanical work, 453, 460-461
stored in current distribution, 454
Magnetic field, 314, 322-323
and Ampere's circuital law, 333-334
boundary conditions, 359-360
due to cylinder of volume current, 336
due to finite length line current, 341
due to finite width surface current, 342
due to hollow cylinder of surface current, 332, 336
due to hoop of line current, 330
due to infinitely long line current, 324325
due to magnetization, 348-349
due to single current sheet, 327
due to slab of volume current, 327
due to two hoops of line current (Helmholtz coil), 331
due to two parallel current sheets, 328
in Helmholtz coil, 331
and Gauss's law, 332-333
of line current above perfect conductor or infinitely permeable medium, 363
of line current in permeable cylinder, 358
in magnetic circuits, 405-407, 411
of magnetic dipole, 346
in magnetic slab within uniform field, 361
of radiating electric dipole, 670
of radiating magnetic dipole, 681
in solenoid, 408
of sphere in uniform field, 364-367
in toroid, 409
and vector potential, 336-338
Magnetic field lines, 342, 366-367
Magnetic flux, 333, 343
in magnetic circuits, 406-411
Magnetic flux density, 349
Magnetic scalar potential, 365
Magnetic susceptibility, 350,352
Magnetite, 343
Magnetization, 343
currents, 346-348
Magnetohydrodynamics (MHD), 430
Magnetomotive force (mmf), 409
Magnetron, 375-376
Mahajan, S., 206
Malus, law of, 518
Mass spectrogr oh, 318-319
Matched transiuission line, 582, 584
Maxwell's equations, 489, 664
Meissner effect, 451
Melcher, J. R., 227, 264, 420, 435
Method of images, 96
line charge near conducting plane, 9697
line charge near cylinder, 97-99
line charge near dielectric cylinder, 238-239
line current above perfect conductor or infinitely permeable material, 361363
point charge near grounded plane, 106-107
point charge near grounded sphere, 103-106
point charge near sphere of constant charge, 109
point charge near sphere of constant potential, 110
two contacting spheres, 178-181
two parallel line charges, 93-96
two wire line, 99-103
M field, 343
MHD, 430
Michelson-Morley experiment, 503
Millikan oil drop experiment, 110-111

Mirror, 547
MKSA System of units, 55
Mobility, 156, 201, 293
Modulus of elasticity, 252
Momentum, angular, 350
Motors, 427-429
Mutual inductance, 398
Near radiation field, 671
Newton's force law, 155
Nondispersive waves, 503
Nonuniform plane waves, 529, 532-533 and critical angle, 542
Normal component boundary conditions:
current density, 168
displacement field, 163-164
magnetic field, $\mathbf{3 6 0}$
polarization and $\epsilon_{0} E, 165-166$
Normal vector:
and boundary condition on displacement field, 163-164
and contour (line) integral, 29
and divergence theorem, 27
and flux, 22
integrated over closed surface, 44
and surface integral, 22
Numerical method of solution to Poisson's equation, 297-301

Oblique incidence of plane waves, onto dielectric, 538-543
onto perfect conductor, 534-537
Oersted, 314
Ohmic losses, of plane waves, 508-511
in transmission lines, 602-606
in waveguides, 643-644
Ohm's law, 159-160
with convection currents, 182
in moving conductors, 418
Open circuited transmission lines, 585, 589-590, 599-600
Optical fibers, 550-552
Orientational polarization, 136-137
Orthogonal vectors and cross product, 14
Orthogonal vectors and dot product, 1112

Paddle wheel model for circulation, 30-31
Parallelogram, and cross(vector) product, 13
rule for vector addition and subtraction, 9-10
Parallelpiped volume and scalar triple product, 42
Paramagnetism, 352-356

Perfect conductor, 159-160
Period, 506
Permeability, of free space, 322
magnetic, 352, 356
Permeance, 411
Permittivity:
complex, 509, 524
dielectric, 146-147
of free space, 56
frequency dependent, 511
P field, 140, 165-166. See also Polarization
Phase velocity, 513
on distortionless transmission line, 603
in waveguide, 641
Photoelastic stress, 520
Piezoelectricity, 151
Planck's constant, 350
Plane waves, 496-497
losses, 508-511
non-uniform, 530-533
normal incidence onto lossless dielectric, 522-523
normal incidence onto lossy dielectric, 524-525
normal incidence onto perfect conductor, 520-522
oblique incidence onto dielectrics, 538544
oblique incidence onto perfect conductors, 534-537
power flow, 498, 532
uniform, 529-530
Plasma, conduction model, 154-155
frequency, 161,511
wave propagation, 511-512
Pleines, J., 206
Point charge:
above dielectric boundary, 164-165
within dielectric sphere, 147-149
force on, 55-58
near plane, 106-108
in plasma, 158-159
radiation from, 666-667
near sphere, 103-110
Poisson equation, 93, 258
and Helmholtz theorem, 338
and radiating waves, 665-666
within vacuum tube diode, 199
Poisson-Boltzmann equation, 157
Polariscope, 518-520
Polarizability, 143-144
and dielectric constant, 147
Polarization:
boundary conditions, 165-166
charge, 140-142, 149
cylinder, 166-168
and displacement field, 146-147
electronic, 136
force density, 215-219
ionic, 136
orientational, 136
in parallel plate capacitor, 176-177
by reflection, 546-547
spontaneous, 149-151
of waves, 514-516
Polarizers, 517-520
Polarizing angle, 547
Polar molecule, 136-137
Polar solutions to Laplace's equation, 271-272
Potential:
energy, 199
retarded, 664-667
scalar electric, 86-93, 664-667
scalar magnetic, 365-367
vector, 336, 664-667
see also Electric potential; Vector potential
Power:
in capacitor, 220
on distributed transmission line, 576578
in electric circuits, 493-494
electromagnetic, 491
flow into dielectric by plane waves, 524
in ideal transformer, 415
in inductor, 461
from long dipole antenna, 692
in lossy capacitor, 492
from radiating electric dipole, 675-676
time average, 495
in waveguide, 641
Poynting's theorem, 490-491
complex, 494-496
for high frequency wave propagation, 512
and hysteresis, 553
Poynting's vector, 491
complex, 495
and complex propagation constant, 532
through dielectric coating, 528
due to current sheet, 503
of long dipole antenna, 691
for oblique incidence onto perfect conductor, 536-537
through polarizer, 518
and radiation resistance, 674
in rectangular waveguide, 641642
reflected and transmitted through lossless dielectric, 524
time average, 495
of two element array, 683
and vector wavenumber, 530
Precipitator, electrostatic, 293-297, 307
Pressure, 154
force due to, 155
radiation, 522
Primary transformer winding, 415
Prisms, 549-550
Product, cross, 13-16
dot, 11-13
vector, 13-16
Product solutions:
to Helmholtz equation, 632
to Laplace's equation:
Cartesian (rectangular) coordinates, 260
cylindrical coordinates, 271-272
spherical coordinates, 284-288
Pyroelectricity, 151
Q of resonator, 660
Quadrapole, 233
Quarter wave long dielectric coating, 528
Quarter wave long transmission line, 608-610
Quarter wave plate, 520
Quasi-static circuit theory approximation, 490
Quasi-static inductors and capacitors as approximation to transmission lines, 589-592
Quasi-static power, 493-494
Radiation:
from electric dipole, 667-677
field, 671
from magnetic dipole, 679-681
pressure, 522
resistance, 674-677, 691-694
Radius of electron, 207
Rationalized units, 55
Rayleigh scattéring, 677-679
Reactive circuit elements as short transmission line approximation, 601602
Reciprocal distance, 72
and Gauss's law, 74-75
gradient of, 73
laplacian of, 73-74
Reciprocity theorem, 124
Rectangular (Cartesian) coordinate system, 2-4
curl, 29-30
divergence, 23-24
gradient, 16-17
Rectangular waveguide, 629-644. See also Waveguide
Reference potential, 86-87
Reflected wave, plane waves, 520,522 , 535-536, 538, 542
transmission line, 581-582, 586-587, 592-595
Reflection, from mirror, 545
polarization by, 546-548
Reflection coefficient:
arbitrary terminations, 592-593
generalized, 607-608
of plane waves, 523
of resistive transmission line terminations, 581-582
Refractive index, 540
Relative dielectric constant, 146
Relative magnetic permeability, 356
Relativity, 503-505
Relaxation, numerical method, 297-301
Relaxation time, 182
of lossy cylinder in uniform electric field, 275
of two series lossy dielectrics, 186-187
Reluctance, 409
motor, 482-483
in parallel, 411
in series, 410
Resistance:
between electrodes, 169-170
between coaxial cylindrical electrodes, 172
in open box, 262-264
between parallel plate electrodes, 170 171
in series and parallel, 186-187
between spherical electrodes, 173
Resistivity, 159
Remanent magnetization, 356-357
Remanent polarization, 151
Resonator, 660
Retarded potentials, 664-667
Reynold's number, magnetic, 446
Right circular polarization, 516
Right handed coordinates, 3-5
Right hand rule:
and circulation, 29-30
and cross products, 13-14
and Faraday's law, 395
and induced current on perfectly conducting sphere, 367
and line integral, 29
and magnetic dipole moment, 344-345
and magnetic field, 324
Saturation, magnetic, 356-357
polarization, 150-151
Saturation charge, 295
Scalar electric potential, 86-87
Scalar magnetic potential, 365
Scalar potential and radiating waves, 664667, 669-670
Scalar (dot) product, 11-13
Scalars, 7-8
Scalar triple product, 42
Schneider, J. M., 201
Seawater skin depth, 443
Secondary transformer winding, 415
Self-excited machines, electrostatic, 224-230
homopolar generator, 422-427
Self-inductance, see Inductance
Separation constants, to Helmholtz equation, 632
to Laplace's equation, 260-261, 271, 278-280, 286-287
Separation of variables:
in Helmholtz equation, 632
in Laplace's equation:
Cartesian, 260-261, 264-265, 270
cylindrical, 271, 277-282
spherical, 284-288
Short circuited transmission line, 585, 590, 596-599
Sidelobes, 688
Sine integral, 691, 694
SI units, 55-56, 322
capacitance, 175
resistance, 171
Skin depth, 442-443
with plane waves, 511,525
and surface resistivity, 604-606, 643
Slip, 448
Single stub tuning, 623-625
Sinusoidal steady state:
and complex Poynting's theorem, 494495
and linear induction machine, 446-450
and magnetic diffusion, 442-444
and Maxwell's equations, 530-532
and radiating waves, 667-671
and series lossy capacitor, 188-189
and TEM waves, 505-507
Slot in waveguide, 635
Smith chart, 611-615
admittance calculations, 620-621
stub tuning, 623-629

Snell's law, 540
Sohon, H., 431
Solenoid self-inductance, 407-408
Space charge limited conduction, in dielectrics, 201-203
in vacuum tube diode, 198-201
Speed coefficient, 421
Sphere:
capacitance of isolated, 178
of charge, 61-63, 76-80, 91
charge relaxation in, 183-184
earth as leaky capacitor, 195-197
as electrostatic precipitator, 293-297
lossy in uniform electric field, 288-293
method of images with point charge, 103-110
point charge within dielectric, 147-149
two charged, 92
two contacting, 178-181
in uniform magnetic field, 363-368
Spherical coordinates, 4-6
curl, 33-37
divergence, 26
gradient, 17
Spherical waves, 671
Spin, electron and nucleus, 344
Standing wave, 521-522
Standing wave parameters, 61 6-620
Stark, K. H., 252
Stewart, T. D., 237
Stokes' theorem, 35-38
and Ampere's law, 349
and electric field, 85-86
and identity of curl of gradient, 38-39
and magnetic flux, 338
Stream function:
of charged particle precipitation onto sphere, 297
cylindrical coordinates, 276-277
of radiating electric dipole, 672
spherical coordinates, 290-291
Stub tuning, 620-629
Successive relaxation numerical method, 297-301
Superconductors, 160-161
and magnetic fields, 450-451
Surface charge distribution, 60
and boundary condition on current density, 168
and boundary condition on displacement field, 163-164
and boundary condition on $\epsilon_{0} \mathrm{E}, 83$, 166
on cylinder in uniform electric field, 273-275
of differential sheets, 68-69
disk, 69-71
electric field due to, 65-67
force on, 213-215
hollow cylinder, 71
induced by line charge near plane, 97
induced by point charge near plane, 107-108
induced by point charge near sphere, 106
and parallel plate capacitor, 175
on slanted conducting planes, 273
on spatially periodic potential sheet, 266
on sphere in uniform electric field, 289
between two lossy dielectrics, 186-187
two parallel opposite polarity sheets, 67-68
Surface conductivity, 435, 601
Susceptibility, electric, 146
magnetic, 350, 352
Tangential component boundary conditions, electric field, 162-163
magnetic field, 359-360
Taylor, G. I., 264
Taylor series expansion, 298
of logarithm, 205
Temperature, ideal gas law, 154-155
TEM waves, see Transverse electromagnetic waves
TE waves, see Transverse electric waves
Tesla, 314
Test charge, 57
Thermal voltage, 156, 158
Thermionic emission, 108-109
in vacuum tube diode, 198
Thomson, J. J., 377
Till, H. R., 201
Time constant:
charged particle precipitation onto sphere, 296
charging of lossy cylinder, 273
discharge of earth's atmosphere, 197
distributed lossy cable, 192-194
magnetic diffusion, 440
ohmic charge relaxation, 182-184
resistor-inductor, 436
for self-excited electrostatic induction machine, 226
series lossy capacitor, 186-188
Time dilation, 505
TM waves, see Transverse magnetic waves
Tolman, R. C., 237
Torque, on electric dipole, 215
on homopolar machine, 422
on magnetic dipole, 353
Toroid, 408-409
Tourmaline, 517
Transformer:
action, 411
autotransformer, 474
ideal, 413-416
impedance, 415-416
real, 416-417
twisted, 473-474
Transient charge relaxation, see Charge relaxation
Transmission coefficient, 523
Transmission line:
approach to dc steady state, $585-589$
equations, 568-576
losses, 602-603
sinusoidal steady state, 595-596
transient waves, 579-595
Transverse electric (TE) waves, in dielectric waveguide, 647-648
in rectangular waveguide, 635-638
power flow, 642-643
Transverse electromagnetic (TEM) waves, 496-497
power flow, 532
transmission lines, 569-574
Transverse magnetic (TM) waves: in dielectric waveguide, 644-647
power flow, 641-642
in rectangular waveguide, 631-635
Traveling waves, 497-500
Triple product, scalar, 42
vector, 42
Two wire line, 99-103
Uman, M. A., 195
Uniform plane waves, 529-530
Uniqueness, theorem, 258-259
of vector potential, 336-338
Unit:
capacitance, 175
rationalized MKSA, 55-56
resistance, 171
SI, 55-56
Unit vectors, 3-5
divergence and curl of, 45
Unpolarized waves, 546-547
Vacuum tube diode, 198-201
Van de Graaff generator, 223-224
Vector, 8-16
addition and subtraction, 9-11
cross(vector) product, 13-16
distance between two points, 72
dot(scalar) product, 11-13
identities, 46-47
curl of gradient, 38-39
divergence of curl, 39
triple product, 42
magnitude, 8
multiplication by scalar, 8-9
product, 11-16
scalar (dot) product, 11-13
Vector potential, 336
of current distribution, 338
of finite length line current, 339
of finite width surface current, 341
of line current above perfect conductor or infinitely permeable medium, 363
of magnetic dipole, 345
and magnetic field lines, 342
and magnetic flux, 338
of radiating electric dipole, 668-669
of radiating waves, 667
uniqueness, 336-338
Velocity:
conduction charge, 156
electromagnetic waves, 500
group, 513
light, 56, 500
phase, 513
Virtual work, 460-461
VSWR, 616-620
Voltage, 86
nonuniqueness, 412
standing wave ratio, 616-620
Volume charge distributions, 60
cylinder, 72-82
slab, 68-69
sphere, 79-80
Von Hippel, A. R., 147
Water, light propagation in, 548-549
Watson, P. K., 201

Wave:
backward, 651
dispersive, 512-514
equation, 496-497
high frequency, 511-512
nondispersive, 503
plane, 496-497
properties, 499-500
radiating, 666-667
solutions, 497-499
sources, 500-503
standing, 521-522
transmission line, 578-579
traveling, 499-500
Waveguide:
dielectric, 644-648
equations, 630
power flow, 641-644
rectangular, 629-644
TE modes, 635-638
TM modes, 631-635
wall losses, 643-644
Wave impedance, 498
Wavelength, 506
Wavenumber, 505-506
on lossy transmission line, 604
as vector, 530
Wheelon, A. D., 181
Whipple, F. J. W., 293
White, H. J., 293
White light, 563
Wimshurst machine, 227
Woodson, H. H., 420, 435
Work:
to assemble charge distribution, 204-208
and dot product, 11
mechanical, 453
to move point charge, 84-85
to overcome electromagnetic forces, 452
Zeeman effect, 378
Zero potential reference, 87

MIT OpenCourseWare
http://ocw.mit.edu

0 DUKVV=DKQ

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

