chapter
 7

electrodynamics-
fields and waves

The electromagnetic field laws, derived thus far from the empirically determined Coulomb-Lorentz forces, are correct on the time scales of our own physical experiences. However, just as Newton's force law must be corrected for material speeds approaching that of light, the field laws must be corrected when fast time variations are on the order of the time it takes light to travel over the length of a system. Unlike the abstractness of relativistic mechanics, the complete electrodynamic equations describe a familiar phenomenonpropagation of electromagnetic waves. Throughout the rest of this text, we will examine when appropriate the lowfrequency limits to justify the past quasi-static assumptions.

7-1 MAXWELL'S EQUATIONS

7-1-1 Displacement Current Correction to Ampere's Law

In the historical development of electromagnetic field theory through the nineteenth century, charge and its electric field were studied separately from currents and their magnetic fields. Until Faraday showed that a time varying magnetic field generates an electric field, it was thought that the electric and magnetic fields were distinct and uncoupled. Faraday believed in the duality that a time varying electric field should also generate a magnetic field, but he was not able to prove this supposition.

It remained for James Clerk Maxwell to show that Faraday's hypothesis was correct and that without this correction Ampere's law and conservation of charge were inconsistent:

$$
\begin{gather*}
\nabla \times \mathbf{H}=\mathbf{J}_{f} \Rightarrow \nabla \cdot \mathbf{J}_{f}=0 \tag{1}\\
\nabla \cdot \mathbf{J}_{f}+\frac{\partial \rho_{f}}{\partial t}=0 \tag{2}
\end{gather*}
$$

for if we take the divergence of Ampere's law in (1), the current density must have zero divergence because the divergence of the curl of a vector is always zero. This result contradicts (2) if a time varying charge is present. Maxwell
realized that adding the displacement current on the righthand side of Ampere's law would satisfy charge conservation, because of Gauss's law relating D to $\rho_{f}\left(\nabla \cdot \mathrm{D}=\rho_{f}\right)$.

This simple correction has far-reaching consequences, because we will be able to show the existence of electromagnetic waves that travel at the speed of light c, thus proving that light is an electromagnetic wave. Because of the significance of Maxwell's correction, the complete set of coupled electromagnetic field laws are called Maxwell's equations:
Faraday's Law

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \Rightarrow \oint_{L} \mathbf{E} \cdot \mathrm{~d} \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot \mathbf{d} \mathbf{S} \tag{3}
\end{equation*}
$$

Ampere's law with Maxwell's displacement current correction

$$
\begin{equation*}
\nabla \times \mathbf{H}=\mathbf{J}_{f}+\frac{\partial \mathbf{D}}{\partial t} \Rightarrow \oint_{L} \mathbf{H} \cdot \mathbf{d l}=\int_{S} \mathbf{J}_{f} \cdot \mathbf{d S}+\frac{d}{d t} \int_{S} \mathbf{D} \cdot \mathbf{d S} \tag{4}
\end{equation*}
$$

Gauss's laws

$$
\begin{align*}
& \nabla \cdot \mathbf{D}=\rho_{f} \Rightarrow \oint_{S} \mathbf{D} \cdot \mathbf{d S}=\int_{V} \rho_{f} d V \tag{5}\\
& \nabla \cdot \mathbf{B}=0 \Rightarrow \oint_{S} \mathbf{B} \cdot \mathbf{d S}=\mathbf{0} \tag{6}
\end{align*}
$$

Conservation of charge

$$
\begin{equation*}
\nabla \cdot \mathbf{J}_{f}+\frac{\partial \rho_{f}}{\partial t}=0 \Rightarrow \oint_{S} \mathbf{J}_{f} \cdot \mathrm{~d} \mathbf{S}+\frac{d}{d t} \int_{V} \rho_{f} d V=0 \tag{7}
\end{equation*}
$$

As we have justified, (7) is derived from the divergence of (4) using (5).
Note that (6) is not independent of (3) for if we take the divergence of Faraday's law, $\nabla \cdot \mathbf{B}$ could at most be a timeindependent function. Since we assume that at some point in time $\mathbf{B}=0$, this function must be zero.
The symmetry in Maxwell's equations would be complete if a magnetic charge density appeared on the right-hand side of Gauss's law in (6) with an associated magnetic current due to the flow of magnetic charge appearing on the right-hand side of (3). Thus far, no one has found a magnetic charge or current, although many people are actively looking. Throughout this text we accept (3)-(7) keeping in mind that if magnetic charge is discovered, we must modify (3) and (6) and add an equation like (7) for conservation of magnetic charge.

7-1-2 Circuit Theory as a Quasi-static Approximation

Circuit theory assumes that the electric and magnetic fields are highly localized within the circuit elements. Although the displacement current is dominant within a capacitor, it is negligible outside so that Ampere's law can neglect time variations of \mathbf{D} making the current divergence-free. Then we obtain Kirchoff's current law that the algebraic sum of all currents flowing into (or out of) a node is zero:

$$
\begin{equation*}
\nabla \cdot \mathbf{J}=0 \Rightarrow \oint_{S} \mathbf{J} \cdot d \mathbf{S}=0 \Rightarrow \Sigma i_{k}=0 \tag{8}
\end{equation*}
$$

Similarly, time varying magnetic flux that is dominant within inductors and transformers is assumed negligible outside so that the electric field is curl free. We then have Kirchoff's voltage law that the algebraic sum of voltage drops (or rises) around any closed loop in a circuit is zero:

$$
\begin{equation*}
\nabla \times \mathbf{E}=0 \Rightarrow \mathbf{E}=-\nabla V \Rightarrow \oint_{L} \mathbf{E} \cdot \mathrm{~d} \mathbf{l}=0 \Rightarrow \mathbf{\Sigma} v_{k}=0 \tag{9}
\end{equation*}
$$

7-2 CONSERVATION OF ENERGY

7-2-1 Poynting's Theorem

We expand the vector quantity

$$
\begin{align*}
\boldsymbol{\nabla} \cdot(\mathbf{E} \times \mathbf{H}) & =\mathbf{H} \cdot(\boldsymbol{\nabla} \times \mathbf{E})-\mathbf{E} \cdot(\boldsymbol{\nabla} \times \mathbf{H}) \\
& =-\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}-\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}-\mathbf{E} \cdot \mathbf{J}_{f} \tag{1}
\end{align*}
$$

where we change the curl terms using Faraday's and Ampere's laws.

For linear homogeneous media, including free space, the constitutive laws are

$$
\begin{equation*}
\mathrm{D}=\varepsilon \mathrm{E}, \quad \mathrm{~B}=\mu \mathrm{H} \tag{2}
\end{equation*}
$$

so that (1) can be rewritten as

$$
\begin{equation*}
\nabla \cdot(E \times H)+\frac{\partial}{\partial t}\left(\frac{1}{2} E E^{2}+\frac{1}{2} \mu H^{2}\right)=-E \cdot J_{f} \tag{3}
\end{equation*}
$$

which is known as Poynting's theorem. We integrate (3) over a closed volume, using the divergence theorem to convert the
first term to a surface integral:

$$
\underbrace{\oint_{S}(\mathbf{E} \times \mathbf{H}) \cdot \mathbf{d S}}_{\substack{\int \\ V}(\mathbf{E} \times \mathbf{H}) d V}+\frac{d}{d t} \int_{V}\left(\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}\right) d V=-\int_{\mathbf{V}} \mathbf{E} \cdot \mathbf{J}_{f} d V
$$

We recognize the time derivative in (4) as operating on the electric and magnetic energy densities, which suggests the interpretation of (4) as

$$
\begin{equation*}
P_{\mathrm{out}}+\frac{d W}{d t}=-P_{d} \tag{5}
\end{equation*}
$$

where $P_{\text {out }}$ is the total electromagnetic power flowing out of the volume with density

$$
\begin{equation*}
\boldsymbol{S}=\mathbf{E} \times \mathbf{H} \text { watts } / \mathrm{m}^{2}\left[\mathrm{~kg}-\mathrm{s}^{-\mathbf{3}}\right] \tag{6}
\end{equation*}
$$

where S is called the Poynting vector, W is the electromagnetic stored energy, and P_{d} is the power dissipated or generated:

$$
\begin{align*}
P_{\mathrm{out}} & =\oint_{\mathrm{S}}(\mathbf{E} \times \mathbf{H}) \cdot \mathbf{d S}=\oint_{\mathrm{S}} \boldsymbol{S} \cdot \mathrm{dS} \\
W & =\int_{\mathrm{V}}\left[\frac{1}{2} \varepsilon E^{2}+\frac{1}{2} \mu H^{2}\right] d \mathrm{~V} \tag{7}\\
P_{d} & =\oint_{\mathrm{V}} \mathbf{E} \cdot \mathrm{~J}_{f} d \mathrm{~V}
\end{align*}
$$

If \mathbf{E} and \mathbf{J}_{f} are in the same direction as in an Ohmic conductor ($\mathrm{E} \cdot \mathrm{J}_{f}=\sigma E^{2}$), then P_{d} is positive, representing power dissipation since the right-hand side of (5) is negative. A source that supplies power to the volume has \mathbf{E} and \mathbf{J}_{f} in opposite directions so that P_{d} is negative.

7-2-2 A Lossy Capacitor

Poynting's theorem offers a different and to some a paradoxical explanation of power flow to circuit elements. Consider the cylindrical lossy capacitor excited by a time varying voltage source in Figure 7-1. The terminal current has both Ohmic and displacement current contributions:

$$
\begin{equation*}
i=\frac{\varepsilon A}{l} \frac{d v}{d t}+\frac{\sigma A v}{l}=C \frac{d v}{d t}+\frac{v}{R}, \quad C=\frac{\varepsilon A}{l}, \quad R=\frac{l}{\sigma A} \tag{8}
\end{equation*}
$$

From a circuit theory point of view we would say that the power flows from the terminal wires, being dissipated in the

Figure 7-1 The power delivered to a lossy cylindrical capacitor vi is partly dissipated by the Ohmic conduction and partly stored in the electric field. This power can also be thought to flow-in radially from the surrounding electric and magnetic fields via the Poynting vector $S=\mathbf{E} \times \mathbf{H}$.
resistance and stored as electrical energy in the capacitor:

$$
\begin{equation*}
P=v i=\frac{v^{2}}{R}+\frac{d}{d t}\left(\frac{1}{2} C v^{2}\right) \tag{9}
\end{equation*}
$$

We obtain the same results from a field's viewpoint using Poynting's theorem. Neglecting fringing, the electric field is simply

$$
\begin{equation*}
E_{z}=v / l \tag{10}
\end{equation*}
$$

while the magnetic field at the outside surface of the resistor is generated by the conduction and displacement currents:

$$
\begin{equation*}
\oint_{L} \mathrm{H} \cdot \mathrm{dl}=\int_{\mathrm{S}}\left(J_{\mathrm{z}}+\varepsilon \frac{\partial E_{\mathrm{z}}}{\partial t}\right) d \mathrm{~S} \Rightarrow H_{\phi} 2 \pi a=\frac{\sigma A v}{l}+\frac{\varepsilon}{l} A \frac{d v}{d t}=i \tag{11}
\end{equation*}
$$

where we recognize the right-hand side as the terminal current in (8),

$$
\begin{equation*}
H_{\phi}=i /(2 \pi a) \tag{12}
\end{equation*}
$$

The power flow through the surface at $\mathrm{r}=a$ surrounding the resistor is then radially inward,

$$
\begin{equation*}
\oint_{S}(\mathbf{E} \times \mathbf{H}) \cdot d S=-\int_{S} \frac{v}{l} \frac{i}{2 \pi a} a d \phi d z=-v i \tag{13}
\end{equation*}
$$

and equals the familiar circuit power formula. The minus sign arises because the left-hand side of (13) is the power out of the volume as the surface area element dS points radially outwards. From the field point of view, power lows into the lossy capacitor from the electric and magnetic fields outside
the resistor via the Poynting vector. Whether the power is thought to flow along the terminal wires or from the surrounding fields is a matter of convenience as the results are identical. The presence of the electric and magnetic fields are directly due to the voltage and current. It is impossible to have the fields without the related circuit variables.

7-2-3 Power in Electric Circuits

We saw in (13) that the flux of S entering the surface surrounding a circuit element just equals vi. We can show this for the general network with N terminals in Figure 7-2 using the quasi-static field laws that describe networks outside the circuit elements:

$$
\begin{gather*}
\nabla \times \mathbf{E}=0 \Rightarrow \mathbf{E}=-\nabla V \tag{14}\\
\nabla \times \mathbf{H}=\mathbf{J}_{f} \Rightarrow \nabla \cdot \mathbf{J}_{f}=\mathbf{0}
\end{gather*}
$$

We then can rewrite the electromagnetic power into a surface as

$$
\begin{align*}
P_{\text {in }} & =-\oint_{\mathbf{S}} \mathbf{E} \times \mathbf{H} \cdot \mathbf{d S} \\
& =-\int_{\mathrm{V}} \nabla \cdot(\mathbf{E} \times \mathbf{H}) d \mathrm{~V} \\
& =\int_{\mathrm{V}} \boldsymbol{\nabla} \cdot(\nabla \mathrm{~V} \times \mathbf{H}) d \mathrm{~V} \tag{15}
\end{align*}
$$

Figure 7-2 The circuit power into an N terminal network $\sum_{k-1}^{N} V_{k} I_{k}$ equals the electromagnetic power flow into the surface surrounding the network, $-\phi_{S} \mathbf{E} \times \mathrm{H} \cdot \mathrm{dS}$.
where the minus is introduced because we want the power in and we use the divergence theorem to convert the surface integral to a volume integral. We expand the divergence term as

$$
\begin{align*}
\nabla \cdot(\nabla V \times \mathbf{H}) & =\mathbf{H} \cdot\left(\nabla \times{ }^{7} \nabla V\right)-\nabla V \cdot(\nabla \times \mathbf{H}) \\
& =-\mathbf{J}_{f} \cdot \nabla V=-\nabla \cdot\left(\mathbf{J}_{f} V\right) \tag{16}
\end{align*}
$$

where we use (14).
Substituting (16) into (15) yields

$$
\begin{align*}
P_{\mathrm{in}} & =-\int_{\mathrm{V}} \nabla \cdot\left(\mathrm{~J}_{f} V\right) d \mathrm{~V} \\
& =-\oint_{\mathrm{S}} \mathbf{J}_{f} V \cdot \mathbf{d S} \tag{17}
\end{align*}
$$

where we again use the divergence theorem. On the surface S, the potential just equals the voltages on each terminal wire allowing V to be brought outside the surface integral:

$$
\begin{align*}
P_{\mathrm{in}} & =\sum_{k=1}^{N}-V_{k} \oint_{\mathrm{S}} \mathbf{J}_{f} \cdot \mathbf{d S} \\
& =\sum_{k=1}^{N} \mathrm{~V}_{k} I_{k} \tag{18}
\end{align*}
$$

where we recognize the remaining surface integral as just being the negative (remember dS points outward) of each terminal current flowing into the volume. This formula is usually given as a postulate along with Kirchoff's laws in most circuit theory courses. Their correctness follows from the quasi-static field laws that are only an approximation to more general phenomena which we continue to explore.

7-2-4 The Complex Poynting's Theorem

For many situations the electric and magnetic fields vary sinusoidally with time:

$$
\begin{align*}
\mathbf{E}(\mathbf{r}, t) & =\operatorname{Re}\left[\hat{\mathbf{E}}(\mathbf{r}) e^{j \omega t}\right] \\
\mathbf{H}(\mathbf{r}, t) & =\operatorname{Re}\left[\hat{\mathbf{H}}(\mathbf{r}) e^{j \omega t}\right] \tag{19}
\end{align*}
$$

where the caret is used to indicate a complex amplitude that can vary with position \mathbf{r}. The instantaneous power density is obtained by taking the cross product of \mathbf{E} and \mathbf{H}. However, it is often useful to calculate the time-average power density $<S\rangle$, where we can avoid the lengthy algebraic and trigonometric manipulations in expanding the real parts in (19).

A simple rule for the time average of products is obtained by realizing that the real part of a complex number is equal to one half the sum of the complex number and its conjugate (denoted by a superscript asterisk). The power density is then

$$
\begin{align*}
\boldsymbol{S}(\mathbf{r}, t)= & \mathbf{E}(\mathbf{r}, t) \times \mathbf{H}(\mathbf{r}, t) \\
= & \frac{1}{4}\left[\hat{\mathbf{E}}(\mathbf{r}) e^{j \omega t}+\hat{\mathbf{E}}^{*}(\mathbf{r}) e^{-j \omega t}\right] \times\left[\hat{\mathbf{H}}(\mathbf{r}) e^{j \omega t}+\hat{\mathbf{H}}^{*}(\mathbf{r}) e^{-j \omega t}\right] \\
= & \frac{1}{4}\left[\hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}(\mathbf{r}) e^{2 j \omega t}+\hat{\mathbf{E}}^{*}(\mathbf{r}) \times \hat{\mathbf{H}}(\mathbf{r})+\hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r})\right. \\
& \left.+\hat{\mathbf{E}}^{*}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r}) e^{-2 j \omega t}\right] \tag{20}
\end{align*}
$$

The time average of (20) is then

$$
\begin{align*}
<\boldsymbol{S}> & =\frac{1}{4}\left[\hat{\mathbf{E}}^{*}(\mathbf{r}) \times \hat{\mathbf{H}}(\mathbf{r})+\hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r})\right] \\
& =\frac{1}{2} \operatorname{Re}\left[\hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r})\right] \\
& =\frac{1}{2} \operatorname{Re}\left[\hat{\mathbf{E}}^{*}(\mathbf{r}) \times \hat{\mathbf{H}}(\mathbf{r})\right] \tag{21}
\end{align*}
$$

as the complex exponential terms $e^{ \pm 2 j \omega t}$ average to zero over a period $T=2 \pi / \omega$ and we again realized that the first bracketed term on the right-hand side of (21) was the sum of a complex function and its conjugate.

Motivated by (21) we define the complex Poynting vector as

$$
\begin{equation*}
\hat{\boldsymbol{S}}=\frac{1}{2} \hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r}) \tag{22}
\end{equation*}
$$

whose real part is just the time-average power density.
We can now derive a complex form of Poynting's theorem by rewriting Maxwell's equations for sinusoidal time variations as

$$
\begin{align*}
\nabla \times \hat{\mathbf{E}}(\mathbf{r}) & =-j \omega \mu \hat{\mathbf{H}}(\mathbf{r}) \\
\nabla \times \hat{\mathbf{H}}(\mathbf{r}) & =\hat{\mathbf{J}}_{f}(\mathbf{r})+j \omega \varepsilon \hat{\mathbf{E}}(\mathbf{r}) \\
\nabla \cdot \hat{\mathbf{E}}(\mathbf{r}) & =\hat{\rho}_{f}(\mathbf{r}) / \varepsilon \tag{23}\\
\nabla \cdot \hat{\mathbf{B}}(\mathbf{r}) & =0
\end{align*}
$$

and expanding the product

$$
\begin{align*}
\nabla \cdot \hat{\boldsymbol{S}} & =\nabla \cdot\left[\frac{1}{2} \hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r})\right]=\frac{1}{2}\left[\hat{\mathbf{H}}^{*}(\mathbf{r}) \cdot \nabla \times \hat{\mathbf{E}}(\mathbf{r})-\hat{\mathbf{E}}(\mathbf{r}) \cdot \nabla \times \hat{\mathbf{H}}^{*}(\mathbf{r})\right] \\
& =\frac{1}{2}\left[-j \omega \mu|\hat{\mathbf{H}}(\mathbf{r})|^{2}+j \omega \varepsilon|\mathbf{\mathbf { E }}(\mathbf{r})|^{2}\right]-\frac{1}{2} \hat{\mathbf{E}}(\mathbf{r}) \cdot \hat{\mathrm{J}}_{f}^{*}(\mathbf{r}) \tag{24}
\end{align*}
$$

which can be rewritten as

$$
\begin{equation*}
\nabla \cdot \hat{\boldsymbol{S}}+2 j \omega\left[<w_{m}>-<w_{e}>\right]=-\hat{P}_{d} \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
<w_{m}> & =\frac{1}{4} \mu|\hat{\mathbf{H}}(\mathbf{r})|^{2} \\
<w_{c}> & =\frac{1}{4} \varepsilon|\hat{\mathbf{E}}(\mathbf{r})|^{2} \tag{26}\\
\hat{P}_{d} & =\frac{1}{2} \hat{\mathbf{E}}(\mathbf{r}) \cdot \hat{\mathbf{J}}_{f}^{*}(\mathbf{r})
\end{align*}
$$

We note that $\left\langle w_{m}\right\rangle$ and $\left.<w_{a}\right\rangle$ are the time-average magnetic and electric energy densities and that the complex Poynting's theorem depends on their difference rather than their sum.

7.3 TRANSVERSE ELECTROMAGNETIC WAVES

7-3-1 Plane Waves

Let us try to find solutions to Maxwell's equations that only depend on the z coordinate and time in linear media with permittivity ε and permeability μ. In regions where there are no sources so that $\rho_{f}=0, J_{f}=0$, Maxwell's equations then reduce to

$$
\begin{gather*}
-\frac{\partial E_{y_{3}}}{\partial z} \mathbf{i}_{x}+\frac{\partial E_{x}}{\partial z} \mathbf{i}_{y}=-\mu \frac{\partial \mathbf{H}}{\partial t} \tag{1}\\
-\frac{\partial H_{y}}{\partial z} \mathbf{i}_{x}+\frac{\partial H_{x}}{\partial z} \mathbf{i}_{y}=\varepsilon \frac{\partial \mathbf{E}}{\partial t} \tag{2}\\
\varepsilon \frac{\partial E_{z}}{\partial z}=0 \tag{3}\\
\mu \frac{\partial H_{z}}{\partial z}=0 \tag{4}
\end{gather*}
$$

These relations tell us that at best E_{z} and H_{z} are constant in time and space. Because they are uncoupled, in the absence of sources we take them to be zero. By separating vector components in (1) and (2) we see that E_{x} is coupled to H, and E_{y} is coupled to H_{x} :

$$
\begin{array}{ll}
\frac{\partial E_{x}}{\partial z}=-\mu \frac{\partial H_{y}}{\partial t}, & \frac{\partial E_{y}}{\partial z}=\mu \frac{\partial H_{x}}{\partial t} \\
\frac{\partial H_{y}}{\partial z}=-\varepsilon \frac{\partial E_{x}}{\partial t}, & \frac{\partial H_{x}}{\partial z}=\varepsilon \frac{\partial E_{y}}{\partial t} \tag{5}
\end{array}
$$

forming two sets of independent equations. Each solution has perpendicular electric and magnetic fields. The power flow $\boldsymbol{S}=\mathbf{E} \times \mathbf{H}$ for each solution is \boldsymbol{z} directed also being perpendicular to \mathbf{E} and \mathbf{H}. Since the fields and power flow are mutually perpendicular, such solutions are called transverse electromagnetic waves (TEM). They are waves because if we take $\partial / \partial z$ of the upper equations and $\partial / \partial t$ of the lower equations and solve for the electric fields, we obtain one-dimensional wave equations:

$$
\begin{equation*}
\frac{\partial^{2} E_{x}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E_{x}}{\partial t^{2}}, \quad \frac{\partial^{2} E_{y}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E_{y}}{\partial t^{2}} \tag{6}
\end{equation*}
$$

where c is the speed of the wave,

$$
\begin{equation*}
c=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}} \sqrt{\varepsilon_{r} \mu_{r}}}=\frac{3 \times 10^{\mathrm{B}}}{\sqrt{\varepsilon_{r} \mu_{r}}} \mathrm{~m} / \mathrm{sec} \tag{7}
\end{equation*}
$$

In free space, where $\varepsilon_{r}=1$ and $\mu_{r}=1$, this quantity equals the speed of light in vacuum which demonstrated that light is a transverse electromagnetic wave. If we similarly take $\partial / \partial t$ of the upper and $\partial / \partial z$ of the lower equations in (5), we obtain wave equations in the magnetic fields:

$$
\begin{equation*}
\frac{\partial^{2} H_{y}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} H_{y}}{\partial t^{2}}, \quad \frac{\partial^{2} H_{x}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} H_{x}}{\partial t^{2}} \tag{8}
\end{equation*}
$$

7-3-2 The Wave Equation

(a) Solutions

These equations arise in many physical systems, so their solutions are well known. Working with the E_{x} and H_{y} equations, the solutions are

$$
\begin{align*}
& E_{x}(z, t)=E_{+}(t-z / c)+E_{-}(t+z / c) \\
& H_{y}(z, t)=H_{+}(t-z / c)+H_{-}(t+z / c) \tag{9}
\end{align*}
$$

where the functions E_{+}, E_{-}, H_{+}, and H_{-}depend on initial conditions in time and boundary conditions in space. These solutions can be easily verified by defining the arguments α and β with their resulting partial derivatives as

$$
\begin{array}{ll}
\alpha=t-\frac{z}{c} \Rightarrow \frac{\partial \alpha}{\partial t}=1, & \frac{\partial \alpha}{\partial z}=-\frac{1}{c} \\
\beta=t+\frac{z}{c} \Rightarrow \frac{\partial \beta}{\partial t}=1, & \frac{\partial \beta}{\partial z}=\frac{1}{c} \tag{10}
\end{array}
$$

and realizing that the first partial derivatives of $E_{x}(z, t)$ are

$$
\begin{align*}
\frac{\partial E_{x}}{\partial t} & =\frac{d E_{+}}{d \alpha} \frac{\partial \alpha}{\partial t}+\frac{d E_{-}}{d \beta} \frac{\partial \beta}{\partial t} \\
& =\frac{d E_{+}}{d \alpha}+\frac{d E_{-}}{d \beta} \\
\frac{\partial E_{x}}{\partial z} & =\frac{d E_{+}}{d \alpha} \frac{\partial \alpha}{\partial z}+\frac{d E_{-}}{d \beta} \frac{\partial \beta}{\partial z} \tag{11}\\
& =\frac{1}{c}\left(-\frac{d E_{+}}{d \alpha}+\frac{d E_{-}}{d \beta}\right)
\end{align*}
$$

The second derivatives are then

$$
\begin{align*}
\frac{\partial^{2} E_{x}}{\partial t^{2}} & =\frac{d^{2} E_{+}}{d \alpha^{2}} \frac{\partial \alpha}{\partial t}+\frac{d^{2} E_{-}}{d \beta^{2}} \frac{\partial \beta}{\partial t} \\
& =\frac{d^{2} E_{+}}{d \alpha^{2}}+\frac{d^{2} E_{-}}{d \beta^{2}} \\
\frac{\partial^{2} E_{x}}{\partial z^{2}} & =\frac{1}{c}\left(-\frac{d^{2} E_{+}}{d \alpha^{2}} \frac{\partial \alpha}{\partial z}+\frac{d^{2} E_{-}}{d \beta^{2}} \frac{\partial \beta}{\partial z}\right) \tag{1}\\
& =\frac{1}{c^{2}}\left(\frac{d^{2} E_{+}}{d \alpha^{2}}+\frac{d^{2} E_{-}}{d \beta^{2}}\right)=\frac{1}{c^{2}} \frac{\partial^{2} E_{x}}{\partial t^{2}}
\end{align*}
$$

which satisfies the wave equation of (6). Similar operations apply for $H_{r} E_{\boldsymbol{r}}$ and H_{x}.

In (9), the pair H_{+}and E_{+}as well as the pair H_{-}and E_{-}are not independent, as can be seen by substituting the solutions of (9) back into (5) and using (11):

$$
\begin{equation*}
\frac{\partial E_{x}}{\partial z}=-\mu \frac{\partial H_{9}}{\partial t} \Rightarrow \frac{1}{c}\left(-\frac{d E_{+}}{d \alpha}+\frac{d E_{-}}{d \beta}\right)=-\mu\left(\frac{d H_{+}}{d \alpha}+\frac{d H_{-}}{d \beta}\right) \tag{13}
\end{equation*}
$$

The functions of α and β must separately be equal,

$$
\begin{equation*}
\frac{d}{d \alpha}\left(E_{+}-\mu c H_{+}\right)=0, \quad \frac{d}{d \beta}\left(E_{-}+\mu c H_{-}\right)=0 \tag{14}
\end{equation*}
$$

which requires that

$$
\begin{equation*}
E_{+}=\mu c H_{+}=\sqrt{\frac{\mu}{\varepsilon}} H_{+}, \quad E_{-}=-\mu c H_{-}=-\sqrt{\frac{\mu}{\varepsilon}} H_{-} \tag{15}
\end{equation*}
$$

where we use (7). Since $\sqrt{\mu / \varepsilon}$ has units of Ohms, this quantity is known as the wave impedance η,

$$
\begin{equation*}
\eta=\sqrt{\frac{\mu}{\varepsilon}} \approx 120 \pi \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}} \tag{16}
\end{equation*}
$$

and has value $120 \pi \approx 377 \mathrm{ohm}$ in free space ($\mu_{r}=1, \varepsilon_{r}=1$).
The power flux density in TEM waves is

$$
\begin{align*}
S=\mathbf{E} \times \mathbf{H}= & {\left[E_{+}(t-z / c)+E_{-}(t+z / c)\right] \mathrm{i}_{x} } \\
& \times\left[H_{+}(t-z / c)+H_{-}(t+z / c)\right] \mathrm{i}_{,} \\
= & \left(E_{+} H_{+}+E_{-} H_{-}+E_{-} H_{+}+E_{+} H_{-}\right) \mathbf{i}_{\varepsilon} \tag{17}
\end{align*}
$$

Using (15) and (16) this result can be written as

$$
\begin{equation*}
S_{x}=\frac{1}{\eta}\left(E_{+}^{2}-E_{-}^{2}\right) \tag{18}
\end{equation*}
$$

where the last two cross terms in (17) cancel because of the minus sign relating E_{-}to H_{-}in (15). For TEM waves the total power flux density is due to the difference in power densities between the squares of the positively z-directed and negatively z-directed waves.

(b) Properties

The solutions of (9) are propagating waves at speed c. To see this, let us examine $E_{+}(t-z / c)$ and consider the case where at $z=0, E_{+}(t)$ is the staircase pulse shown in Figure 7-3a. In Figure $7-3 b$ we replace the argument t by $t-z / c$. As long as the function E_{+}is plotted versus its argument, no matter what its argument is, the plot remains unchanged. However, in Figure $7-3 c$ the function $E_{+}(t-z / c)$ is plotted versus t resulting in the pulse being translated in time by an amount z / c. To help in plotting this translated function, we use the following logic:
(i) The pulse jumps to amplitude E_{0} when the argument is zero. When the argument is $t-z / c$, this occurs for $t=z / c$.
(ii) The pulse jumps to amplitude $2 E_{0}$ when the argument is T. When the argument is $t-z / c$, this occurs for $t=$ $T+z / c$.
(iii) The pulse returns to zero when the argument is $2 T$. For the argument $t-z / c$, we have $t=2 T+z / c$.

(a)
$E_{+}\left(t-\frac{z}{c}\right)$

(c)

(b)

$$
E_{+}\left(t-\frac{z}{c}\right)
$$

(d)

Figure 7-3 (a) $E_{+}(t)$ at $z=0$ is a staircase pulse. (b) $E_{+}(\phi)$ always has the same shape as (a) when plotted versus ϕ, no matter what ϕ is. Here $\phi=t-z / c$. (c) When plotted versus t, the pulse is translated in time where z must be positive to keep t positive. (d) When plotted versus π, it is translated and inverted. The pulse propagates at speed c in the positive z direction.

Note that z can only be positive as causality imposes the condition that time can only be increasing. The response at any positive position z to an initial E_{+}pulse imposed at $z=0$ has the same shape in time but occurs at a time z / c later. The pulse travels the distance z at the speed c. This is why the function $E_{+}(t-z / c)$ is called a positively traveling wave.

In Figure $7-3 d$ we plot the same function versus z. Its appearance is inverted as that part of the pulse generated first (step of amplitude E_{0}) will reach any positive position z first. The second step of amplitude $2 E_{0}$ has not traveled as far since it was generated a time T later. To help in plotting, we use the same criterion on the argument as used in the plot versus time, only we solve for z. The important rule we use is that as long as the argument of a function remains constant, the value of the function is unchanged, no matter how the individual terms in the argument change.

Thus, as long as

$$
\begin{equation*}
t-z / c=\mathrm{const} \tag{19}
\end{equation*}
$$

$E_{+}(t-z / c)$ is unchanged. As time increases, so must z to satisfy (19) at the rate

$$
\begin{equation*}
t-\frac{z}{c}=\text { const } \Rightarrow \frac{d z}{d t}=c \tag{20}
\end{equation*}
$$

to keep the E_{+}function constant.
For similar reasons $E_{-}(t+z / c)$ represents a traveling wave at the speed c in the negative z direction as an observer must move to keep the argument $t+z / c$ constant at speed:

$$
\begin{equation*}
t+\frac{z}{c}=\text { const } \Rightarrow \frac{d z}{d t}=-c \tag{21}
\end{equation*}
$$

as demonstrated for the same staircase pulse in Figure 7-4. Note in Figure 7-4d that the pulse is not inverted when plotted versus z as it was for the positively traveling wave, because that part of the puise generated first (step of amplitude E_{0}) reaches the maximum distance but in the negative z direction. These differences between the positively and negatively traveling waves are functionally due to the difference in signs in the arguments $(t-z / c)$ and $(t+z / c)$.

7-3-3 Sources of Plane Waves

These solutions are called plane waves because at any constant z plane the fields are constant and do not vary with the x and y coordinates.

The idealized source of a plane wave is a time varying current sheet of infinite extent that we take to be x directed,

Figure 7-4 (a) $E_{-}(t)$ at $z=0$ is a staircase pulse. (b) $E_{-}(\phi)$ always has the same form of (a) when plotted versus ϕ. Here $\phi=t+z / c$. (c) When plotted versus t, the pulse is translated in time where z must be negative to keep t positive. (d) When plotted versus z, it is translated but not inverted.
as shown in Figure 7-5. From the boundary condition on the discontinuity of tangential \mathbf{H}, we find that the x-directed current sheet gives rise to a y-directed magnetic field:

$$
\begin{equation*}
H_{y}\left(z=0_{+}\right)-H_{y}\left(z=0_{-}\right)=-K_{x}(t) \tag{22}
\end{equation*}
$$

In general, a uniform current sheet gives rise to a magnetic field perpendicular to the direction of current flow but in the plane of the sheet. Thus to generate an x-directed magnetic field, a y-directed surface current is required.
Since there are no other sources, the waves must travel away from the sheet so that the solutions on each side of the sheet are of the form

$$
H_{y}(z, t)=\left\{\begin{array}{ll}
H_{+}(t-z / c) \tag{23}\\
H_{-}(t+z / c)
\end{array} \quad E_{x}(z, t)= \begin{cases}\eta H_{+}(t-z / c), & z>0 \\
-\eta H_{-}(t+z / c), & z<0\end{cases}\right.
$$

For $z>0$, the waves propagate only in the positive z direction. In the absence of any other sources or boundaries, there can be no negatively traveling waves in this region. Similarly for $z<0$, we only have waves propagating in the $-z$ direction. In addition to the boundary condition of (22), the tangential component of \mathbf{E} must be continuous across the sheet at $z=0$

$$
\left.\begin{array}{c}
H_{+}(t)-H_{-}(t)=-K_{x}(t) \tag{24}\\
\eta\left[H_{+}(t)+H_{-}(t)\right]=0
\end{array}\right\} \Rightarrow H_{+}(t)=-H_{-}(t)=\frac{-K_{x}(t)}{2}
$$

(b)

Figure 7-5 (a) A linearly polarized plane wave is generated by an infinite current sheet. The electric field is in the direction opposite to the current on either side of the sheet. The magnetic field is perpendicular to the current but in the plane of the current sheet and in opposite directions as given by the right-hand rule on either side of the sheet. The power flow S is thus perpendicular to the current and to the sheet. (b) The field solutions for $t>2 T$ if the current source is a staircase pulse in time.
so that the electric and magnetic fields have the same shape as the current. Because the time and space shape of the fields remains unchanged as the waves propagate, linear dielectric media are said to be nondispersive.
Note that the electric field at $z=0$ is in the opposite direction as the current, so the power per unit area delivered by the current sheet,

$$
\begin{equation*}
-\mathbf{E}(z=0, t) \cdot \mathbf{K}_{x}(t)=\frac{\eta K_{x}^{2}(t)}{2} \tag{25}
\end{equation*}
$$

is equally carried away by the Poynting vector on each side of the sheet:

$$
S(z \fallingdotseq 0)=\mathbf{E} \times \mathbf{H}= \begin{cases}\frac{\eta K_{x}^{2}(t)}{4} \mathbf{i}_{z}, & z>0 \tag{26}\\ \frac{-\eta K_{x}^{2}(t)}{4} \mathbf{i}_{z}, & z<0\end{cases}
$$

7-3-4 A Brief Introduction to the Theory of Relativity

Maxwell's equations show that electromagnetic waves propagate at the speed $c_{0}=1 / \sqrt{\varepsilon_{0} \mu_{0}}$ in vacuum. Our natural intuition would tell us that if we moved at a speed v we would measure a wave speed of $c_{0}-v$ when moving in the same direction as the wave, and a speed $c_{0}+v$ when moving in the opposite direction. However, our intuition would be wrong, for nowhere in the free space, source-free Maxwell's equations does the speed of the observer appear. Maxwell's equations predict that the speed of electromagnetic waves is c_{0} for all observers no matter their relative velocity. This assumption is a fundamental postulate of the theory of relativity and has been verified by all experiments. The most notable experiment was performed by A. A. Michelson and E. W. Morley in the late nineteenth century, where they showed that the speed of light reflected between mirrors is the same whether it propagated in the direction parallel or perpendicular to the velocity of the earth. This postulate required a revision of the usual notions of time and distance.
If the surface current sheet of Section 7-3-3 is first turned on at $t=0$, the position of the wave front on either side of the sheet at time t later obeys the equality

$$
\begin{equation*}
z^{2}-c_{0}^{2} t^{2}=0 \tag{27}
\end{equation*}
$$

Similarly, an observer in a coordinate system moving with constant velocity $u i_{2}$ which is aligned with the current sheet at
$t=0$ finds the wavefront position to obey the equality

$$
\begin{equation*}
z^{\prime 2}-c_{0}^{2} t^{\prime 2}=0 \tag{28}
\end{equation*}
$$

The two coordinate systems must be related by a linear transformation of the form

$$
\begin{equation*}
z^{\prime}=a_{1} z+a_{2} t, \quad t^{\prime}=b_{1} z+b_{2} t \tag{29}
\end{equation*}
$$

The position of the origin of the moving frame $\left(z^{\prime}=0\right)$ as measured in the stationary frame is $z=v t$, as shown in Figure $7-6$, so that a_{1} and a_{2} are related as

$$
\begin{equation*}
0=a_{1} v t+a_{2} t \Rightarrow a_{1} v+a_{2}=0 \tag{30}
\end{equation*}
$$

We can also equate the two equalities of (27) and (28),

$$
\begin{equation*}
z^{2}-c_{0}^{2} t^{2}=z^{\prime 2}-c_{0}^{2} t^{\prime 2}=\left(a_{1} z+a_{2} t\right)^{2}-c_{0}^{2}\left(b_{1} z+b_{2} t\right)^{2} \tag{31}
\end{equation*}
$$

so that combining terms yields
$z^{2}\left(1-a_{1}^{2}+c_{0}^{2} b_{1}^{2}\right)-c_{0}^{2} t^{2}\left(1+\frac{a_{2}^{2}}{c_{0}^{2}}-b_{2}^{2}\right)-2\left(a_{1} a_{2}-c_{0}^{2} b_{1} b_{2}\right) z t=0$

Since (32) must be true for all z and t, each of the coefficients must be zero, which with (30) gives solutions

$$
\begin{array}{ll}
a_{1}=\frac{1}{\sqrt{1-\left(v / c_{0}\right)^{2}}}, & b_{1}=\frac{-v / c_{0}^{2}}{\sqrt{1-\left(v / c_{0}\right)^{2}}} \\
a_{2}=\frac{-v}{\sqrt{1-\left(v / c_{0}\right)^{2}}}, & b_{2}=\frac{1}{\sqrt{1-\left(v / c_{0}\right)^{2}}} \tag{33}
\end{array}
$$

Figure 7-6 The primed coordinate system moves at constant velocity $v \mathbf{i}_{2}$ with respect to a stationary coordinate system. The free space speed of an electromagnetic wave is c_{0} as measured by observers in either coordinate system no matter the velocity v.

The transformations of (29) are then

$$
\begin{equation*}
z^{\prime}=\frac{z-v t}{\sqrt{1-\left(v / c_{0}\right)^{2}}}, \quad t^{\prime}=\frac{t-v z / c_{0}^{2}}{\sqrt{1-\left(v / c_{0}\right)^{2}}} \tag{34}
\end{equation*}
$$

and are known as the Lorentz transformations. Measured lengths and time intervals are different for observers moving at different speeds. If the velocity v is much less than the speed of light, (34) reduces to the Galilean transformations,

$$
\begin{equation*}
\lim _{v / c \propto 1} z^{\prime} \approx z-v t, \quad t^{\prime} \approx t \tag{35}
\end{equation*}
$$

which describe our usual experiences at nonrelativistic speeds.

The coordinates perpendicular to the motion are unaffected by the relative velocity between reference frames

$$
\begin{equation*}
x^{\prime}=x, \quad y^{\prime}=y \tag{36}
\end{equation*}
$$

Continued development of the theory of relativity is beyond the scope of this text and is worth a course unto itself. Applying the Lorentz transformation to Newton's law and Maxwell's equations yield new results that at first appearance seem contrary to our experiences because we live in a world where most material velocities are much less than c_{0}. However, continued experiments on such disparate time and space scales as between atomic physics and astronomics verify the predictions of relativity theory, in part spawned by Maxwell's equations.

7-4 SINUSOIDAL TIME VARIATIONS

7-4-1 Frequency and Wavenumber

If the current sheet of Section 7-3-3 varies sinusoidally with time as $\operatorname{Re}\left(K_{0} e^{j \omega t}\right)$, the wave solutions require the fields to vary as $e^{j \omega(t-x / c)}$ and $e^{j \omega(t+z / c)}$:

$$
\begin{align*}
& H_{y}(z, t)= \begin{cases}\operatorname{Re}\left(-\frac{K_{0}}{2} e^{j \omega(t-z / c)}\right), & z>0 \\
\operatorname{Re}\left(+\frac{K_{0}}{2} e^{j \omega(t+z / c)}\right), & z<0\end{cases} \tag{1}\\
& E_{x}(z, t)= \begin{cases}\operatorname{Re}\left(-\frac{\eta K_{0}}{2} e^{j \omega(t-z / c)}\right), & z>0 \\
\operatorname{Re}\left(-\frac{\eta K_{0}}{2} e^{j \omega(t+z / c)}\right), & z<0\end{cases}
\end{align*}
$$

At a fixed time the fields then also vary sinusoidally with position so that it is convenient to define the wavenumber as

$$
\begin{equation*}
k=\frac{2 \pi}{\lambda}=\frac{\omega}{c}=\omega \sqrt{\mu \varepsilon} \tag{2}
\end{equation*}
$$

where λ is the fundamental spatial period of the wave. At a fixed position the waveform is also periodic in time with period T :

$$
\begin{equation*}
T=\frac{1}{f}=\frac{2 \pi}{\omega} \tag{3}
\end{equation*}
$$

where f is the frequency of the source. Using (3) with (2) gives us the familiar frequency-wavelength formula:

$$
\begin{equation*}
\omega=k c \Rightarrow f \lambda=c \tag{4}
\end{equation*}
$$

Throughout the electromagnetic spectrum, summarized in Figure 7-7, time varying phenomena differ only in the scaling of time and size. No matter the frequency or wavelength, although easily encompassing 20 orders of magnitude, electromagnetic phenomena are all described by Maxwell's equations. Note that visible light only takes up a tiny fraction of the spectrum.

Figure 7-7 Time varying electromagnetic phenomena differ only in the scaling of time (frequency) and size (wavelength). In linear dielectric media the frequency and wavelength are related as $f \lambda=c(\omega=k c)$, where $c=1 / \sqrt{\varepsilon \mu}$ is the speed of light in the medium.

For a single sinusoidally varying plane wave, the timeaverage electric and magnetic energy densities are equal because the electric and magnetic field amplitudes are related through the wave impedance η :

$$
\begin{equation*}
\left\langle w_{m}\right\rangle=\left\langle w_{e}\right\rangle=\frac{1}{4} \mu|\mathbf{H}|^{2}=\frac{1}{4} \varepsilon|\mathbf{E}|^{2}=\frac{1}{16} \mu K_{0}^{2} \tag{5}
\end{equation*}
$$

From the complex Poynting theorem derived in Section 7-2-4, we then see that in a lossless region with no sources for $|z|>0$ that $\hat{P}_{d}=0$ so that the complex Poynting vector has zero divergence. With only one-dimensional variations with z, this requires the time-average power density to be a constant throughout space on each side of the current sheet:

$$
\begin{align*}
\langle\boldsymbol{S}> & =\frac{1}{2} \operatorname{Re}\left[\hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r})\right] \\
& = \begin{cases}\frac{1}{8} \eta K_{0}^{2} \mathbf{i}_{2}, & z>0 \\
-\frac{1}{8} \eta K_{0}^{2} \mathbf{i}_{z}, & z<0\end{cases} \tag{6}
\end{align*}
$$

The discontinuity in $\langle\boldsymbol{S}>$ at $z=0$ is due to the power output of the source.

7-4-2 Doppler Frequency Shifts

If the sinusoidally varying current sheet $\operatorname{Re}\left(K_{0} e^{j \omega t}\right)$ moves with constant velocity $\boldsymbol{v i _ { 2 }}$, as in Figure 7-8, the boundary conditions are no longer at $z=0$ but at $z=v t$. The general form of field solutions are then:

$$
\begin{align*}
& H_{y}(z, t)= \begin{cases}\operatorname{Re}\left(\hat{H}_{+} e^{j \omega_{+}(t-z / c)}\right), & z>v t \\
\operatorname{Re}\left(\hat{H}_{-} e^{j \omega_{-}(t+z / c)}\right), & z<v t\end{cases} \\
& E_{x}(z, t)= \begin{cases}\operatorname{Re}\left(\eta \hat{H}_{+} e^{j \omega_{+}(i-z / t)}\right), & z>v t \\
\operatorname{Re}\left(-\eta \hat{H}_{-} e^{j \omega_{-}(t+z / c)}\right), & z<v t\end{cases} \tag{7}
\end{align*}
$$

where the frequencies of the fields ω_{+}and ω_{-}on each side of the sheet will be different from each other as well as differing from the frequency of the current source ω. We assume $v / c \ll 1$ so that we can neglect relativistic effects discussed in Section 7-3-4. The boundary conditions

$$
\begin{align*}
E_{x_{+}}(z=v t)= & E_{x_{-}}(z=v t) \Rightarrow \hat{H}_{+} e^{j \omega_{+} t(1-v / c)}=-\hat{H}_{-} e^{i \omega_{-}(1+v / c)} \\
& H_{y_{+}}(z=v t)-H_{y_{-}}(z=v t)=-K_{x} \tag{8}\\
& \Rightarrow \hat{H}_{+} e^{i \omega_{+} t(1-v / c)}-\hat{H}_{-} e^{j \omega_{-} t(1+v / t)}=-K_{0} e^{j \omega t}
\end{align*}
$$

must be satisfied for all values of t so that the exponential time factors in (8) must all be equal, which gives the shifted

Figure 7-8 When a source of electromagnetic waves moves towards an observer, the frequency is raised while it is lowered when it moves away from an observer.
frequencies on each side of the sheet as

$$
\begin{gather*}
\omega_{+}=\frac{\omega}{1-v / c} \approx \omega\left(1+\frac{v}{c}\right), \\
\omega_{-}=\frac{\omega}{1+v / c} \approx \omega\left(1-\frac{v}{c}\right) \Rightarrow \hat{H}_{+}=-\hat{H}_{-}=-\frac{K_{0}}{2} \tag{9}
\end{gather*}
$$

where $v / c \ll l$. When the source is moving towards an observer, the frequency is raised while it is lowered when it moves away. Such frequency changes due to the motion of a source or observer are called Doppler shifts and are used to measure the velocities of moving bodies in radar systems. For $v / c \ll 1$, the frequency shifts are a small percentage of the driving frequency, but in absolute terms can be large enough to be easily measured. At a velocity $v=300 \mathrm{~m} / \mathrm{sec}$ with a driving frequency of $f=10^{10} \mathrm{~Hz}$, the frequency is raised and lowered on each side of the sheet by $\Delta f= \pm f(v / c)= \pm 10^{4} \mathrm{~Hz}$.

7-4-3 Ohmic Losses

Thus far we have only considered lossless materials. If the medium also has an Ohmic conductivity σ, the electric field
will cause a current flow that must be included in Ampere's law:

$$
\begin{align*}
& \frac{\partial E_{x}}{\partial z}=-\mu \frac{\partial H_{y}}{\partial t} \\
& \frac{\partial H_{y}}{\partial z}=-J_{x}-\varepsilon \frac{\partial E_{x}}{\partial t}=-\sigma E_{x}-\varepsilon \frac{\partial E_{x}}{\partial t} \tag{10}
\end{align*}
$$

where for conciseness we only consider the \boldsymbol{x}-directed electric field solution as the same results hold for the E_{y}, H_{x} solution. Our wave solutions of Section 7-3-2 no longer hold with this additional term, but because Maxwell's equations are linear with constant coefficients, for sinusoidal time variations the solutions in space must also be exponential functions, which we write as

$$
\begin{align*}
& E_{x}(z, t)=\operatorname{Re}\left(\hat{E}_{0} e^{j(\omega t-k z)}\right) \\
& H_{y}(z, t)=\operatorname{Re}\left(\hat{H}_{0} e^{j(\omega t-k z)}\right) \tag{11}
\end{align*}
$$

where \hat{E}_{0} and \hat{H}_{0} are complex amplitudes and the wavenumber k is no longer simply related to ω as in (4) but is found by substituting (11) back into (10):

$$
\begin{align*}
& -j k \hat{E}_{0}=-j \omega \mu \hat{H}_{0} \\
& -j k \hat{H}_{0}=-j \omega \varepsilon(1+\sigma / j \omega \varepsilon) \hat{E}_{0} \tag{12}
\end{align*}
$$

This last relation was written in a way that shows that the conductivity enters in the same way as the permittivity so that we can define a complex permittivity $\hat{\varepsilon}$ as

$$
\begin{equation*}
\hat{\varepsilon}=\varepsilon(1+\sigma / j \omega \varepsilon) \tag{13}
\end{equation*}
$$

Then the solutions to (12) are

$$
\begin{equation*}
\frac{\hat{E}_{0}}{\hat{H}_{0}}=\frac{\omega \mu}{k}=\frac{k}{\omega \hat{\varepsilon}} \Rightarrow k^{2}=\omega^{2} \mu \hat{\varepsilon}=\omega^{2} \mu \varepsilon\left(1+\frac{\sigma}{j \omega \varepsilon}\right) \tag{14}
\end{equation*}
$$

which is similar in form to (2) with a complex permittivity.
There are two interesting limits of (14):

(a) Low Loss Limit

If the conductivity is small so that $\sigma / \omega \varepsilon \ll 1$, then the solution of (14) reduces to

$$
\begin{equation*}
\lim _{\sigma / \omega \varepsilon<1} k= \pm \omega \sqrt{\mu \varepsilon}\left(1+\frac{\sigma}{2 j \omega \varepsilon}\right)= \pm\left(\frac{\omega}{c}-\frac{j \sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}\right) \tag{15}
\end{equation*}
$$

where c is the speed of the light in the medium if there were no losses, $c=1 / \sqrt{\mu \varepsilon}$. Because of the spatial exponential dependence in (11), the real part of k is the same as for the
lossless case and represents the sinusoidal spatial distribution of the fields. The imaginary part of k represents the exponential decay of the fields due to the Ohmic losses with exponential decay length $\frac{1}{2} \sigma \eta$, where $\eta=\sqrt{\mu / \varepsilon}$ is the wave impedance. Note that for waves traveling in the positive z direction we take the upper positive sign in (15) using the lower negative sign for negatively traveling waves so that the solutions all decay and do not grow for distances far from the source. This solution is only valid for small σ so that the wave is only slightly damped as it propagates, as illustrated in Figure 7-9a.

(a)

(b)

Figure 7-9 (a) In a slightly lossy dielectric, the fields decay away from a source at a slow rate while the wavelength is essentially unchanged. (b) In the large loss limit the spatial decay rate is equal to the skin depth. The wavelength also equals the skin depth.

(b) Large Loss Limit

In the other extreme of a highly conducting material so that $\sigma / \omega \varepsilon \gg 1$, (14) reduces to

$$
\begin{equation*}
\lim _{\sigma / \omega \in \gg 1} k^{2} \approx-j \omega \mu \sigma \Rightarrow k= \pm \frac{(1-j)}{\delta}, \quad \delta=\sqrt{\frac{2}{\omega \mu \sigma}} \tag{16}
\end{equation*}
$$

where δ is just the skin depth found in Section 6-4-3 for magneto-quasi-static fields within a conductor. The skindepth term also arises for electrodynamic fields because the large loss limit has negligible displacement current compared to the conduction currents.

Because the real and imaginary part of k have equal magnitudes, the spatial decay rate is large so that within a few oscillation intervals the fields are negligibly small, as illustrated in Figure 7-9b. For a metal like copper with $\mu=\mu_{0}=$ $4 \pi \times 10^{-7}$ henry $/ \mathrm{m}$ and $\sigma \approx 6 \times 10^{7}$ siemens $/ \mathrm{m}$ at a frequency of 1 MHz , the skin depth is $\delta \approx 6.5 \times 10^{-5} \mathrm{~m}$.

7-4-4 High-Frequency Wave Propagation in Media

Ohm's law is only valid for frequencies much below the collision frequencies of the charge carriers, which is typically on the order of $10^{13} \mathrm{~Hz}$. In this low-frequency regime the inertia of the particles is negligible. For frequencies much higher than the collision frequency the inertia dominates and the current constitutive law for a single species of charge carrier q with mass m and number density n is as found in Section 3-2-2d:

$$
\begin{equation*}
\partial \mathbf{J}_{f} / \partial t=\omega_{p}^{2} \varepsilon \mathbf{E} \tag{17}
\end{equation*}
$$

where $\omega_{p}=\sqrt{q^{2} n / m \varepsilon}$ is the plasma frequency. This constitutive law is accurate for radio waves propagating in the ionosphere, for light waves propagating in many dielectrics, and is also valid for superconductors where the collision frequency is zero.

Using (17) rather than Ohm's law in (10) for sinusoidal time and space variations as given in (11), Maxwell's equations are

$$
\begin{align*}
& \frac{\partial E_{x}}{\partial z}=-\mu \frac{\partial H_{y}}{\partial t} \Rightarrow-j k \hat{E}_{0}=-j \omega \mu \hat{H}_{0} \\
& \frac{\partial H_{y}}{\partial z}=-J_{x}-\varepsilon \frac{\partial E_{x}}{\partial t} \Rightarrow-j k \hat{H}_{0}=-j \omega \varepsilon\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}\right) \hat{E}_{0} \tag{18}
\end{align*}
$$

The effective permittivity is now frequency dependent:

$$
\begin{equation*}
\hat{\varepsilon}=\varepsilon\left(1-\omega_{p}^{2} / \omega^{2}\right) \tag{19}
\end{equation*}
$$

The solutions to (18) are

$$
\begin{equation*}
\frac{\hat{E}_{0}}{\hat{H}_{0}}=\frac{\omega \mu}{k}=\frac{k}{\omega \hat{\varepsilon}} \Rightarrow k^{2}=\omega^{2} \mu \hat{\varepsilon}=\frac{\omega^{2}-\omega_{p}^{2}}{c^{2}} \tag{20}
\end{equation*}
$$

For $\omega>\omega_{p}, k$ is real and we have pure propagation where the wavenumber depends on the frequency. For $\omega<\omega_{p}, k$ is imaginary representing pure exponential decay.

Poynting's theorem for this medium is

$$
\begin{align*}
\nabla \cdot S+\frac{\partial}{\partial t}\left(\frac{1}{2} \varepsilon|\mathbf{E}|^{2}+\frac{1}{2} \mu|\mathbf{H}|^{2}\right) & =-\mathbf{E} \cdot \mathbf{J}_{f}=-\frac{1}{\omega_{p}^{2} \varepsilon} \mathbf{J}_{f} \cdot \frac{\partial \mathbf{J}_{f}}{\partial t} \\
& =-\frac{\partial}{\partial t}\left(\frac{1}{\omega_{p}^{2} \varepsilon} \frac{\left|\mathbf{J}_{f}\right|^{2}}{2}\right) \tag{21}
\end{align*}
$$

Because this system is lossless, the right-hand side of (21) can be brought to the left-hand side and lumped with the energy densities:

$$
\begin{equation*}
\nabla \cdot S+\frac{\partial}{\partial t}\left[\frac{1}{2} \varepsilon|\mathbf{E}|^{2}+\frac{1}{2} \mu|\mathbf{H}|^{2}+\frac{1}{2} \frac{1}{\omega_{p}^{2} \varepsilon}\left|\mathbf{J}_{f}\right|^{2}\right]=0 \tag{22}
\end{equation*}
$$

This new energy term just represents the kinetic energy density of the charge carriers since their velocity is related to the current density as

$$
\begin{equation*}
\mathrm{J}_{f}=q n \mathrm{v} \Rightarrow \frac{1}{2} \frac{1}{\omega_{p}^{2} \varepsilon}\left|\mathrm{~J}_{f}\right|^{2}=\frac{1}{2} m n|\mathbf{v}|^{2} \tag{23}
\end{equation*}
$$

7-4-5 Dispersive Media

When the wavenumber is not proportional to the frequency of the wave, the medium is said to be dispersive. A nonsinusoidal time signal (such as a square wave) will change shape and become distorted as the wave propagates because each Fourier component of the signal travels at a different speed.

To be specific, consider à stationary current sheet source at $z=0$ composed of two signals with slightly different frequencies:

$$
\begin{align*}
K(t) & =K_{0}\left[\cos \left(\omega_{0}+\Delta \omega\right) t+\cos \left(\omega_{0}-\Delta \omega\right) t\right] \\
& =2 K_{0} \cos \Delta \omega t \cos \omega_{0} t \tag{24}
\end{align*}
$$

With $\Delta \omega \ll \omega$ the fast oscillations at frequency ω_{0} are modulated by the slow envelope function at frequency $\Delta \omega$. In a linear dielectric medium this wave packet would propagate away from the current sheet at the speed of light, $c=1 / \sqrt{\varepsilon \mu})$.

If the medium is dispersive. with the wavenumber $k(\omega)$ being a function of ω, each frequency component in (24) travels at a slightly different speed. Since each frequency is very close to ω_{0} we expand $k(\omega)$ as

$$
\begin{align*}
& k\left(\omega_{0}+\Delta \omega\right) \approx k\left(\omega_{0}\right)+\left.\frac{d k}{d \omega}\right|_{\omega_{0}} \Delta \omega \\
& k\left(\omega_{0}-\Delta \omega\right) \approx k\left(\omega_{0}\right)-\left.\frac{d k}{d \omega}\right|_{\omega_{0}} \Delta \omega \tag{25}
\end{align*}
$$

where for propagation $k\left(\omega_{0}\right)$ must be real.
The fields for waves propagating in the $+z$ direction are then of the following form:

$$
\begin{align*}
E_{x}(z, t)= & \operatorname{Re} \hat{E}_{0}\left(\exp \left\{j\left[\left(\omega_{0}+\Delta \omega\right) t-\left(k\left(\omega_{0}\right)+\left.\frac{d k}{d \omega}\right|_{\omega_{0}} \Delta \omega\right) z\right]\right\}\right. \\
& \left.+\exp \left\{j\left[\left(\omega_{0}-\Delta \omega\right) t-\left(k\left(\omega_{0}\right)-\left.\frac{d k}{d \omega}\right|_{\omega_{0}} \Delta \omega\right) z\right]\right\}\right) \\
= & \operatorname{Re}\left(\hat { E } _ { 0 } \operatorname { e x p } \{ j [\omega _ { 0 } t - k (\omega _ { 0 }) z] \} \left\{\exp \left[j \Delta \omega\left(t-\left.\frac{d k}{d \omega}\right|_{\omega_{0}} z\right)\right]\right.\right. \\
& \left.\left.+\exp \left[-j \Delta \omega\left(t-\left.\frac{d k}{d \omega}\right|_{\omega_{0}} z\right)\right]\right\}\right) \\
= & 2 E_{0} \cos \left(\omega_{0} t-k\left(\omega_{0}\right) z\right) \cos \Delta \omega\left(t-\left.\frac{d k}{d \omega}\right|_{\omega_{0}} z\right) \tag{26}
\end{align*}
$$

where without loss of generality we assume in the last relation that $\hat{E}_{0}=E_{0}$ is real. This result is plotted in Figure 7-10 as a function of z for fixed time. The fast waves with argument $\omega_{0} t-k\left(\omega_{0}\right) z$ travel at the phase speed $\nu_{p}=\omega_{0} / k\left(\omega_{0}\right)$ through the modulating envelope with argument $\Delta \omega\left(t-d k /\left.d \omega\right|_{\omega_{0}} z\right)$. This envelope itself travels at the slow speed

$$
\begin{equation*}
t-\left.\frac{d k}{d \omega}\right|_{\omega_{0}} z=\text { const } \Rightarrow \frac{d z}{d t}=v_{\mathrm{g}}=\left.\frac{d \omega}{d k}\right|_{\omega_{0}} \tag{27}
\end{equation*}
$$

known as the group velocity, for it is the velocity at which a packet of waves within a narrow frequency band around ω_{0} will travel.

For linear media the group and phase velocities are equal:

$$
\begin{align*}
\omega=k c \Rightarrow v_{p} & =\frac{\omega}{k}=c \\
v_{g} & \stackrel{d \omega}{d k}=c \tag{28}
\end{align*}
$$

Figure 7-10 In a dispersive medium the shape of the waves becomes distorted so the velocity of a wave is not uniquely defined. For a group of signals within a narrow frequency band the modulating envelope travels at the group velocity v_{r}. The signal within the envelope propagates through at the phase velocity v_{p}.
while from Section 7-4-4 in the high-frequency limit for conductors, we see that

$$
\begin{align*}
\omega^{2}=k^{2} c^{2}+\omega_{p}^{2} \Rightarrow v_{p} & =\frac{\omega}{k} \\
v_{q} & =\frac{d \omega}{d k}=\frac{k}{\omega} c^{2} \tag{29}
\end{align*}
$$

where the velocities only make sense when k is real so that $\omega>\omega_{p}$. Note that in this limit

$$
\begin{equation*}
v_{q} v_{p}=c^{2} \tag{30}
\end{equation*}
$$

Group velocity only has meaning in a dispersive medium when the signals of interest are clustered over a narrow frequency range so that the slope defined by (27), is approximately constant and real.

7-4-6 Polarization

The two independent sets of solutions of Section 7-3-1 both have their power flow $S=\mathbf{E} \times \mathbf{H}$ in the z direction. One solution is said to have its electric field polarized in the x direction
while the second has its electric field polarized in the y direction. Each solution alone is said to be linearly polarized because the electric field always points in the same direction for all time. If both field solutions are present, the direction of net electric field varies with time. In particular, let us say that the x and y components of electric field at any value of z differ in phase by angle ϕ :

$$
\begin{equation*}
\mathbf{E}=\operatorname{Re}\left[E_{x_{0}} \mathbf{i}_{x}+E_{x_{0}} e^{j \phi} \mathbf{i}_{y}\right] e^{j \omega t}=E_{x_{0}} \cos \omega t \mathbf{i}_{x}+E_{x_{0}} \cos (\omega t+\phi) \mathbf{i}_{y} \tag{31}
\end{equation*}
$$

We can eliminate time as a parameter, realizing from (31) that

$$
\begin{align*}
& \cos \omega t=E_{x} / E_{x_{0}} \tag{32}\\
& \sin \omega t=\frac{\cos \omega t \cos \phi-E_{y} / E_{x_{0}}}{\sin \phi}=\frac{\left(E_{x} / E_{x_{0}}\right) \cos \phi-E_{y} / E_{x_{0}}}{\sin \phi}
\end{align*}
$$

and using the identity that

$$
\begin{align*}
& \sin ^{2} \omega t+\cos ^{2} \omega t \\
& =1=\left(\frac{E_{x}}{E_{x_{0}}}\right)^{2}+\frac{\left(E_{x} / E_{x_{0}}\right)^{2} \cos ^{2} \phi+\left(E_{y} / E_{y_{0}}\right)^{2}-\left(2 E_{x} E_{y} / E_{x_{0}} E_{x_{0}}\right) \cos \phi}{\sin ^{2} \phi} \tag{33}
\end{align*}
$$

to give us the equation of an ellipse relating E_{x} to E_{3} :

$$
\begin{equation*}
\left(\frac{E_{x}}{E_{x_{0}}}\right)^{2}+\left(\frac{E_{y}}{E_{y_{0}}}\right)^{2}-\frac{2 E_{x} E_{y}}{E_{x_{0}} E_{y_{0}}} \cos \phi=\sin ^{2} \phi \tag{34}
\end{equation*}
$$

as plotted in Figure 7-11a. As time increases the electric field vector traces out an ellipse each period so this general case of the superposition of two linear polarizations with arbitrary phase ϕ is known as elliptical polarization. There are two important special cases:

(a) Linear Polarization

If E_{x} and E_{y} are in phase so that $\phi=0$, (34) reduces to

$$
\begin{equation*}
\left(\frac{E_{x}}{E_{x_{0}}}-\frac{E_{y}}{E_{y_{0}}}\right)^{2}=0 \Rightarrow \tan \theta=\frac{E_{y}}{E_{x}}=\frac{E_{y_{0}}}{E_{x_{0}}} \tag{35}
\end{equation*}
$$

The electric field at all times is at a constant angle $\boldsymbol{\theta}$ to the \boldsymbol{x} axis. The electric field amplitude oscillates with time along this line, as in Figure 7-11b. Because its direction is always along the same line, the electric field is linearly polarized.

(b) Circular Polarization

If both components have equal amplitudes but are 90° out of phase,

$$
\begin{equation*}
E_{x_{0}}=E_{y_{0}} \equiv E_{0}, \quad \phi= \pm \pi / 2 \tag{36}
\end{equation*}
$$

Figure 7-11 (a) Two perpendicular field components with phase difference ϕ have the tip of the net electric field vector tracing out an ellipse each period. (b) If both field components are in phase, the ellipse reduces to a straight line. (c) If the field components have the same magnitude but are 90° out of phase, the ellipse becomes a circle. The polarization is left circularly polarized to z-directed power flow if the electric field rotates clockwise and is (d) right circularly polarized if it rotates counterclockwise.
(34) reduces to the equation of a circle:

$$
\begin{equation*}
E_{x}^{2}+E_{y}^{2}=E_{0}^{2} \tag{37}
\end{equation*}
$$

The tip of the electric field vector traces out a circle as time evolves over a period, as in Figure 7-11c. For the upper (+) sign for ϕ in (36), the electric field rotates clockwise while the negative sign has the electric field rotating counterclockwise. These cases are, respectively, called left and right circular polarization for waves propagating in the $+z$ direction as found by placing the thumb of either hand in the direction of power flow. The fingers on the left hand curl in the direction of the rotating field for left circular polarization, while the fingers of the right hand curl in the direction of the rotating field for right circular polarization. Left and right circular polarizations reverse for waves traveling in the $-z$ direction.

7-4-7 Wave Propagation in Anisotropic Media

Many properties of plane waves have particular applications to optics. Because visible light has a wavelength on the order of 500 nm , even a pencil beam of light 1 mm wide is 2000 wavelengths wide and thus approximates a plane wave.

Figure 7-11
(a) Polarizers

Light is produced by oscillating molecules whether in a light bulb or by the sun. This natural light is usually unpolarized as each molecule oscillates in time and direction independent of its neighbors so that even though the power flow may be in a single direction the electric field phase changes randomly with time and the source is said to be incoherent. Lasers, an acronym for "light amplification by stimulated emission of radiation," emits coherent light by having all the oscillating molecules emit in time phase.

A polarizer will only pass those electric field components aligned with the polarizer's transmission axis so that the transmitted light is linearly polarized. Polarizers are made of such crystals as tourmaline, which exhibit dichroism-the selective absorption of the polarization along a crystal axis.

The polarization perpendicular to this axis is transmitted.
Because tourmaline polarizers are expensive, fragile, and of small size, improved low cost and sturdy sheet polarizers were developed by embedding long needlelike crystals or chainlike molecules in a plastic sheet. The electric field component in the long direction of the molecules or crystals is strongly absorbed while the perpendicular component of the electric field is passed.
For an electric field of magnitude E_{0} at angle ϕ to the transmission axis of a polarizer, the magnitude of the transmitted field is

$$
\begin{equation*}
E_{t}=E_{0} \cos \phi \tag{38}
\end{equation*}
$$

so that the time-average power flux density is

$$
\begin{align*}
<S> & =\left|\frac{1}{2} \operatorname{Re}\left[\hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r})\right]\right| \\
& =\frac{1}{2} \frac{E_{0}^{2}}{\eta} \cos ^{2} \phi \tag{39}
\end{align*}
$$

which is known as the law of Malus.

(b) Double Refraction (Birefringence)

If a second polarizer, now called the analyzer, is placed parallel to the first but with its transmission axis at right angles, as in Figure 7-12, no light is transmitted. The combination is called a polariscope. However, if an anisotropic crystal is inserted between the polarizer and analyzer, light is transmitted through the analyzer. In these doubly refracting crystals, light polarized along the optic axis travels at speed $c_{\|}$while light polarized perpendicular to the axis travels at a slightly different speed c_{\perp}. The crystal is said to be birefringent. If linearly polarized light is incident at 45° to the axis,

$$
\begin{equation*}
\mathbf{E}(z=0, t)=E_{0}\left(\mathbf{i}_{x}+\mathbf{i}_{y}\right) \operatorname{Re}\left(e^{j \omega t}\right) \tag{40}
\end{equation*}
$$

the components of electric field along and perpendicular to the axis travel at different speeds:

$$
\begin{array}{ll}
E_{\mathrm{x}}(z, t)=E_{0} \operatorname{Re}\left(e^{i\left(\omega t-k_{\|}(2)\right.}\right), & k_{\|}=\omega / c_{\|} \\
E,(z, t)=E_{0} \operatorname{Re}\left(e^{i\left(\omega t-k_{1}\right)}\right), & k_{\perp}=\omega / c_{\perp} \tag{41}
\end{array}
$$

After exiting the crystal at $z=l$, the total electric field is

$$
\begin{align*}
\mathbf{E}(z=l, t) & =E_{0} \operatorname{Re}\left[e^{j \omega t}\left(e^{-j i_{l} l_{1}} \mathbf{i}_{x}+e^{-j k_{1} l} \mathbf{i}_{\mathbf{y}}\right)\right] \\
& =E_{0} \operatorname{Re}\left[e^{j\left(\omega t-k_{1} l\right.}\left(\mathbf{i}_{\mathbf{x}}+e^{j\left(k_{1}-k_{1}\right)} \mathbf{i}_{\mathbf{y}}\right)\right] \tag{42}
\end{align*}
$$

Figure 7-12 When a linearly polarized wave passes through a doubly refracting (birefringent) medium at an angle to the crystal axes, the transmitted light is elliptically polarized.
which is of the form of (31) for an elliptically polarized wave where the phase difference is

$$
\begin{equation*}
\phi=\left(k_{\|}-k_{\perp}\right) l=\omega l\left(\frac{1}{c_{\|}}-\frac{1}{c_{\perp}}\right) \tag{43}
\end{equation*}
$$

When ϕ is an integer multiple of 2π, the light exiting the crystal is the same as if the crystal were not there so that it is not transmitted through the analyzer. If ϕ is an odd integer multiple of π, the exiting light is also linearly polarized but perpendicularly to the incident light so that it is polarized in the same direction as the transmission axis of the analyzer, and thus is transmitted. Such elements are called half-wave plates at the frequency of operation. When ϕ is an odd integer multiple of $\pi / 2$, the exiting light is circularly
polarized and the crystal serves as a quarter-wave plate. However, only that polarization of light along the transmission axis of the analyzer is transmitted.

Double refraction occurs naturally in many crystals due to their anisotropic molecular structure. Many plastics and glasses that are generally isotropic have induced birefringence when mechanically stressed. When placed within a polariscope the photoelastic stress patterns can be seen. Some liquids, notably nitrobenzene, also become birefringent when stressed by large electric fields. This phenomena is called the Kerr effect. Electro-optical measurements allow electric field mapping in the dielectric between high voltage stressed electrodes, useful in the study of high voltage conduction and breakdown phenomena. The Kerr effect is also used as a light switch in high-speed shutters. A parallel plate capacitor is placed within a polariscope so that in the absence of voltage no light is transmitted. When the voltage is increased the light is transmitted, being a maximum when $\phi=\pi$. (See problem 17.)

7-5 NORMAL INCIDENCE ONTO A PERFECT CONDUCTOR

A uniform plane wave with x-directed electric field is normally incident upon a perfectly conducting plane at $z=0$, as shown in Figure 7-13. The presence of the boundary gives rise to a reflected wave that propagates in the $-z$ direction. There are no fields within the perfect conductor. The known incident fields traveling in the $+z$ direction can be written as

$$
\begin{align*}
\mathbf{E}_{i}(z, t) & =\operatorname{Re}\left(\hat{E}_{i} e^{j(\omega t-k z)} \mathbf{i}_{x}\right) \\
\mathbf{H}_{i}(z, t) & =\operatorname{Re}\left(\frac{\hat{E}_{i}}{\eta_{0}} e^{j\left(\omega t-k_{z}\right)_{i}}\right) \tag{1}
\end{align*}
$$

while the reflected fields propagating in the $-z$ direction are similarly

$$
\begin{gather*}
\mathbf{E}_{r}(z, t)=\operatorname{Re}\left(\hat{E}_{r} e^{j\left(\omega t+k_{z}\right)_{i}}\right) \\
\mathbf{H}_{r}(z, t)=\operatorname{Re}\left(\frac{-\hat{E}_{r}}{\eta_{0}} e^{i\left(\omega t+k_{z}\right)} \mathbf{i}_{y}\right) \tag{2}
\end{gather*}
$$

where in the lossless free space

$$
\begin{equation*}
\eta_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}, \quad k=\omega \sqrt{\varepsilon_{0} \mu_{0}} \tag{3}
\end{equation*}
$$

Note the minus sign difference in the spatial exponential phase factors of (1) and (2) as the waves are traveling in opposite directions. The amplitude of incident and reflected magnetic fields are given by the ratio of electric field amplitude to the wave impedance, as derived in Eq. (15) of Section

Figure 7-13 A uniform plane wave normally incident upon a perfect conductor has zero electric field at the conducting surface thus requiring a reflected wave. The source of this reflected wave is the surface current at $z=0$, which equals the magnetic field there. The total electric and magnetic fields are 90° out of phase in time and space.

7-3-2. The negative sign in front of the reflected magnetic field for the wave in the $-z$ direction arises because the power flow $\boldsymbol{S}_{r}=\mathbf{E}_{r} \times \mathbf{H}_{r}$ in the reflected wave must also be in the $-z$ direction.

The total electric and magnetic fields are just the sum of the incident and reflected fields. The only unknown parameter E_{r} can be evaluated from the boundary condition at $z=0$ where the tangential component of \mathbf{E} must be continuous and thus zero along the perfect conductor:

$$
\begin{equation*}
\hat{E}_{i}+\hat{E}_{r}=0 \Rightarrow \hat{E}_{r}=-\hat{E}_{i} \tag{4}
\end{equation*}
$$

The total fields are then the sum of the incident and reflected fields

$$
\begin{align*}
\mathbf{E}_{x}(z, t) & =\mathbf{E}_{i}(z, t)+\mathbf{E}_{r}(z, t) \\
& =\operatorname{Re}\left[\hat{E}_{i}\left(e^{-j k z}-e^{+j k z}\right) e^{j \omega t}\right] \\
& =2 E_{i} \sin k z \sin \omega t \\
\mathbf{H}_{y}(z, t) & =\mathbf{H}_{i}(z, t)+\mathbf{H}_{r}(z, t) \\
& =\operatorname{Re}\left(\frac{\hat{E}_{i}}{\eta_{0}}\left(e^{-j k z}+e^{+j k z}\right) e^{j \omega t}\right) \tag{5}\\
& =\frac{2 E_{i}}{\eta_{0}} \cos k z \cos \omega t
\end{align*}
$$

where we take $\hat{E}_{i}=E_{i}$ to be real. The electric and magnetic fields are 90° out of phase with each other both in time and space. We note that the two oppositely traveling wave solutions combined for a standing wave solution. The total solution does not propagate but is a standing sinusoidal solution in space whose amplitude varies sinusoidally in time.

A surface current flows on the perfect conductor at $z=0$ due to the discontinuity in tangential component of \mathbf{H},

$$
\begin{equation*}
K_{x}=H_{y}(z=0)=\frac{2 E_{i}}{\eta_{0}} \cos \omega t \tag{6}
\end{equation*}
$$

giving rise to a force per unit area on the conductor,

$$
\begin{equation*}
\mathbf{F}=\frac{1}{2} \mathrm{~K} \times \mu_{0} \mathbf{H}=\frac{1}{2} \mu_{0} H_{y}^{2}(z=0) i_{z}=2 \varepsilon_{0} E_{i}^{2} \cos ^{2} \omega t i_{z} \tag{7}
\end{equation*}
$$

known as the radiation pressure. The factor of $\frac{1}{2}$ arises in (7) because the force on a surface current is proportional to the average value of magnetic field on each side of the interface, here being zero for $z=0_{+}$.

7.6 NORMAL INCIDENCE ONTO A DIELECTRIC

7-6-1 Lossless Dielectric

We replace the perfect conductor with a lossless dielectric of permittivity ε_{2} and permeability μ_{2}, as in Figure $7-14$, with a uniform plane wave normally incident from a medium with permittivity ε_{1} and permeability μ_{1}. In addition to the incident and reflected fields for $z<0$, there are transmitted fields which propagate in the $+z$ direction within the medium for $z>0$:

$$
\left.\begin{array}{ll}
\mathbf{E}_{i}(z, t)=\operatorname{Re}\left[\hat{E}_{i} e^{j\left(\omega t-k_{1} z\right)} \mathbf{i}_{x}\right], & k_{1}=\omega \sqrt{\varepsilon_{1} \mu_{1}} \tag{1}\\
\mathbf{H}_{i}(z, t)=\operatorname{Re}\left[\frac{\hat{E}_{i}}{\eta_{1}} e^{j\left(\omega t-k_{1} z\right)} \mathbf{i}_{y}\right], & \eta_{1}=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}} \\
\mathbf{E}_{r}(z, t)=\operatorname{Re}\left[\hat{E}_{r} e^{j\left(\omega t+k_{1} z\right)} \mathbf{i}_{x}\right] \\
\mathbf{H}_{r}(z, t)=\operatorname{Re}\left[-\frac{\hat{E}_{r}}{\eta_{1}} e^{j\left(\omega t+k_{1} z\right)} \mathbf{i}_{y}\right] \\
\mathbf{E}_{t}(z, t)=\operatorname{Re}\left[\hat{E}_{1} e^{j\left(\omega t-k_{2} z\right)} \mathbf{i}_{x}\right], & k_{2}=\omega \sqrt{\varepsilon_{2} \mu_{2}} \\
\mathbf{H}_{t}(z, t)=\operatorname{Re}\left[\frac{\hat{E}_{t}}{\eta_{2}} e^{j\left(\omega t-k_{2} z\right)} \mathbf{i}_{y}\right], & \eta_{2}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}
\end{array}\right\} \quad z<0
$$

It is necessary in (1) to use the appropriate wavenumber and impedance within each region. There is no wave traveling in the $-z$ direction in the second region as we assume no boundaries or sources for $z>0$.

Figure 7-14 A uniform plane wave normally incident upon a dielectric interface separating two different materials has part of its power reflected and part transmitted.

The unknown quantities \hat{E}_{r} and \hat{E}_{I} can be found from the boundary conditions of continuity of tangential \mathbf{E} and \mathbf{H} at $z=0$,

$$
\begin{align*}
& \hat{E}_{i}+\hat{E}_{r}=\hat{E}_{t} \\
& \frac{\hat{E}_{i}-\hat{E}_{r}}{\eta_{1}}=\frac{\hat{E}_{t}}{\eta_{2}} \tag{2}
\end{align*}
$$

from which we find the reflection R and transmission T field coefficients as

$$
\begin{align*}
& R=\frac{\hat{E}_{r}}{\hat{E}_{i}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} \\
& T=\frac{\hat{E}_{t}}{\hat{E}_{i}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}} \tag{3}
\end{align*}
$$

where from (2)

$$
\begin{equation*}
1+R=T \tag{4}
\end{equation*}
$$

If both mediums have the same wave impedance, $\boldsymbol{\eta}_{1}=\boldsymbol{\eta}_{2}$, there is no reflected wave.

7-6-2 Time-A verage Power Flow

The time-average power flow in the region $z<0$ is

$$
\begin{align*}
<S_{x i}>= & \frac{1}{2} \operatorname{Re}\left[\hat{E}_{x}(z) \hat{H}_{y}^{*}(z)\right] \\
= & \frac{1}{2 \eta_{1}} \operatorname{Re}\left[\hat{E}_{i} e^{-j k_{1} z}+\hat{E}_{\mathrm{r}} e^{+j k_{1} z}\right]\left[\hat{E}_{i}^{*} e^{+j k_{1} z}-\hat{E}_{\mathrm{r}}^{*} e^{-j k_{1}^{z}}\right] \\
= & \frac{1}{2 \eta_{1}}\left[\left|\hat{E}_{i}\right|^{2}-\left|\hat{E}_{r}\right|^{2}\right] \\
& +\frac{1}{2 \eta_{1}} \underbrace{\operatorname{Re}\left[\hat{E}_{r} \hat{E}_{i}^{*} e^{+2 j k_{1} z}-\hat{E}_{r}^{*} \hat{E}_{i} e^{-2 j k_{1} z}\right]}_{0} \tag{5}
\end{align*}
$$

The last term on the right-hand side of (5) is zero as it is the difference between a number and its complex conjugate, which is pure imaginary and equals $2 j$ times its imaginary part. Being pure imaginary, its real part is zero. Thus the time-average power flow just equals the difference in the power flows in the incident and reflected waves as found more generally in Section 7-3-2. The coupling terms between oppositely traveling waves have no time-average yielding the simple superposition of time-average powers:

$$
\begin{align*}
<S_{x i}> & =\frac{1}{2 \eta_{1}}\left[\left|\hat{E}_{i}\right|^{2}-\left|\hat{E}_{r}\right|^{2}\right] \\
& =\frac{\left|\hat{E}_{i}\right|^{2}}{2 \eta_{1}}\left[1-R^{2}\right] \tag{6}
\end{align*}
$$

This net time-average power flows into the dielectric medium, as it also equals the transmitted power;

$$
\begin{equation*}
<S_{x t}>=\frac{1}{2 \eta_{2}}\left|\hat{E}_{t}\right|^{2}=\frac{\left|\hat{E}_{i}\right|^{2} T^{2}}{2 \eta_{2}}=\frac{\left|\hat{E}_{i}\right|^{2}}{2 \eta_{1}}\left[1-R^{2}\right] \tag{7}
\end{equation*}
$$

7-6-3 Lossy Dielectric

If medium 2 is lossy with Ohmic conductivity σ, the solutions of (3) are still correct if we replace the permittivity ε_{2} by the complex permittivity $\hat{\varepsilon}_{2}$,

$$
\begin{equation*}
\hat{\varepsilon}_{2}=\varepsilon_{2}\left(1+\frac{\sigma}{j \omega \varepsilon_{2}}\right) \tag{8}
\end{equation*}
$$

so that the wave impedance in region 2 is complex:

$$
\begin{equation*}
\eta_{2}=\sqrt{\mu_{2} / \hat{\varepsilon}_{2}} \tag{9}
\end{equation*}
$$

We can easily explore the effect of losses in the low and large loss limits.
(a) Low Losses

If the Ohmic conductivity is small, we can neglect it in all terms except in the wavenumber \boldsymbol{k}_{2} :

$$
\begin{equation*}
\lim _{\sigma / \omega \epsilon_{2}<1} k_{2} \approx \omega \sqrt{\varepsilon_{2} \mu_{2}}-\frac{j}{2} \sigma \sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \tag{10}
\end{equation*}
$$

The imaginary part of k_{2} gives rise to a small rate of exponential decay in medium 2 as the wave propagates away from the $z=0$ boundary.

(b) Large Losses

For large conductivities so that the displacement current is negligible in medium 2 , the wavenumber and impedance in region 2 are complex:

$$
\lim _{\sigma / \omega \varepsilon_{2}>1}\left\{\begin{array}{l}
k_{2}=\frac{1-j}{\delta}, \quad \delta=\sqrt{\frac{2}{\omega \mu_{2} \sigma}} \tag{11}\\
\eta_{2}=\sqrt{\frac{j \omega \mu_{2}}{\sigma}}=\frac{1+j}{\sigma \delta}
\end{array}\right.
$$

The fields decay within a characteristic distance equal to the skin depth δ. This is why communications to submerged submarines are difficult. For seawater, $\mu_{2}=\mu_{0}=$ $4 \pi \times 10^{-7}$ henry $/ \mathrm{m}$ and $\sigma \approx 4$ siemens $/ \mathrm{m}$ so that for 1 MHz signals, $\delta \approx 0.25 \mathrm{~m}$. However, at 100 Hz the skin depth increases to 25 meters. If a submarine is within this distance from the surface, it can receive the signals. However, it is difficult to transmit these low frequencies because of the large free space wavelength, $\lambda \approx 3 \times 10^{6} \mathrm{~m}$. Note that as the conductivity approaches infinity,

$$
\lim _{\sigma \rightarrow \infty}\left\{\begin{array} { l }
{ k _ { 2 } = \infty } \tag{12}\\
{ \eta _ { 2 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
R=-1 \\
T=0
\end{array}\right.\right.
$$

so that the field solution approaches that of normal incidence upon a perfect conductor found in Section 7-5.

EXAMPLE 7-1 DIELECTRIC COATING

A thin lossless dielectric with permittivity ε and permeability μ is coated onto the interface between two infinite halfspaces of lossless media with respective properties (ε_{1}, μ_{1}) and (ε_{2}, μ_{2}), as shown in Figure 7-15. What coating parameters ε and μ and thickness d will allow all the time-average power

Figure 7-15 A suitable dielectric coating applied on the interface of discontinuity between differing media can eliminate reflections at a given frequency.
from region 1 to be transmitted through the coating to region 2? Such coatings are applied to optical components such as lenses to minimize unwanted reflections and to maximize the transmitted light intensity.

SOLUTION

For all the incident power to be transmitted into region 2, there can be no reflected field in region 1, although we do have oppositely traveling waves in the coating due to the reflection at the second interface. Region 2 only has positively z-directed power flow. The fields in each region are thus of the following form:

Region 1

$$
\begin{aligned}
\mathbf{E}_{1}=\operatorname{Re}\left[\hat{E}_{1} e^{j\left(\omega t-k_{1} s\right)} \mathbf{i}_{x}\right], & k_{1}=\omega / c_{1}=\omega \sqrt{\varepsilon_{1} \mu_{1}} \\
\mathbf{H}_{1}=\operatorname{Re}\left[\frac{\hat{E}_{1}}{\eta_{1}} e^{j\left(\omega t-k_{1} x\right)} \mathbf{i}_{y}\right], & \eta_{1}=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}
\end{aligned}
$$

Coating

$$
\begin{array}{ll}
\mathbf{E}_{+}=\operatorname{Re}\left[\hat{E}_{+} e^{j(\omega t-k z)} \mathbf{i}_{x}\right], & k=\omega / c=\omega \sqrt{\varepsilon \mu} \\
\mathbf{H}_{+}=\operatorname{Re}\left[\frac{\hat{E}_{+}}{\eta} e^{j(\omega t-k x)} \mathbf{i}_{y}\right], & \eta=\sqrt{\frac{\mu}{\varepsilon}} \\
\mathbf{E}_{-}=\operatorname{Re}\left[\hat{E}_{-} e^{j(\omega t+k z)} \mathbf{i}_{x}\right] & \\
\mathbf{H}_{-}=\operatorname{Re}\left[-\frac{\hat{E}_{-}}{\eta} e^{j(\omega t+k z)} \mathbf{i}_{y}\right]
\end{array}
$$

Region 2

$$
\begin{aligned}
\mathbf{E}_{2}=\operatorname{Re}\left[\hat{E}_{2} e^{j\left(\omega t-k_{2} 2\right)} \mathbf{i}_{x}\right], & k_{2}=\omega / c_{2}=\omega \sqrt{\varepsilon_{2} \mu_{2}} \\
\mathbf{H}_{2}=\operatorname{Re}\left[\frac{\hat{E}_{2}}{\eta_{2}} e^{j\left(\omega t-k_{2}\right)} i_{y}\right], & \eta_{2}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}
\end{aligned}
$$

Continuity of tangential \mathbf{E} and \mathbf{H} at $z=0$ and $z=d$ requires

$$
\begin{aligned}
& \hat{E}_{1}=\hat{E}_{+}+\hat{E}_{-}, \quad \frac{\hat{E}_{1}}{\eta_{1}}=\frac{\hat{E}_{+}-\hat{E}_{-}}{\eta} \\
& \hat{E}_{+} e^{-j k d}+\hat{E}_{-} e^{+j k d}=\hat{E}_{2} e^{-j k_{2} d} \\
& \frac{\hat{E}_{+} e^{-j k d}-\hat{E}_{-} e^{+j k d}}{\eta}=\frac{\hat{E}_{2} e^{-j k_{2} d}}{\eta_{2}}
\end{aligned}
$$

Each of these amplitudes in terms of \hat{E}_{1} is then

$$
\begin{aligned}
\hat{E}_{+} & =\frac{1}{2}\left(1+\frac{\eta}{\eta_{1}}\right) \hat{E}_{1} \\
\hat{E}_{-} & =\frac{1}{2}\left(1-\frac{\eta}{\eta_{1}}\right) \hat{E}_{1} \\
\hat{E}_{2} & =e^{j k_{2} d}\left[\hat{E}_{+} e^{-j k d}+\hat{E}_{-} e^{+j k d}\right] \\
& =\frac{\eta_{2}}{\eta} e^{j k_{2} d}\left[\hat{E}_{+} e^{-j k d}-\hat{E}_{-} e^{+j k d}\right]
\end{aligned}
$$

Solving this last relation self-consistently requires that

$$
\hat{E}_{+} e^{-j k d}\left(1-\frac{\eta_{2}}{\eta}\right)+\hat{E}_{-} e^{j k d}\left(1+\frac{\eta_{2}}{\eta}\right)=0
$$

Writing \hat{E}_{+}and \hat{E}_{-}in terms of \hat{E}_{1} yields

$$
\left(1+\frac{\eta}{\eta_{1}}\right)\left(1-\frac{\eta_{2}}{\eta}\right)+e^{2 j k d}\left(1+\frac{\eta_{2}}{\eta}\right)\left(1-\frac{\eta}{\eta_{1}}\right)=0
$$

Since this relation is complex, the real and imaginary parts must separately be satisfied. For the imaginary part to be zero requires that the coating thickness d be an integral number of
quarter wavelengths as measured within the coating,

$$
2 k d=n \pi \Rightarrow d=n \lambda / 4, \quad n=1,2,3, \ldots
$$

The real part then requires

$$
\left(1+\frac{\eta}{\eta_{1}}\right)\left(1-\frac{\eta_{2}}{\eta}\right) \pm\left(1+\frac{\eta_{2}}{\eta}\right)\left(1-\frac{\eta}{\eta_{1}}\right)=0\left\{\begin{array}{l}
n \text { even } \\
n \text { odd }
\end{array}\right.
$$

For the upper sign where d is a multiple of half-wavelengths the only solution is

$$
\eta_{2}=\eta_{1} \quad(d=n \lambda / 4, \quad n=2,4,6, \ldots)
$$

which requires that media 1 and 2 be the same so that the coating serves no purpose. If regions 1 and 2 have differing wave impedances, we must use the lower sign where d is an odd integer number of quarter wavelengths so that

$$
\eta^{2}=\eta_{1} \eta_{2} \Rightarrow \eta=\sqrt{\eta_{1} \eta_{2}} \quad(d=n \lambda / 4, \quad n=1,3,5, \ldots)
$$

Thus, if the coating is a quarter wavelength thick as measured within the coating, or any odd integer multiple of this thickness with its wave impedance equal to the geometrical average of the impedances in each adjacent region, all the timeaverage power flow in region 1 passes through the coating into region 2:

$$
\begin{aligned}
<S_{z}> & =\frac{1}{2} \frac{\left|\hat{E}_{1}\right|^{2}}{\eta_{1}}=\frac{1}{2} \frac{\left|\hat{E}_{2}\right|^{2}}{\eta_{2}} \\
& =\frac{1}{2} \operatorname{Re}\left[\left(\hat{E}_{+} e^{-j k z}+\hat{E}_{-} e^{+j k z}\right) \frac{\left(\hat{E}_{+}^{*} e^{+j k x}-\hat{E}_{-}^{*} e^{-j k z}\right)}{\eta}\right] \\
& =\frac{1}{2 \eta}\left(\left|\hat{E}_{+}\right|^{2}-\left|\hat{E}_{-}\right|^{2}\right)
\end{aligned}
$$

Note that for a given coating thickness d, there is no reflection only at select frequencies corresponding to wavelengths $d=$ $n \lambda / 4, n=1,3,5, \ldots$. For a narrow band of wavelengths about these select wavelengths, reflections are small. The magnetic permeability of coatings and of the glass used in optical components are usually that of free space while the permittivities differ. The permittivity of the coating ε is then picked so that

$$
\varepsilon=\sqrt{\varepsilon_{2} \varepsilon_{0}}
$$

and with a thickness corresponding to the central range of the wavelengths of interest (often in the visible).

7-7 UNIFORM AND NONUNIFORM PLANE WAVES

Our analysis thus far has been limited to waves propagating in the z direction normally incident upon plane interfaces. Although our examples had the electric field polarized in the x direction, the solution procedure is the same for the y directed electric field polarization as both polarizations are parallel to the interfaces of discontinuity.

7-7-1 Propagation at an Arbitrary Angle

We now consider a uniform plane wave with power flow at an angle θ to the z axis, as shown in Figure 7-16. The electric field is assumed to be y directed, but the magnetic field that is perpendicular to both \mathbf{E} and \boldsymbol{S} now has components in the \boldsymbol{x} and z directions.

The direction of the power flow, which we can call z^{\prime}, is related to the Cartesian coordinates as

$$
\begin{equation*}
z^{\prime}=x \sin \theta+z \cos \theta \tag{1}
\end{equation*}
$$

so that the phase factor $k z^{\prime}$ can be written as

$$
\begin{array}{ll}
k z^{\prime}=k_{x} x+k_{z} z, & k_{x}=k \sin \theta \\
& k_{z}=k \cos \theta \tag{2}
\end{array}
$$

where the wavenumber magnitude is

$$
\begin{equation*}
k=\omega \sqrt{\varepsilon \mu} \tag{3}
\end{equation*}
$$

Figure 7-16 The spatial dependence of a uniform plane wave at an arbitrary angle θ can be expressed in terms of a vector wavenumber k as $e^{-j k \cdot r}$, where k is in the direction of power flow and has magnitude ω / c.

This allows us to write the fields as

$$
\begin{align*}
\mathbf{E} & =\operatorname{Re}\left[\hat{E} e^{j\left(\omega t-k_{z} x-k_{z}\right)} \mathbf{i}_{y}\right] \\
\mathbf{H} & =\operatorname{Re}\left[\frac{\hat{E}}{\eta}\left(-\cos \theta \mathbf{i}_{x}+\sin \theta \mathbf{i}_{z}\right) e^{j\left(\omega t-k_{z} x-k_{z} z\right)}\right] \tag{4}
\end{align*}
$$

We note that the spatial dependence of the fields can be written as $e^{-j k \cdot r}$, where the wavenumber is treated as a vector:

$$
\begin{equation*}
\mathbf{k}=k_{x} \mathbf{i}_{x}+k_{y} \mathbf{i}_{y}+k_{z} \mathbf{i}_{z} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{r}=x \mathbf{i}_{x}+y \mathbf{i}_{y}+z \mathbf{i}_{z} \tag{6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{r}=k_{x} x+k_{y} y+k_{z} z \tag{7}
\end{equation*}
$$

The magnitude of k is as given in (3) and its direction is the same as the power flow S :

$$
\begin{align*}
S=\mathbf{E} \times \mathbf{H} & =\frac{|\hat{E}|^{2}}{\eta}\left(\cos \theta \mathbf{i}_{\mathbf{z}}+\sin \theta \mathbf{i}_{x}\right) \cos ^{2}(\omega t-\mathbf{k} \cdot \mathbf{r}) \\
& =\frac{|\hat{E}|^{2} \mathbf{k}}{\omega \mu} \cos ^{2}(\omega t-\mathbf{k} \cdot \mathbf{r}) \tag{8}
\end{align*}
$$

where without loss of generality we picked the phase of \hat{E} to be zero so that it is real.

7-7-2 The Complex Propagation Constant

Let us generalize further by considering fields of the form

$$
\begin{align*}
\mathbf{E} & =\operatorname{Re}\left[\hat{\mathbf{E}} e^{j \omega t} e^{-\gamma \cdot r}\right]=\operatorname{Re}\left[\hat{\mathbf{E}} e^{i(\omega t-k \cdot \mathbf{r})} e^{-\alpha \cdot \mathbf{r}}\right] \\
\mathbf{H} & =\operatorname{Re}\left[\hat{\mathbf{H}} e^{i \omega t} e^{-\gamma \cdot r}\right]=\operatorname{Re}\left[\hat{\mathbf{H}} e^{j(\omega t-\mathbf{k} \cdot \mathbf{r})} e^{-\alpha \cdot \mathbf{r}}\right] \tag{9}
\end{align*}
$$

where γ is the complex propagation vector and r is the position vector of (6):

$$
\begin{align*}
\boldsymbol{\gamma} & =\boldsymbol{\alpha}+j \mathbf{k}=\gamma_{x} \mathbf{i}_{x}+\gamma_{y} \mathbf{i}_{y}+\gamma_{z} \mathbf{i}_{z} \\
\boldsymbol{\gamma} \cdot \mathbf{r} & =\boldsymbol{\gamma}_{x} x+\gamma_{y} y+\boldsymbol{\gamma}_{z} z \tag{10}
\end{align*}
$$

We have previously considered uniform plane waves in lossless media where the wavenumber \mathbf{k} is pure real and z directed with $\alpha=0$ so that $\boldsymbol{\gamma}$ is pure imaginary. The parameter α represents the decay rate of the fields even though the medium is lossless. If $\boldsymbol{\alpha}$ is nonzero, the solutions are called nonuniform plane waves. We saw this decay in our quasi-static solutions of Laplace's equation where solutions had oscillations in one direction but decay in the perpendicular direction. We would expect this evanescence to remain at low frequencies.

The value of the assumed form of solutions in (9) is that the del ($\bar{\nabla}$) operator in Maxwell's equations can be replaced by the vector operator $-\boldsymbol{\gamma}$:

$$
\begin{align*}
\nabla & =\frac{\partial}{\partial x} \mathbf{i}_{x}+\frac{\partial}{\partial y} \mathbf{i}_{y}+\frac{\partial}{\partial z} \mathbf{i}_{z} \\
& =-\boldsymbol{\gamma}_{x} \mathbf{i}_{x}-\boldsymbol{\gamma}_{y} \mathbf{i}_{y}-\boldsymbol{\gamma}_{x} \mathbf{i}_{z} \\
& =-\boldsymbol{\gamma} \tag{11}
\end{align*}
$$

This is true because any spatial derivatives only operate on the exponential term in (9). Then the source free Maxwell's equations can be written in terms of the complex amplitudes as

$$
\begin{align*}
-\boldsymbol{\gamma} \times \hat{\mathbf{E}} & =-j \omega \mu \hat{\mathbf{H}} \\
-\boldsymbol{\gamma} \times \hat{\mathbf{H}} & =j \omega \varepsilon \hat{\mathbf{E}} \\
-\boldsymbol{\gamma} \cdot \varepsilon \hat{\mathbf{E}} & =0 \tag{12}\\
-\boldsymbol{\gamma} \cdot \mu \hat{\mathbf{H}} & =0
\end{align*}
$$

The last two relations tell us that γ is perpendicular to both E and \mathbf{H}. If we take $\boldsymbol{\gamma} \times$ the top equation and use the second equation, we have

$$
\begin{align*}
-\boldsymbol{\gamma} \times(\boldsymbol{\gamma} \times \hat{\mathbf{E}}) & =-j \omega \mu(\boldsymbol{\gamma} \times \hat{\mathbf{H}})=-j \omega \mu(-j \omega \varepsilon \hat{\mathbf{E}}) \\
& =-\omega^{2} \mu \varepsilon \hat{\mathbf{E}} \tag{13}
\end{align*}
$$

The double cross product can be expanded as

$$
\begin{align*}
-\boldsymbol{\gamma} \times(\boldsymbol{\gamma} \times \hat{\mathbf{E}}) & =-\boldsymbol{\gamma}(\boldsymbol{\gamma} \cdot \hat{\mathbf{E}})+(\boldsymbol{\gamma} \cdot \boldsymbol{\gamma}) \hat{\mathbf{E}} \\
& =(\boldsymbol{\gamma} \cdot \boldsymbol{\gamma}) \hat{\mathbf{E}}=-\omega^{2} \boldsymbol{\mu} \varepsilon \hat{\mathbf{E}} \tag{14}
\end{align*}
$$

The $\boldsymbol{\gamma} \cdot \hat{\mathbf{E}}$ term is zero from the third relation in (12). The dispersion relation is then

$$
\begin{equation*}
\boldsymbol{\gamma} \cdot \boldsymbol{\gamma}=\left(\alpha^{2}-k^{2}+2 j \boldsymbol{\alpha} \cdot \mathbf{k}\right)=-\omega^{2} \mu \varepsilon \tag{15}
\end{equation*}
$$

For solution, the real and imaginary parts of (15) must be separately equal:

$$
\begin{align*}
\alpha^{2}-k^{2} & =-\omega^{2} \mu \varepsilon \tag{16}\\
\alpha \cdot k & =0
\end{align*}
$$

When $\alpha=0$, (16) reduces to the familiar frequencywavenumber relation of Section 7-3.4.

The last relation now tells us that evanescence (decay) in space as represented by α is allowed by Maxwell's equations, but must be perpendicular to propagation represented by \mathbf{k}.

We can compute the time-average power flow for fields of the form of (9) using (12) in terms of either $\hat{\mathbf{E}}$ or $\hat{\mathbf{H}}$ as follows:

$$
\begin{align*}
<S> & =\frac{1}{2} \operatorname{Re}\left(\hat{\mathbf{E}} \times \hat{\mathbf{H}}^{*}\right), \\
& =-\frac{1}{2} \operatorname{Re}\left(\hat{\mathbf{E}} \times \frac{\left(\boldsymbol{\gamma}^{*} \times \hat{\mathbf{E}}^{*}\right)}{j \omega \mu}\right), \\
& =-\frac{1}{2} \operatorname{Re}\left(\frac{\boldsymbol{\gamma}^{*}|\hat{\mathbf{E}}|^{2}-\hat{\mathbf{E}}^{*}\left(\boldsymbol{\gamma}^{*} \cdot \hat{\mathbf{E}}\right)}{j \omega \mu}\right), \\
& =\frac{1}{2} \frac{\mathbf{k}}{\omega \mu}|\hat{\mathbf{E}}|^{2}+\frac{1}{2} \operatorname{Re}\left(\frac{\hat{\mathbf{E}}^{*}\left(\boldsymbol{\gamma}^{*} \cdot \hat{\mathbf{E}}\right)}{j \omega \mu}\right), \\
<\boldsymbol{S}> & =\frac{1}{2} \operatorname{Re}\left(\hat{\mathbf{E}} \times \hat{\mathbf{H}}^{*}\right) \tag{17}\\
& =-\frac{1}{2} \operatorname{Re}\left(\frac{(\boldsymbol{\gamma} \times \hat{\mathbf{H}})}{j \omega E} \times \hat{\mathbf{H}}^{*}\right) \\
& =\frac{1}{2} \operatorname{Re}\left(\frac{\boldsymbol{\gamma}|\hat{\mathbf{H}}|^{2}-\hat{\mathbf{H}}\left(\boldsymbol{\gamma} \cdot \hat{\mathbf{H}}^{*}\right)}{j \omega E}\right) \\
& =\frac{1}{2} \frac{\mathbf{k}}{\omega \varepsilon}|\hat{\mathbf{H}}|^{2}-\frac{1}{2} \operatorname{Re}\left(\frac{\hat{\mathbf{H}}\left(\boldsymbol{\gamma} \cdot \hat{\mathbf{H}}^{*}\right)}{j \omega \varepsilon}\right)
\end{align*}
$$

Although both final expressions in (17) are equivalent, it is convenient to write the power flow in terms of either $\hat{\mathbf{E}}$ or $\hat{\mathbf{H}}$. When $\hat{\mathbf{E}}$ is perpendicular to both the real vectors α and $\boldsymbol{\beta}$, defined in (10) and (16), the dot product $\boldsymbol{\gamma}^{*} \cdot \hat{\mathbf{E}}$ is zero. Such a mode is called transverse electric (TE), and we see in (17) that the time-average power flow is still in the direction of the wavenumber k. Similarly, when H is perpendicular to α and $\boldsymbol{\beta}$, the dot product $\boldsymbol{\gamma} \cdot \mathbf{H}^{*}$ is zero and we have a transverse magnetic (TM) mode. Again, the time-average power flow in (17) is in the direction of k. The magnitude of k is related to ω in (16).

Note that our discussion has been limited to lossless systems. We can include Ohmic losses if we replace ε by the complex permittivity $\hat{\varepsilon}$ of Section 7-4-3 in (15) and (17). Then, there is always decay ($\alpha \neq 0$) because of Ohmic dissipation (see Problem 22).

7-7-3 Nonuniform Plane Waves

We can examine nonuniform plane wave solutions with nonzero α by considering a current sheet in the $z=0$ plane, which is a traveling wave in the x direction:

$$
\begin{equation*}
K_{x}(z=0)=K_{0} \cos \left(\omega t-k_{x} x\right)=\operatorname{Re}\left(K_{0} e^{j\left(\omega t-k_{x} x\right)}\right) \tag{18}
\end{equation*}
$$

The x-directed surface current gives rise to a y-directed magnetic field. Because the system does not depend on the y coordinate, solutions are thus of the following form:

$$
\begin{gather*}
H_{y}= \begin{cases}\operatorname{Re}\left(\hat{H}_{1} e^{j \omega t} e^{-\boldsymbol{\gamma}_{1} \cdot \tau}\right), & z>0 \\
\operatorname{Re}\left(\hat{H}_{2} e^{j \omega t} e^{-\boldsymbol{\gamma}_{2} \cdot r}\right), & z<0\end{cases} \\
\mathbf{E}= \begin{cases}\operatorname{Re}\left[-\frac{\boldsymbol{\gamma}_{1} \times \hat{H}_{1}}{j \omega E} \mathbf{i}_{2} e^{j \omega t} e^{-\boldsymbol{\gamma}_{1} \cdot x}\right], & z>0 \\
\operatorname{Re}\left[-\frac{\boldsymbol{\gamma}_{2} \times \hat{H}_{2}}{j \omega E} \mathbf{i}, e^{j \omega t} e^{-\boldsymbol{\gamma}_{2} \cdot \mathbf{r}}\right], & z<0\end{cases} \tag{19}
\end{gather*}
$$

where γ_{1} and γ_{2} are the complex propagation vectors on each side of the current sheet:

$$
\begin{align*}
& \boldsymbol{\gamma}_{1}=\gamma_{1 x} \mathbf{i}_{x}+\gamma_{1 z} i_{z} \tag{20}\\
& \boldsymbol{\gamma}_{2}=\gamma_{2 x} \mathbf{i}_{x}+\gamma_{2 x} i_{z}
\end{align*}
$$

The boundary condition of the discontinuity of tangential \mathbf{H} at $z=0$ equaling the surface current yields

$$
\begin{equation*}
-\hat{H}_{1} e^{-\gamma_{1} x}+\hat{H}_{2} e^{-\gamma_{2 x^{2}} x}=K_{0} e^{-j k_{k^{x}} x} \tag{21}
\end{equation*}
$$

which tells us that the x components of the complex propagation vectors equal the trigonometric spatial dependence of the surface current:

$$
\begin{equation*}
\gamma_{1 x}=\gamma_{2 x}=j k_{x} \tag{22}
\end{equation*}
$$

The z components of $\boldsymbol{\gamma}_{1}$ and $\boldsymbol{\gamma}_{2}$ are then determined from (15) as

$$
\begin{equation*}
\gamma_{x}^{2}+\gamma_{x}^{2}=-\omega^{2} \varepsilon \mu \Rightarrow \gamma_{x}= \pm\left(k_{x}^{2}-\omega^{2} \varepsilon \mu\right)^{1 / 2} \tag{23}
\end{equation*}
$$

If $k_{x}^{2}<\omega^{2} \varepsilon \mu, \gamma_{z}$ is pure imaginary representing propagation and we have uniform plane waves. If $k_{x}^{2}>\omega^{2} \varepsilon \mu$, then γ_{z} is pure real representing evanescence in the z direction so that we generate nonuniform plane waves. When $\omega=0$, (23) corresponds to Laplacian solutions that oscillate in the x direction but decay in the z direction.

The z component of γ is of opposite sign in each region,

$$
\begin{equation*}
\gamma_{1 z}=-\gamma_{2 z}=+\left(k_{x}^{2}-\omega^{2} \varepsilon \mu\right)^{1 / 2} \tag{24}
\end{equation*}
$$

as the waves propagate or decay away from the sheet. Continuity of the tangential component of \mathbf{E} requires

$$
\begin{equation*}
\gamma_{1 z} \hat{H}_{1}=\gamma_{22} \hat{H}_{2} \Rightarrow \hat{H}_{2}=-\hat{H}_{1}=K_{0} / 2 \tag{25}
\end{equation*}
$$

If $k_{x}=0$, we re-obtain the solution of Section 7-4-1. Increasing k_{z} generates propagating waves with power flow in the $k_{x} i_{x} \pm k_{z} i_{z}$ directions. At $k_{x}^{2}=\omega^{2} \varepsilon \mu, k_{z}=0$ so that the power flow is purely \boldsymbol{x} directed with no spatial dependence on z. Further increasing k_{x} converts k_{z} to α_{2} as γ_{z} becomes real and the fields decay with z.

7-8 OBLIQUE INCIDENCE ONTO A PERFECT CONDUCTOR

7-8-1 E Field Parallel to the Interface

In Figure $7-17 a$ we show a uniform plane wave incident upon a perfect conductor with power flow at an angle $\boldsymbol{\theta}_{\boldsymbol{i}}$ to the normal. The electric field is parallel to the surface with the magnetic field having both x and z components:

$$
\begin{align*}
\mathbf{E}_{i} & =\operatorname{Re}\left[\hat{E}_{i} e^{j\left(\omega t-k_{\mathrm{xi}} x-k_{\mathrm{i}}{ }^{2}\right)} i_{y}\right] \\
\mathbf{H}_{i} & =\operatorname{Re}\left[\frac{\hat{E}_{i}}{\eta}\left(-\cos \theta_{i} i_{x}+\sin \theta_{i} i_{x}\right) e^{j\left(\omega t-k_{\mathrm{xi}} x-k_{\mathrm{z}} z^{2}\right)}\right] \tag{1}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
k_{x i}=k \tag{2}\\
k_{x i}=k \\
\sin \theta_{i} \\
\cos \theta_{i}
\end{array}\right\} \quad k=\omega \sqrt{\varepsilon \mu}, \quad \eta=\sqrt{\frac{\mu}{\epsilon}}
$$

Figure 7-17 A uniform plane wave obliquely incident upon a perfect conductor has its angle of incidence equal to the angle of reflection. (a) Electric field polarized parallel to the interface. (b) Magnetic field parallel to the interface.

There are no transmitted fields within the perfect conductor, but there is a reflected field with power flow at angle θ_{r} from the interface normal. The reflected electric field is also in the y direction so the magnetic field, which must be perpendicular to both \mathbf{E} and $S=\mathbf{E} \times \mathbf{H}$, is in the direction shown in Figure 7-17a:

$$
\begin{align*}
\mathbf{E}_{r} & =\operatorname{Re}\left[\hat{E}_{r} e^{j\left(\omega t-k_{x} x+k_{x r}\right)} i_{y}\right] \\
\mathbf{H}_{r} & =\operatorname{Re}\left[\frac{\hat{E}_{r}}{\eta}\left(\cos \theta_{r} i_{x}+\sin \theta_{r} i_{z}\right) e^{j\left(\omega x-k_{x} x+k_{r r} x\right)}\right] \tag{3}
\end{align*}
$$

where the reflected wavenumbers are

$$
\begin{align*}
& k_{x r}=k \sin \theta_{r} \\
& k_{z r}=k \cos \theta_{r} \tag{4}
\end{align*}
$$

At this point we do not know the angle of reflection θ_{r} or the reflected amplitude \hat{E}_{r}. They will be determined from the boundary conditions at $\mathbf{z}=0$ of continuity of tangential \mathbf{E} and normal B. Because there are no fields within the perfect conductor these boundary conditions at $z=0$ are

$$
\begin{array}{r}
\hat{E}_{i} e^{-j k_{\mathrm{ki}} x^{x}}+\hat{E}_{\mathrm{r}} e^{-j k_{k_{r} x} x}=0 \tag{5}\\
\frac{\mu}{\eta}\left(\hat{E}_{i} \sin \theta_{i} e^{-j k_{x i} x}+\hat{E}_{r} \sin \theta_{r} e^{-j k_{r r} x}\right)=0
\end{array}
$$

These conditions must be true for every value of x along $z=0$ so that the phase factors given in (2) and (4) must be equal,

$$
\begin{equation*}
k_{x i}=k_{x r} \Rightarrow \theta_{\mathrm{i}}=\theta_{\mathrm{r}} \equiv \theta \tag{6}
\end{equation*}
$$

giving the well-known rule that the angle of incidence equals the angle of reflection. The reflected field amplitude is then

$$
\begin{equation*}
\hat{E}_{\mathrm{r}}=-\hat{E}_{i} \tag{7}
\end{equation*}
$$

with the boundary conditions in (5) being redundant as they both yield (7). The total fields are then:

$$
\begin{align*}
E_{y}= & \operatorname{Re}\left[\hat{E}_{i}\left(e^{-j k_{z} z}-e^{+j k_{z} z}\right) e^{j\left(\omega t-k_{x} x\right)}\right] \\
= & 2 E_{i} \sin k_{z} z \sin \left(\omega t-k_{x} x\right) \\
\mathbf{H}= & \operatorname{Re}\left[\frac { \hat { E } _ { i } } { \eta } \left[\cos \theta\left(-e^{-j k_{z} z}-e^{+j k_{x} z}\right) i_{x}+\sin \theta\left(e^{-j k_{z} z}\right.\right.\right. \\
& \left.\left.\left.-e^{+i k_{z_{2}}}\right) \mathbf{i}_{z}\right] e^{j\left(\omega t-k_{z} x\right)}\right] \tag{8}\\
= & \frac{2 E_{i}}{\eta}\left[-\cos \theta \cos k_{z} z \cos \left(\omega t-k_{x} x\right) \mathbf{i}_{x}\right. \\
& \left.+\sin \theta \sin k_{z} z \sin \left(\omega t-k_{x} x\right) i_{z}\right]
\end{align*}
$$

where without loss of generality we take \hat{E}_{i} to be real.

We drop the i and r subscripts on the wavenumbers and angles because they are equal. The fields travel in the x direction parallel to the interface, but are stationary in the z direction. Note that another perfectly conducting plane can be placed at distances d to the left of the interface at

$$
\begin{equation*}
k_{2} d=n \pi \tag{9}
\end{equation*}
$$

where the electric field is already zero without disturbing the solutions of (8). The boundary conditions at the second conductor are automatically satisfied. Such a structure is called a waveguide and is discussed in Section 8-6.

Because the tangential component of \mathbf{H} is discontinuous at $z=0$, a traveling wave surface current flows along the interface,

$$
\begin{equation*}
K_{y}=-H_{x}(x=0)=\frac{2 E_{i}}{\eta} \cos \theta \cos \left(\omega t-k_{x} x\right) \tag{10}
\end{equation*}
$$

From (8) we compute the time-average power flow as

$$
\begin{align*}
<S> & =\frac{1}{2} \operatorname{Re}\left[\hat{\mathbf{E}}(x, z) \times \hat{H}^{*}(x, z)\right] \\
& =\frac{2 E_{i}^{2}}{\eta} \sin \theta \sin ^{2} k_{z} z i_{x} \tag{11}
\end{align*}
$$

We see that the only nonzero power flow is in the direction parallel to the interfacial boundary and it varies as a function of z.

7-8-2 H Field Parallel to the Interface

If the \mathbf{H} field is parallel to the conducting boundary, as in Figure $7-17 b$, the incident and reflected fields are as follows:

$$
\begin{align*}
& \mathbf{E}_{i}=\operatorname{Re}\left[\hat{E}_{i}\left(\cos \theta_{i} \mathbf{i}_{\mathrm{x}}-\sin \theta_{i} \mathrm{i}_{\mathrm{z}}\right) e^{j\left(\omega t-k_{\mathrm{zi}} \boldsymbol{x}-k_{\mathrm{z}} \mathbf{i}^{2}\right)}\right] \\
& \mathbf{H}_{i}=\operatorname{Re}\left[\frac{\hat{E}_{i}}{\eta} e^{j\left(\omega t-k_{u i} x-k_{z i} i^{i}\right)} \mathbf{i}\right] \\
& \mathbf{E}_{\tau}=\operatorname{Re}\left[\hat{E}_{r}\left(-\cos \theta_{r} i_{x}-\sin \theta_{r} i_{z}\right) e^{j\left(\omega t-k_{k r} x+k_{k r} z^{2}\right)}\right] \tag{12}\\
& \mathbf{H}_{r}=\operatorname{Re}\left[\frac{\hat{E}_{r}}{\eta} e^{j\left(\omega t-k_{x r} x+k_{r r} x\right)} \mathbf{i}_{y}\right]
\end{align*}
$$

The tangential component of \mathbf{E} is continuous and thus zero at $z=0$:

$$
\begin{equation*}
\hat{E}_{i} \cos \theta_{i} e^{-j k_{x i} x}-\hat{E}_{r} \cos \theta_{r} e^{-j k_{x r}^{x}}=0 \tag{13}
\end{equation*}
$$

There is no normai component of \mathbf{B}. This boundary condition must be satisfied for all values of \boldsymbol{x} so again the angle of
incidence must equal the angle of reflection ($\boldsymbol{\theta}_{i}=\boldsymbol{\theta}_{r}$) so that

$$
\begin{equation*}
\hat{E}_{i}=\hat{E}_{r} \tag{14}
\end{equation*}
$$

The total \mathbf{E} and \mathbf{H} fields can be obtained from (12) by adding the incident and reflected fields and taking the real part;

$$
\begin{align*}
\mathbf{E}= & \operatorname{Re}\left\{\hat { E } _ { i } \left[\cos \theta\left(e^{-j k_{z} z}-e^{+i k_{z} z}\right) \mathbf{i}_{x}\right.\right. \\
& \left.\left.-\sin \theta\left(e^{-j k_{z} z}+e^{+j k_{z} z}\right) \mathbf{i}_{z}\right] e^{j\left(\omega t-k_{x} x\right)}\right\} \\
= & 2 E_{i}\left\{\cos \theta \sin k_{z} z \sin \left(\omega t-k_{x} x\right) \mathbf{i}_{x}\right. \tag{15}\\
& \left.-\sin \theta \cos k_{z} z \cos \left(\omega t-k_{x} x\right) i_{z}\right\} \\
\mathbf{H}= & \operatorname{Re}\left[\frac{\hat{E}_{i}}{\eta}\left(e^{-j k_{z} z}+e^{+j k_{z} z}\right) e^{j\left(\omega t-k_{z} x\right)} \mathbf{i}_{y}\right] \\
= & \frac{2 E_{i}}{\eta} \cos k_{z} z \cos \left(\omega t-k_{x} x\right) \mathbf{i}_{y}
\end{align*}
$$

The surface current on the conducting surface at $z=0$ is given by the tangential component of \mathbf{H}

$$
\begin{equation*}
K_{x}(z=0)=H_{y}(z=0)=\frac{2 E_{i}}{\eta} \cos \left(\omega t-k_{x} x\right) \tag{16}
\end{equation*}
$$

while the surface charge at $z=0$ is proportional to the normal component of electric field,

$$
\begin{equation*}
\sigma_{f}(z=0)=-\varepsilon E_{z}(z=0)=2 \varepsilon E_{i} \sin \theta \cos \left(\omega t-k_{x} x\right) \tag{17}
\end{equation*}
$$

Note that (16) and (17) satisfy conservation of current on the conducting surface,

$$
\begin{equation*}
\nabla_{\Sigma} \cdot \mathbf{K}+\frac{\partial \sigma_{f}}{\partial t}=0 \Rightarrow \frac{\partial K_{x}}{\partial x}+\frac{\partial \sigma_{f}}{\partial t}=0 \tag{18}
\end{equation*}
$$

where

$$
\nabla_{\Sigma}=\frac{\partial}{\partial x} \mathbf{i}_{x}+\frac{\partial}{\partial y} i_{y}
$$

is the surface divergence operator. The time-average power flow for this polarization is also x directed:

$$
\begin{align*}
<S> & =\frac{1}{2} \operatorname{Re}\left(\hat{\mathbf{E}} \times \hat{\mathbf{H}}^{*}\right) \\
& =\frac{2 E_{i}^{2}}{\eta} \sin \theta \cos ^{2} k_{z} z \mathrm{i}_{x} \tag{19}
\end{align*}
$$

7-9 OBLIQUE INCIDENCE ONTO A DIELECTRIC

7-9-1 E Parallel to the Interface

A plane wave incident upon a dielectric interface, as in Figure 7-18a, now has transmitted fields as well as reflected fields. For the electric field polarized parallel to the interface, the fields in each region can be expressed as

$$
\begin{align*}
& \mathbf{E}_{i}=\operatorname{Re}\left[\hat{E}_{i} e^{j\left(\omega t-k_{z i} x-k_{z i}\right)} i_{y}\right] \\
& \mathbf{H}_{i}=\operatorname{Re}\left[\frac{\hat{E}_{i}}{\eta_{1}}\left(-\cos \theta_{i} i_{x}+\sin \theta_{i} i_{x}\right) e^{j\left(\omega t-k_{\left.x i^{x}-k_{i^{2}}\right)}\right]}\right. \\
& \mathbf{E}_{r}=\operatorname{Re}\left[\hat{E}_{r} e^{j\left(\omega t-k_{x y} x+k_{x r}\right)} \mathbf{i}_{y}\right] \\
& \mathbf{H}_{r}=\operatorname{Re}\left[\frac{\hat{E}_{r}}{\eta_{1}}\left(\cos \theta_{r} \mathbf{i}_{x}+\sin \theta_{r} \mathbf{i}_{z}\right) e^{j\left(\omega t-k_{\pi r} x+k_{r r} x^{z}\right)}\right] \tag{1}\\
& \mathbf{E}_{t}=\operatorname{Re}\left[\hat{E}_{t} e^{j\left(\omega_{t}-k_{x_{1}}-k_{\mathbf{x}^{2}}\right)} \mathbf{i}_{\mathrm{y}}\right] \\
& \mathbf{H}_{t}=\operatorname{Re}\left[\frac{\hat{E}_{t}}{\eta_{2}}\left(-\cos \theta_{t} \mathbf{i}_{x}+\sin \theta_{t} i_{z}\right) e^{j\left(\omega t-k_{x t^{x}}-k_{z t} x\right.}\right]
\end{align*}
$$

where θ_{i}, θ_{r}, and θ_{i} are the angles from the normal of the incident, reflected, and transmitted power flows. The wavenumbers in each region are

$$
\begin{array}{lll}
k_{x i}=k_{1} \sin \theta_{i}, & k_{x r}=k_{1} \sin \theta_{r}, & k_{x t}=k_{2} \sin \theta_{t} \\
k_{z i}=k_{1} \cos \theta_{i}, & k_{z r}=k_{1} \cos \theta_{r}, & k_{z t}=k_{2} \cos \theta_{t} \tag{2}
\end{array}
$$

where the wavenumber magnitudes, wave speeds, and wave impedances are

$$
\begin{align*}
& k_{1}=\frac{\omega}{c_{1}}, \quad k_{2}=\frac{\omega}{c_{2}}, \quad c_{1}=\frac{1}{\sqrt{\varepsilon_{1} \mu_{1}}} \\
& \eta_{1}=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}, \quad \eta_{2}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}, \quad c_{2}=\frac{1}{\sqrt{\varepsilon_{2} \mu_{2}}} \tag{3}
\end{align*}
$$

The unknown angles and amplitudes in (1) are found from the boundary conditions of continuity of tangential \mathbf{E} and \mathbf{H} at the $z=0$ interface.
$\hat{E}_{i} e^{-j k_{x i} x}+\hat{E}_{r} e^{-i k_{x r} x}=\hat{E}_{t} e^{-j k_{x i} x}$
$\frac{-\hat{E}_{i} \cos \theta_{i} e^{-j k_{x i} x}+\hat{E}_{r} \cos \theta_{r} e^{-j k_{k_{x}} x}}{\eta_{1}}=-\frac{\hat{E}_{t} \cos \theta_{i} e^{-j k_{x r} x}}{\eta_{2}}$
These boundary conditions must be satisfied point by point for all x. This requires that the exponential factors also be

Figure 7-18 A uniform plane wave obliquely incident upon a dielectric interface also has its angle of incidence equal to the angle of reflection while the transmitted angle is given by Snell's law. (a) Electric field polarized parallel to the interface. (b) Magnetic field parallel to the interface.
equal so that the x components of all wavenumbers must be equal,

$$
\begin{equation*}
k_{x i}=k_{x r}=k_{x t} \Rightarrow k_{1} \sin \theta_{i}=k_{1} \sin \theta_{r}=k_{2} \sin \theta_{t} \tag{5}
\end{equation*}
$$

which relates the angles as

$$
\begin{equation*}
\boldsymbol{\theta}_{\boldsymbol{r}}=\boldsymbol{\theta}_{\boldsymbol{i}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\sin \theta_{t}=\left(c_{2} / c_{1}\right) \sin \theta_{i} \tag{7}
\end{equation*}
$$

As before, the angle of incidence equals the angle of reflection. The transmission angle obeys a more complicated relation called Snell's law relating the sines of the angles. The angle from the normal is largest in that region which has the faster speed of electromagnetic waves.

In optics, the ratio of the speed of light in vacuum, $c_{0}=$ $1 / \sqrt{\varepsilon_{0} \mu_{0}}$, to the speed of light in the medium is defined as the index of refraction,

$$
\begin{equation*}
n_{1}=c_{0} / c_{1}, \quad n_{2}=c_{0} / c_{2} \tag{8}
\end{equation*}
$$

which is never less than unity. Then Snell's law is written as

$$
\begin{equation*}
\sin \theta_{l}=\left(n_{1} / n_{2}\right) \sin \theta_{i} \tag{9}
\end{equation*}
$$

With the angles related as in (6), the reflected and transmitted field amplitudes can be expressed in the same way as for normal incidence (see Section 7-6-1) if we replace the wave impedances by $\eta \rightarrow \eta / \cos \theta$ to yield

$$
\begin{align*}
& R=\frac{\hat{E}_{r}}{\hat{E}_{i}}=\frac{\frac{\eta_{2}}{\cos \theta_{i}}-\frac{\eta_{1}}{\cos \theta_{i}}}{\frac{\eta_{2}}{\cos \theta_{i}}+\frac{\eta_{1}}{\cos \theta_{i}}}=\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{i}} \\
& T=\frac{\hat{E}_{t}}{\hat{E}_{i}}=\frac{2 \eta_{2}}{\cos \theta_{i}\left(\frac{\eta_{2}}{\cos \theta_{t}}+\frac{\eta_{1}}{\cos \theta_{i}}\right)}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{i}} \tag{10}
\end{align*}
$$

In (4) we did not consider the boundary condition of continuity of normal \mathbf{B} at $z=0$. This boundary condition is redundant as it is the same condition as the upper equation in (4):

$$
\begin{equation*}
\frac{\mu_{1}}{\eta_{1}}\left(\hat{E}_{i}+\hat{E}_{r}\right) \sin \theta_{i}=\frac{\mu_{2}}{\eta_{2}} \hat{E}_{t} \sin \theta_{t} \Rightarrow\left(\hat{E}_{i}+\hat{E}_{r}\right)=\hat{E}_{t} \tag{1}
\end{equation*}
$$

where we use the relation between angles in (6). Since

$$
\begin{equation*}
\frac{\mu_{1}}{\eta_{1}}=\sqrt{\mu_{1} \varepsilon_{1}}=\frac{1}{c_{1}}, \quad \frac{\mu_{2}}{\eta_{2}}=\sqrt{\mu_{2} \varepsilon_{2}}=\frac{1}{c_{2}} \tag{12}
\end{equation*}
$$

the trigonometric terms in (11) cancel due to Snell's law. There is no normal component of \mathbf{D} so it is automatically continuous across the interface.

7-9-2 Brewster's Angle of No Reflection

We see from (10) that at a certain angle of incidence, there is no reflected field as $R=0$. This angle is called Brewster's angle:

$$
\begin{equation*}
R=0 \Rightarrow \eta_{2} \cos \theta_{i}=\eta_{1} \cos \theta_{t} \tag{13}
\end{equation*}
$$

By squaring (13), replacing the cosine terms with sine terms ($\cos ^{2} \theta=1-\sin ^{2} \theta$), and using Snell's law of (6), the Brewster angle θ_{B} is found as

$$
\begin{equation*}
\sin ^{2} \theta_{B}=\frac{1-\varepsilon_{2} \mu_{1} /\left(\varepsilon_{1} \mu_{2}\right)}{1-\left(\mu_{1} / \mu_{2}\right)^{2}} \tag{14}
\end{equation*}
$$

There is not always a real solution to (14) as it depends on the material constants. The common dielectric case, where $\mu_{1}=$ $\mu_{2} \equiv \mu$ but $\varepsilon_{1} \neq \varepsilon_{2}$, does not have a solution as the right-hand side of (14) becomes infinite. Real solutions to (14) require the right-hand side to be between zero and one. A Brewster's angle does exist for the uncommon situation where $\varepsilon_{1}=\varepsilon_{2}$ and $\mu_{1} \neq \mu_{2}$:

$$
\begin{equation*}
\sin ^{2} \theta_{B}=\frac{1}{1+\mu_{1} / \mu_{2}} \Rightarrow \tan \theta_{B}=\sqrt{\frac{\mu_{2}}{\mu_{1}}} \tag{15}
\end{equation*}
$$

At this Brewster's angle, the reflected and transmitted power flows are at right angles ($\theta_{B}+\theta_{t}=\pi / 2$) as can be seen by using (6), (13), and (14):

$$
\begin{align*}
\cos \left(\theta_{B}+\theta_{t}\right) & =\cos \theta_{B} \cos \theta_{t}-\sin \theta_{B} \sin \theta_{t} \\
& =\cos ^{2} \theta_{B} \sqrt{\frac{\mu_{2}}{\mu_{1}}}-\sin ^{2} \theta_{B} \sqrt{\frac{\mu_{1}}{\mu_{2}}} \\
& =\sqrt{\frac{\mu_{2}}{\mu_{1}}}-\sin ^{2} \theta_{B}\left(\sqrt{\frac{\mu_{1}}{\mu_{2}}}+\sqrt{\frac{\mu_{2}}{\mu_{1}}}\right)=0 \tag{16}
\end{align*}
$$

7-9-3 Critical Angle of Transmission

Snell's law in (6) shows us that if $c_{2}>c_{1}$, large angles of incident angle θ_{i} could result in $\sin \theta_{i}$ being greater than unity. There is no real angle θ_{t} that satisfies this condition. The critical incident angle θ_{c} is defined as that value of θ_{i} that makes $\theta_{t}=\pi / 2$,

$$
\begin{equation*}
\sin \theta_{c}=c_{1} / c_{2} \tag{17}
\end{equation*}
$$

which has a real solution only if $c_{1}<c_{2}$. At the critical angle, the wavenumber $k_{x t}$ is zero. Lesser incident angles have real values of $k_{z l}$. For larger incident angles there is no real angle θ_{t} that satisfies (6). Snell's law must always be obeyed in order to satisfy the boundary conditions at $z=0$ for all x. What happens is that θ_{i} becomes a complex number that satisfies (6). Although $\sin \theta_{t}$ is still real, $\cos \theta_{t}$ is imaginary when $\sin \theta_{t}$ exceeds unity:

$$
\begin{equation*}
\cos \theta_{t}=\sqrt{1-\sin ^{2} \theta_{t}} \tag{18}
\end{equation*}
$$

This then makes $k_{z t}$ imaginary, which we can write as

$$
\begin{equation*}
k_{z t}=k_{2} \cos \theta_{t}=-j \alpha \tag{19}
\end{equation*}
$$

The negative sign of the square root is taken so that waves now decay with z :

$$
\begin{align*}
\mathbf{E}_{t} & =\operatorname{Re}\left[\hat{E}_{t} e^{j\left(\omega t-k_{z t} x^{x}\right)} e^{-\alpha z} \mathbf{i}_{y}\right] \\
\mathbf{H}_{t} & =\operatorname{Re}\left[\frac{\hat{E}_{t}}{\eta_{2}}\left(-\cos \theta_{t} \mathbf{i}_{x}+\sin \theta_{t} \mathbf{i}_{z}\right) e^{j\left(\omega t-k_{x x}\right)} e^{-\alpha z}\right] \tag{20}
\end{align*}
$$

The solutions are now nonuniform plane waves, as discussed in Section 7-7.

Complex angles of transmission are a valid mathematical concept. What has happened is that in (1) we wrote our assumed solutions for the transmitted fields in terms of pure propagating waves. Maxwell's equations for an incident angle greater than the critical angle require spatially decaying waves with z in region 2 so that the mathematics forced $k_{u t}$ to be imaginary.

There is no power dissipation since the z-directed timeaverage power flow is zero,

$$
\begin{align*}
\left\langle S_{z}>\right. & =-\frac{1}{2} \operatorname{Re}\left[E_{y} H_{x}^{*}\right] \\
& =-\frac{1}{2} \operatorname{Re}\left[\frac{\hat{E}_{t} \hat{E}_{t}^{*}}{\eta_{2}}\left(-\cos \theta_{t}\right)^{*} e^{-2 \alpha \alpha}\right]=0 \tag{21}
\end{align*}
$$

because $\cos \theta_{t}$ is pure imaginary so that the bracketed term in (21) is pure imaginary. The incident z-directed time-average power is totally reflected. Even though the time-averaged z-directed transmitted power is zero, there are nonzero but exponentially decaying fields in region 2.

7-9-4 H Field Parallel to the Boundary

For this polarization, illustrated in Figure 7-18b, the fields are

$$
\begin{align*}
& \mathbf{E}_{i}=\operatorname{Re}\left[\hat{E}_{i}\left(\cos \theta_{i} \mathbf{i}_{x}-\sin \theta_{i} i_{z}\right) e^{j\left(\omega t-k_{x i} x^{x}-k_{\mathrm{x}} \mathbf{i}^{2}\right)}\right] \\
& \mathbf{H}_{i}=\operatorname{Re}\left[\frac{\hat{E}_{i}}{\eta_{1}} e^{j\left(\omega t-k_{x i^{x}}-k_{z_{1}}\right)} \mathbf{i}_{y}\right] \\
& \mathbf{E}_{r}=\operatorname{Re}\left[\hat{E}_{r}\left(-\cos \theta_{r} \mathbf{i}_{x}-\sin \theta_{\tau} \mathbf{i}_{z}\right) e^{j\left(\omega t-k_{\mathrm{kr}} x+k_{r r} r\right)}\right] \\
& \mathbf{H}_{r}=\operatorname{Re}\left[\frac{\hat{E}_{r}}{\eta_{1}} e^{j\left(\omega t-k_{m o} x+k_{r r} e\right)} i_{y}\right] \tag{22}\\
& \mathbf{E}_{t}=\operatorname{Re}\left[\hat{E}_{t}\left(\cos \theta_{t} \mathbf{i}_{x}-\sin \theta_{t} \mathbf{i}_{x}\right) e^{j\left(\omega t-k_{x 1} x-k_{x_{t}}\right)}\right] \\
& \mathbf{H}_{t}=\operatorname{Re}\left[\frac{\hat{E}_{t}}{\eta_{2}} e^{j\left(\omega t-k_{m k^{x}-k_{2} x}\right)} \mathbf{i}_{y}\right]
\end{align*}
$$

where the wavenumbers and impedances are the same as in (2) and (3).

Continuity of tangential \mathbf{E} and \mathbf{H} at $z=0$ requires

$$
\begin{align*}
\hat{E}_{i} \cos \theta_{i} e^{-j k_{x i} x}-\hat{E}_{r} \cos \theta_{r} e^{-j k_{x i} x}=\hat{E}_{t} \cos \theta_{t} e^{-j k_{x 1} x} \\
\frac{\hat{E}_{i} e^{-j k_{x i} x}+\hat{E}_{\mathrm{r}} e^{-j k_{k x} x}}{\eta_{1}}=\frac{\hat{E}_{t} e^{-j k_{x x} x}}{\eta_{2}} \tag{23}
\end{align*}
$$

Again the phase factors must be equal so that (5) and (6) are again true. Snell's law and the angle of incidence equalling the angle of reflection are independent of polarization.

We solve (23) for the field reflection and transmission coefficients as

$$
\begin{align*}
& R=\frac{\hat{E}_{r}}{\hat{E}_{i}}=\frac{\eta_{1} \cos \theta_{i}-\eta_{2} \cos \theta_{t}}{\eta_{2} \cos \theta_{l}+\eta_{1} \cos \theta_{i}} \tag{24}\\
& T=\frac{\hat{E}_{t}}{\hat{E}_{i}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{l}+\eta_{1} \cos \theta_{i}} \tag{25}
\end{align*}
$$

Now we note that the boundary condition of continuity of normal D at $z=0$ is redundant to the lower relation in (23),

$$
\begin{equation*}
\varepsilon_{1} \hat{E}_{1} \sin \theta_{i}+\varepsilon_{1} \hat{E}_{r} \sin \theta_{r}=\varepsilon_{2} \hat{E}_{t} \sin \theta_{t} \tag{26}
\end{equation*}
$$

using Snell's law to relate the angles.
For this polarization the condition for no reflected waves is

$$
\begin{equation*}
R=0 \Rightarrow \eta_{2} \cos \theta_{t}=\eta_{1} \cos \theta_{i} \tag{27}
\end{equation*}
$$

which from Snell's law gives the Brewster angle:

$$
\begin{equation*}
\sin ^{2} \theta_{B}=\frac{1-\varepsilon_{1} \mu_{2} /\left(\varepsilon_{2} \mu_{1}\right)}{1-\left(\varepsilon_{1} / \varepsilon_{2}\right)^{2}} \tag{28}
\end{equation*}
$$

There is now a solution for the usual case where $\mu_{1}=\mu_{2}$ but $\varepsilon_{1} \neq \varepsilon_{2}$:

$$
\begin{equation*}
\sin ^{2} \theta_{B}=\frac{1}{1+\varepsilon_{1} / \varepsilon_{2}} \Rightarrow \tan \theta_{B}=\sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}}} \tag{29}
\end{equation*}
$$

At this Brewster's angle the reflected and transmitted power flows are at right angles $\left(\theta_{B}+\theta_{i}\right)=\pi / 2$ as can be seen by using (6), (27), and (29)

$$
\begin{align*}
\cos \left(\theta_{B}+\theta_{t}\right) & =\cos \theta_{B} \cos \theta_{t}-\sin \theta_{B} \sin \theta_{t} \\
& =\cos ^{2} \theta_{B} \sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}}}-\sin ^{2} \theta_{B} \sqrt{\frac{\varepsilon_{1}}{\varepsilon_{2}}} \\
& =\sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}}}-\sin ^{2} \theta_{B}\left(\sqrt{\frac{\varepsilon_{1}}{\varepsilon_{2}}}+\sqrt{\frac{\varepsilon_{2}}{\varepsilon_{1}}}\right)=0 \tag{30}
\end{align*}
$$

Because Snell's law is independent of polarization, the critical angle of (17) is the same for both polarizations. Note that the Brewster's angle for either polarization, if it exists, is always less than the critical angle of (17), as can be particularly seen when $\mu_{1}=\mu_{2}$ for the magnetic field polarized parallel to the interface or when $\varepsilon_{1}=\varepsilon_{2}$ for the electric field polarized parallel to the interface, as then

$$
\begin{equation*}
\frac{1}{\sin ^{2} \theta_{B}}=\frac{1}{\sin ^{2} \theta_{c}}+1 \tag{31}
\end{equation*}
$$

7-10 APPLICATIONS TO OPTICS

Reflection and refraction of electromagnetic waves obliquely incident upon the interface between dissimilar linear lossless media are governed by the two rules illustrated in Figure 7-19:
(i) The angle of incidence equals the angle of reflection.
(ii) Waves incident from a medium of high light velocity (low index of refraction) to one of low velocity (high index of refraction) are bent towards the normal. If the wave is incident from a low velocity (high index) to high velocity (low index) medium, the light is bent away from the normal. The incident and refracted angles are related by Snell's law.

Figure 7-19 A summary of reflection and refraction phenomena across the interface separating two linear media. When $\theta_{i}=\theta_{B}$ (Brewster's angle), there is no reflected ray. When $\theta_{i}>\theta_{c}$ (critical angle), the transmitted fields decay with \boldsymbol{z}.

Most optical materials, like glass, have a permeability of free space μ_{0}. Therefore, a Brewster's angle of no reflection only exists if the \mathbf{H} field is parallel to the boundary.

At the critical angle, which can only exist if light travels from a high index of refraction material (low light velocity) to one of low index (high light velocity), there is a transmitted field that decays with distance as a nonuniform plane wave. However, there is no time-average power carried by this evanescent wave so that all the time-average power is reflected. This section briefly describes various applications of these special angles and the rules governing reflection and refraction.

7-10-1 Reflections from a Mirror

A person has their eyes at height h above their feet and a height Δh below the top of their head, as in Figure 7-20. A mirror in front extends a distance Δy above the eyes and a distance y below. How large must y and Δy be so that the person sees their entire image? The light reflected off the person into the mirror must be reflected again into the person's eyes. Since the angle of incidence equals the angle of reflection, Figure $7-20$ shows that $\Delta y=\Delta h / 2$ and $y=h / 2$.

7-10-2 Lateral Displacement of a Light Ray

A light ray is incident from free space upon a transparent medium with index of refraction n at angle θ_{i}, as shown in Figure 7-21. The angle of the transmitted light is given by Snell's law:

$$
\begin{equation*}
\sin \theta_{t}=(1 / n) \sin \theta_{i} \tag{1}
\end{equation*}
$$

Figure 7-20 Because the angle of incidence equals the angle of reflection, a person can see their entire image if the mirror extends half the distance of extent above and below the eyes.

Figure 7-21 A light ray incident upon a glass plate exits the plate into the original medium parallel to its original trajectory but laterally displaced.

When this light hits the second interface, the angle θ_{1} is now the incident angle so that the transmitted angle θ_{2} is again given by Snell's law:

$$
\begin{equation*}
\sin \theta_{2}=n \sin \theta_{t}=\sin \theta_{i} \tag{2}
\end{equation*}
$$

so that the light exits at the original incident angle $\boldsymbol{\theta}_{i}$. However, it is now shifted by the amount:

$$
\begin{equation*}
s=\frac{d \sin \left(\theta_{i}-\theta_{t}\right)}{\cos \theta_{t}} \tag{3}
\end{equation*}
$$

If the plate is glass with refractive index $n=1.5$ and thickness $d=1 \mathrm{~mm}$ with incident angle $\theta_{i}=30^{\circ}$, the angle θ_{t} in the glass is

$$
\begin{equation*}
\sin \theta_{t}=0.33 \Rightarrow \theta_{t}=19.5^{\circ} \tag{4}
\end{equation*}
$$

so that the lateral displacement is $s=0.19 \mathrm{~mm}$.

7-10-3 Polarization By Reflection

Unpolarized light is incident upon the piece of glass in Section 7-10-2 with index of refraction $n=1.5$. Unpolarized light has both \mathbf{E} and H parallel to the interface. We assume that the permeability of the glass equals that of free space and that the light is incident at the Brewster's angle θ_{B} for light polarized with H parallel to the interface. The incident and
transmitted angles are then

$$
\begin{align*}
\tan \theta_{B} & =\sqrt{\varepsilon / \varepsilon_{0}}=n \Rightarrow \theta_{B}=56.3^{\circ} \\
\tan \theta_{t} & =\sqrt{\varepsilon_{0} / \varepsilon}=1 / n \Rightarrow \theta_{t}=33.7^{\circ} \tag{5}
\end{align*}
$$

The Brewster's angle is also called the polarizing angle because it can be used to separate the two orthogonal polarizations. The polarization, whose \mathbf{H} field is parallel to the interface, is entirely transmitted at the first interface with no reflection. The other polarization with electric field parallel to the interface is partially transmitted and reflected. At the second (glass-free space) interface the light is incident at angle θ_{t}. From (5) we see that this angle is the Brewster's angle with \mathbf{H} parallel to the interface for light incident from the glass side onto the glass-free space interface. Then again, the \mathbf{H} parallel to the interface polarization is entirely transmitted while the \mathbf{E} parallel to the interface polarization is partially reflected and partially transmitted. Thus, the reflected wave is entirely polarized with electric field parallel to the interface. The transmitted waves, although composed of both polarizations, have the larger amplitude with \mathbf{H}

Figure 7-22 Unpolarized light incident upon glass with $\mu=\mu_{0}$ can be polarized by reflection if it is incident at the Brewster's angle for the polarization with \mathbf{H} parallel to the interface. The transmitted light becomes more polarized with \mathbf{H} parallel to the interface by adding more parallel glass plates.
parallel to the interface because it was entirely transmitted with no reflection at both interfaces.

By passing the transmitted light through another parallel piece of glass, the polarization with electric field parallel to the interface becomes further diminished because it is partially reflected, while the other polarization is completely transmitted. With more glass elements, as in Figure 7-22, the transmitted light can be made essentially completely polarized with \mathbf{H} field parallel to the interface.

7-10-4 Light Propagation In Water

(a) Submerged Source

A light source is a distance d below the surface of water with refractive index $n=1.33$, as in Figure 7-23. The rays emanate from the source as a cone. Those rays at an angle from the normal greater than the critical angle,

$$
\begin{equation*}
\sin \theta_{c}=1 / n \Rightarrow \theta_{c}=48.8^{\circ} \tag{6}
\end{equation*}
$$

are not transmitted into the air but undergo total internal reflection. A circle of light with diameter

$$
\begin{equation*}
D=2 d \tan \theta_{c} \approx 2.28 d \tag{7}
\end{equation*}
$$

then forms on the water's surface due to the exiting light.

(b) Fish Below a Boat

A fish swims below a circular boat of diameter D, as in Figure 7-24. As we try to view the fish from the air above, the incident light ray is bent towards the normal. The region below the boat that we view from above is demarcated by the light rays at grazing incidence to the surface ($\theta_{i}=\pi / 2$) just entering the water ($n=1.33$) at the sides of the boat. The transmitted angle of these light rays is given from Snell's law as

$$
\begin{equation*}
\sin \theta_{t}=\frac{\sin \theta_{i}}{n}=\frac{1}{n} \Rightarrow \theta_{t}=48.8^{\circ} \tag{8}
\end{equation*}
$$

Figure 7-23 Light rays emanating from a source within a high index of refraction medium are totally internally reflected from the surface for angles greater than the critical angle. Lesser angles of incidence are transmitted.

Figure 7-24 A fish cannot be seen from above if it swims below a circular boat within the cone bounded by light rays at grazing incidence entering the water at the side of the boat.

These rays from all sides of the boat intersect at the point a distance y below the boat, where

$$
\begin{equation*}
\tan \theta_{t}=\frac{D}{2 y} \Rightarrow y=\frac{D}{2 \tan \theta_{t}} \approx 0.44 D \tag{9}
\end{equation*}
$$

If the fish swims within the cone, with vertex at the point y below the boat, it cannot be viewed from above.

7-10-5 Totally Reflecting Prisms

The glass isoceles right triangle in Figure 7-25 has an index of refraction of $n=1.5$ so that the critical angle for total

Figure 7-25 A totally reflecting prism. The index of refraction n must exceed $\sqrt{2}$ so that the light incident on the hypotenuse at 45° exceeds the critical angle.
internal reflection is

$$
\begin{equation*}
\sin \theta_{c}=\frac{1}{n}=\frac{1}{1.5} \Rightarrow \theta_{c}=41.8^{\circ} \tag{10}
\end{equation*}
$$

The light is normally incident on the vertical face of the prism. The transmission coefficient is then given in Section 7-6-1 as

$$
\begin{equation*}
T_{1}=\frac{\hat{E}_{t}}{\hat{E}_{i}}=\frac{2 \eta}{\eta+\eta_{0}}=\frac{2 / n}{1+1 / n}=\frac{2}{n+1}=0.8 \tag{11}
\end{equation*}
$$

where because the permeability of the prism equals that of free space $n=\sqrt{\varepsilon / \varepsilon_{0}}$ while $\eta / \eta_{0}=\sqrt{\varepsilon_{0} / \varepsilon}=1 / n$. The transmitted light is then incident upon the hypotenuse of the prism at an angle of 45°, which exceeds the critical angle so that no power is transmitted and the light is totally reflected being turned through a right angle. The light is then normally incident upon the horizontal face with transmission coefficient:

$$
\begin{equation*}
T_{2}=\frac{\hat{E}_{2}}{0.8 \hat{E}_{i}}=\frac{2 \eta_{0}}{\eta+\eta_{0}}=\frac{2}{1 / n+1}=\frac{2 n}{n+1}=1.2 \tag{12}
\end{equation*}
$$

The resulting electric field amplitude is then

$$
\begin{equation*}
\hat{E}_{2}=T_{1} T_{2} \hat{E}_{i}=0.96 \hat{E}_{i} \tag{13}
\end{equation*}
$$

The ratio of transmitted to incident power density is

$$
\begin{equation*}
\frac{\langle S\rangle}{\left\langle S_{i}\right\rangle}=\frac{\frac{1}{2}\left|\hat{E}_{2}\right|^{2} / \eta_{0}}{\frac{1}{2}\left|\hat{E}_{i}\right|^{2} / \eta_{0}}=\frac{\left|\hat{E}_{2}\right|^{2}}{\left|\hat{E}_{i}\right|^{2}}=\left(\frac{24}{25}\right)^{2} \approx 0.92 \tag{14}
\end{equation*}
$$

This ratio can be increased to unity by applying a quarter-wavelength-thick dielectric coating with index of refraction $n_{\text {coating }}=\sqrt{n}$, as developed in Example 7-1. This is not usually done because the ratio in (14) is already large without the expense of a coating.

7-10-6 Fiber Optics

(a) Straight Light Pipe

Long thin fibers of transparent material can guide light along a straight path if the light within the pipe is incident upon the wall at an angle greater than the critical angle $\left(\sin \theta_{c}=1 / n\right)$:

$$
\begin{equation*}
\sin \theta_{2}=\cos \theta_{t} \geq \sin \theta_{c} \tag{15}
\end{equation*}
$$

The light rays are then totally internally reflected being confined to the pipe until they exit, as in Figure 7-26. The

Figure 7-26 The index of refraction of a straight light pipe must be greater than $\sqrt{2}$ for total internal reflections of incident light at any angle.
incident angle is related to the transmitted angle from Snell's law,

$$
\begin{equation*}
\sin \theta_{t}=(1 / n) \sin \theta_{i} \tag{16}
\end{equation*}
$$

so that (15) becomes

$$
\begin{equation*}
\cos \theta_{t}=\sqrt{1-\sin ^{2} \theta_{t}}=\sqrt{1-\left(1 / n^{2}\right) \sin ^{2} \theta_{i}} \geq 1 / n \tag{17}
\end{equation*}
$$

which when solved for n yields

$$
\begin{equation*}
n^{2} \geq 1+\sin ^{2} \theta_{i} \tag{18}
\end{equation*}
$$

If this condition is met for grazing incidence ($\theta_{i}=\pi / 2$), all incident light will be passed by the pipe, which requires that

$$
\begin{equation*}
n^{2} \geq 2 \Rightarrow n \geq \sqrt{2} \tag{19}
\end{equation*}
$$

Most types of glass have $n \approx 1.5$ so that this condition is easily met.

(b) Bent Fibers

Light can also be guided along a tortuous path if the fiber is bent, as in the semi-circular pipe shown in Figure 7-27. The minimum angle to the radial normal for the incident light shown is at the point A. This angle in terms of the radius of the bend and the light pipe width must exceed the critical angle

$$
\begin{equation*}
\sin \theta_{A}=\frac{R}{R+d} \geqq \sin \theta_{c} \tag{20}
\end{equation*}
$$

Figure 7-27 Light can be guided along a circularly bent fiber if $R / d>1 /(n-1)$ as then there is always total internal reflection each time the light is incident on the walls.
so that

$$
\begin{equation*}
\frac{R / d}{R / d+1} \geq \frac{1}{n} \tag{21}
\end{equation*}
$$

which when solved for R / d requires

$$
\begin{equation*}
\frac{R}{d} \geq \frac{1}{n-1} \tag{22}
\end{equation*}
$$

PROBLEMS

Section 7-1

1. For the following electric fields in a linear media of permittivity ε and permeability μ find the charge density, magnetic field, and current density.
(a) $\mathbf{E}=E_{0}\left(x i_{x}+y i_{y}\right) \sin \omega t$
(b) $\mathbf{E}=E_{0}\left(y i_{x}-x i_{y}\right) \cos \omega t$
(c) $\mathrm{E}=\operatorname{Re}\left[E_{0} e^{i\left(\omega i t-k_{\mathrm{z}} x-k_{z}\right)} \dot{i}_{y}\right]$. How must $k_{\mathrm{x}}, k_{\mathrm{x}}$, and ω be related so that $\mathrm{J}=0$?
2. An Ohmic conductor of arbitrary shape has an initial charge distribution $\rho_{0}(\mathbf{r})$ at $t=0$.
(a) What is the charge distribution for all time?
(b) The initial charge distribution is uniform and is confined between parallel plate electrodes of spacing d. What are the electric and magnetic fields when the electrodes are opened or short circuited?
(c) Repeat (b) for coaxial cylindrical electrodes of inner radius a and outer radius b.
(d) When does a time varying electric field not generate a magnetic field?
3. (a) For linear media of permittivity ε and permeability μ, use the magnetic vector potential A to rewrite Faraday's law as the curl of a function.
(b) Can a scalar potential function V be defined? What is the electric field in terms of V and A ? The choice of V is not unique so pick V so that under static conditions $\mathbf{E}=-\nabla V$.
(c) Use the results of (a) and (b) in Ampere's law with Maxwell's displacement current correction to obtain a single equation in A and V. (Hint: $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A})=\nabla(\boldsymbol{\nabla} \cdot \mathbf{A})-\boldsymbol{\nabla}^{2} \mathbf{A}$.)
(d) Since we are free to specify $\boldsymbol{\nabla} \cdot \mathbf{A}$, what value should we pick to make (c) an equation just in A? This is called setting the gauge.
(e) Use the results of (a)-(d) in Gauss's law for \mathbf{D} to obtain a single equation in V.
(f) Consider a sinusoidally varying point charge at $r=0$, $\hat{Q} e^{\text {ewt }}$. Solve (e) for $r>0$.

Hint:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)=\frac{\partial^{2}}{\partial r^{2}}(r V)
$$

Define a new variable ($r V$). By symmetry, V only depends on r and waves can only propagate away from the charge and not towards it. As $r \rightarrow 0$, the potential approaches the quasi-static Coulomb potential.

Section 7-2
4. Poynting's theorem must be modified if we have a hysteretic material with a nonlinear and double-valued relationship between the polarization \mathbf{P} and electric field \mathbf{E} and the magnetization \mathbf{M} and magnetic field \mathbf{H}.

(a) For these nonlinear constitutive laws put Poynting's theorem in the form

$$
\nabla \cdot S+\frac{\partial w}{\partial t}=-P_{d}-P_{P}-P_{M}
$$

where P_{P} and P_{M} are the power densities necessary to polarize and magnetize the material.
(b) Sinusoidal electric and magnetic fields $\mathbf{E}=\mathbf{E}_{s} \cos \omega t$ and $\mathbf{H}=\mathbf{H}_{\mathbf{s}} \cos \boldsymbol{\omega} \boldsymbol{t}$ are applied. How much energy density is dissipated per cycle?
5. An electromagnetic field is present within a superconductor with constituent relation

$$
\frac{\partial \mathbf{J}_{f}}{\partial t}=\omega_{p}^{2} \varepsilon \mathbf{E}
$$

(a) Show that Poynting's theorem can be written in the form

$$
\nabla \cdot \boldsymbol{S}+\frac{\partial w}{\partial t}=0
$$

What is w ?
(b) What is the velocity of the charge carriers each with charge q in terms of the current density J_{f} ? The number density of charge carriers is n.
(c) What kind of energy does the superconductor add?
(d) Rewrite Maxwell's equations with this constitutive law for fields that vary sinusoidally with time.
(e) Derive the complex Poynting theorem in the form

$$
\nabla \cdot\left[\frac{1}{2} \hat{\mathbf{E}}(\mathbf{r}) \times \hat{\mathbf{H}}^{*}(\mathbf{r})\right]+2 j \omega<w>=0
$$

What is $\langle w\rangle$?
6. A paradoxical case of Poynting's theorem occurs when a static electric field is applied perpendicularly to a static magnetic field, as in the case of a pair of electrodes placed within a magnetic circuit.

(a) What are E, H, and S?
(b) What is the energy density stored in the system?
(c) Verify Poynting's theorem.
7. The complex electric field amplitude has real and imaginary parts

$$
\hat{\mathbf{E}}(\mathbf{r})=\mathbf{E}_{r}+j \mathbf{E}_{i}
$$

Under what conditions are the following scalar and vector products zero:
(a) $\hat{\mathbf{E}} \cdot \hat{\mathbf{E}} \xrightarrow{\mathbf{O}} 0$
(b) $\hat{\mathbf{E}} \cdot \hat{\mathbf{E}}^{*} ? \mathbf{?}$
(c) $\hat{\mathbf{E}} \times \hat{\mathbf{E}} \xrightarrow{\underline{0}}$
(d) $\hat{\mathbf{E}} \times \hat{\mathbf{E}}^{*} \xrightarrow{?} 0$

Section 7.3
8. Consider a lossy medium of permittivity ε, permeability μ, and Ohmic conductivity σ.
(a) Write down the field equations for an x-directed electric field.
(b) Obtain a single equation in E_{x}.
(c) If the fields vary sinusoidally with time,

$$
E_{x}=\operatorname{Re}\left[\hat{E}_{x}(z) e^{i \omega t}\right]
$$

what are the spatial dependences of the fields?
(d) Specialize (c) to the (i) low loss limit ($\sigma / \omega \varepsilon \ll 1$) and (ii) large loss limit ($\sigma / \omega \varepsilon \gg 1$).
(e) Repeat (a)-(c) if the medium is a plasma with constitutive law

$$
\frac{\partial \mathbf{J}}{\partial t}=\omega_{p}^{2} \varepsilon \mathbf{E}
$$

(f) A current sheet $K_{0} \cos \omega t i_{x}$ is placed at $z=0$. Find the electric and magnetic fields if the sheet is placed within an Ohmic conductor or within a plasma.
9. A uniformly distributed volume current of thickness $2 d$, $J_{0} \cos \omega t i_{x}$, is a source of plane waves.

(a) From Maxwell's equations obtain a single differential equation relating E_{x} to J_{x}.
(b) Find the electric and magnetic fields within and outside the current distribution.
(c) How much time-average power per unit area is delivered by the current?
(d) How does this generated power compare to the electromagnetic time-average power per unit area leaving the volume current at $z= \pm d$?
10. A TEM wave $\left(E_{x}, H_{y}\right)$ propagates in a medium whose permittivity and permeability are functions of $z, \varepsilon(z)$, and $\mu(z)$.
(a) Write down Maxwell's equations and obtain single partial differential equations in E_{x} and H_{y}.
(b) Consider the idealized case where $\varepsilon(z)=\varepsilon e^{\alpha|z|}$ and $\mu(z)=\mu e^{-\alpha|z|}$. A current sheet $K_{0} e^{j \omega t} \mathbf{i}_{x}$ is at $z=0$. What are
the resulting electric and magnetic fields on each side of the sheet?
(c) For what values of α are the solutions spatially evanescent or oscillatory?
11. We wish to compare various measurements between two observers, the second moving at a constant velocity $v \mathrm{i}_{\mathrm{z}}$ with respect to the first.
(a) The first observer measures simultaneous events at two positions z_{1} and z_{2} so that $t_{1}=t_{2}$. What is the time interval between the two events $t_{1}^{\prime}-t_{2}^{\prime}$ as measured by the second observer?
(b) The first observer measures a time interval $\Delta t=t_{1}-t_{2}$ between two events at the same position z. What is the time interval as measured by the second observer?
(c) The first observer measures the length of a stick as $L=z_{2}-z_{1}$. What is the length of the stick as measured by the second observer?
12. A stationary observer measures the velocity of a particle as $\mathbf{u}=u_{x} \mathbf{i}_{x}+u_{\boldsymbol{r}} \mathbf{i}_{\mathbf{y}}+u_{z} \mathbf{i}_{\mathbf{x}}$.
(a) What velocity, $\mathbf{u}^{\prime}=u_{x}^{\prime} \mathbf{i}_{x}+u_{\prime}^{\prime} \mathbf{i},+u_{z}^{\prime} \mathbf{i}_{x}$, does another observer moving at constant speed $v i_{z}$ measure?
(b) Find \mathbf{u}^{\prime} for the following values of \mathbf{u} where c_{0} is the free space speed of light:
(i) $\mathbf{u}=c_{0} \mathbf{i}_{\mathbf{x}}$
(ii) $\mathbf{u}=c_{0} \mathbf{i}$,
(iii) $\mathbf{u}=c_{0} \mathbf{i}_{2}$
(iv) $\mathbf{u}=\left(c_{0} / \sqrt{3}\right)\left[\mathbf{i}_{x}+i_{1}+i_{z}\right]$
(c) Do the results of (a) and (b) agree with the postulate that the speed of light for all observers is c_{0} ?

Section 7.4
13. An electric field is of the form

$$
\mathbf{E}=100 e^{j\left(2 \pi \times 10^{6_{i}}-2 \pi \times 10^{\left.-2_{z}\right)}\right.} \mathbf{i}_{x} \text { volts } / \mathrm{m}
$$

(a) What is the frequency, wavelength, and speed of light in the medium?
(b) If the medium has permeability $\mu_{0}=4 \pi \times 10^{-7}$ henry $/ \mathrm{m}$, what is the permittivity ε, wave impedance $\boldsymbol{\eta}$, and the magnetic field?
(c) How much time-average power per unit area is carried by the wave?
14. The electric field of an elliptically polarized plane wave in a medium with wave impedance η is

$$
\mathbf{E}=\operatorname{Re}\left(E_{x 0} \mathbf{i}_{x}+E_{y 0} e^{j \phi} \mathbf{i}_{\mathbf{y}}\right) e^{j(\omega t-k x)}
$$

where $E_{\mathbf{x} 0}$ and $E_{\mathbf{y} 0}$ are real.
(a) What is the magnetic field?
(b) What is the instantaneous and time-average power flux densities?
15. In Section 3-1-4 we found that the force on one of the charges Q of a spherical atomic electric dipole of radius R_{0} is

$$
\mathbf{F}=Q\left[\mathbf{E}-\frac{Q \mathbf{d}}{4 \pi \varepsilon_{0} R_{0}^{\mathbf{s}}}\right]
$$

where d is the dipole spacing.
(a) Write Newton's law for this moveable charge with mass M assuming that the electric field varies sinusoidally with time as $E_{0} \cos \omega t$ and solve for d. (Hint: Let $\omega_{0}^{2}=Q^{2} /\left(M 4 \pi \varepsilon_{0} R_{0}^{3}\right)$.)
(b) What is the polarization \mathbf{P} as a function of \mathbf{E} if there are N dipoles per unit volume? What is the frequency dependent permittivity function $\varepsilon(\omega)$, where

$$
\mathbf{D}(\mathbf{r})=\varepsilon(\omega) \mathbf{E}(\mathbf{r})
$$

This model is often appropriate for light propagating in dielectric media.
(c) Use the results of (b) in Maxwell's equations to find the relation between the wavenumber k and frequency ω.
(d) For what frequency ranges do we have propagation or evanescence?
(e) What are the phase and group velocities of the waves?
(f) Derive the complex Poynting's theorem for this dispersive dielectric.
16. High-frequency wave propagation in the ionosphere is partially described by the development in Section 7-4-4 except that we must include the earth's dc magnetic field, which we take to be $H_{0} \mathbf{i}_{2}$.
(a) The charge carriers have charge q and mass m. Write the three components of Newton's force law neglecting collisions but including inertia and the Coulomb-Lorentz force law. Neglect the magnetic field amplitudes of the propagating waves compared to H_{0} in the Lorentz force law.
(b) Solve for each component of the current density J in terms of the charge velocity components assuming that the propagating waves vary sinusoidally with time as $e^{\text {iowt }}$. Hint: Define

$$
\omega_{D}^{2}=\frac{q^{2} n}{m \varepsilon}, \quad \omega_{0}=\frac{q \mu_{0} H_{0}}{m}
$$

(c) Use the results of (b) in Maxwell's equations for fields of the form $e^{j(\omega t-k z)}$ to solve for the wavenumber k in terms of ω.
(d) At what frequencies is the wavenumber zero or infinite? Over what frequency range do we have evanescence or propagation?
(e) For each of the two modes found in (c), what is the polarization of the electric field?
(f) What is the phase velocity of each wave? Since each mode travels at a different speed, the atmosphere acts like an anisotropic birefringent crystal. A linearly polarized wave $E_{0} e^{j\left(\omega t-k_{0} x\right)} \mathbf{i}_{x}$ is incident upon such a medium. Write this field as the sum of right and left circularly polarized waves.
Hint:

$$
E_{0} \mathbf{i}_{x}=\frac{E_{0}}{2}\left(\mathbf{i}_{x}+j \mathbf{i}_{y}\right)+\frac{E_{0}}{2}\left(\mathbf{i}_{x}-j \mathbf{i}_{y}\right)
$$

(g) If the transmitted field at $z=0$ just inside the medium has amplitude $E_{t} e^{j \omega t} \mathbf{i}_{x}$, what are the electric and magnetic fields throughout the medium?
17. Nitrobenzene with $\mu=\mu_{0}$ and $\varepsilon=35 \varepsilon_{0}$ is placed between parallel plate electrodes of spacing s and length l stressed by a dc voltage V_{0}. Measurements have shown that light polarized parallel to the dc electric field travels at the speed $c_{\|}$, while light polarized perpendicular to the dc electric field travels slightly faster at the speed c_{\perp}, being related to the dc electric field E_{0} and free space light wavelength as

$$
\frac{1}{c_{\|}}-\frac{1}{c_{\perp}}=\lambda B E_{0}^{2}
$$

where B is called the Kerr constant which for nitrobenzene is $B \approx 4.3 \times 10^{-12} \mathrm{sec} / \mathrm{V}^{2}$ at $\lambda=500 \mathrm{~nm}$.
(a) Linearly polarized light with free space wavelength $\lambda=$ 500 nm is incident at 45° to the dc electric field. After exiting the Kerr cell, what is the phase difference between the field components of the light parallel and perpendicular to the dc electric field?
(b) What are all the values of electric field strengths that allow the Kerr cell to act as a quarter- or half-wave plate?
(c) The Kerr cell is placed between crossed polarizers (polariscope). What values of electric field allow maximum light transmission? No light transmission?
Section 7.5
18. A uniform plane wave with y-directed electric field is normally incident upon a plasma medium at $z=0$ with constitutive law $\partial \mathrm{J}_{f} / \partial t=\omega_{p}^{2} \varepsilon \mathrm{E}$. The fields vary sinusoidally in time as $e^{j \omega t}$.
(a) What is the general form of the incident, reflected, and transmitted fields?
(b) Applying the boundary conditions, find the field amplitudes.
(c) What is the time-average electromagnetic power density in each region for $\omega>\omega_{p}$ and for $\omega<\omega_{p}$?

19. A polarizing filter to microwaves is essentially formed by many highly conducting parallel wires whose spacing is much smaller than a wavelength. That polarization whose electric field is transverse to the wires passes through. The incident electric field is

$$
\mathbf{E}=E_{x} \cos (\omega t-k z) \mathbf{i}_{x}+E_{y} \sin (\omega t-k z) \mathbf{i}_{y}
$$

(a) What is the incident magnetic field and incident power density?
(b) What are the transmitted fields and power density?
(c) Another set of polarizing wires are placed parallel but a distance d and orientated at an angle ϕ to the first. What are the transmitted fields?
20. A uniform plane wave with y-directed electric field $E_{y}=E_{0} \cos \omega(t-z / c)$ is normally incident upon a perfectly conducting plane that is moving with constant velocity $v i_{z}$, where $v \ll c$.
(a) What are the total electric and magnetic fields in each region?
(b) What is the frequency of the reflected wave?
(c) What is the power flow density? Why can't we use the complex Poynting vector to find the time-average power?

Section 7.6
21. A dielectric (ε_{2}, μ_{2}) of thickness d coats a perfect conductor. A uniform plane wave is normally incident onto the coating from the surrounding medium with properties $\left(\varepsilon_{1}, \mu_{1}\right)$.

(a) What is the general form of the fields in the two dielectric media? (Hint: Why can the transmitted electric field be written as $\mathrm{E}_{\mathrm{t}}=\operatorname{Re}\left[\hat{E}_{t} \sin k_{2}(z-d) e^{j \omega t} \mathrm{i}_{x}\right]$?)
(b) Applying the boundary conditions, what are the field amplitudes?
(c) What is the time-average power flow in each region?
(d) What is the time-average radiation pressure on the conductor?

Section 7.7
22. An electric field of the form $\operatorname{Re}\left(\hat{E} e^{j \omega t} e^{-\gamma \cdot \tau}\right)$ propagates in a lossy conductor with permittivity ε, permeability μ, and conductivity σ. If $\boldsymbol{\gamma}=\boldsymbol{\alpha}+\boldsymbol{j} \mathbf{k}$, what equalities must $\boldsymbol{\alpha}$ and \mathbf{k} obey?
23. A sheet of surface charge with charge density $\sigma_{0} \sin (\omega t$ $k_{x} x$) is placed at $z=0$ within a linear medium with properties (ε, μ).

(a) What are the electric and magnetic fields?
(b) What surface current flows on the sheet?
24. A current sheet of the form $\operatorname{Re}\left(K_{0} e^{i\left(\omega t-k_{x} x\right)} i_{x}\right)$ is located in free space at $z=0$. A dielectric medium (ε, μ) of semi-infinite extent is placed at $z=d$.

(a) For what range of frequency can we have a nonuniform plane wave in free space and a uniform plane wave in the dielectric? Nonuniform plane wave in each region? Uniform plane wave in each region?
(b) What are the electric and magnetic fields everywhere?
(c) What is the time-average z-directed power flow density in each region if we have a nonuniform plane wave in free space but a uniform plane wave in the dielectric?

Section 7.8

25. A uniform plane wave $\operatorname{Re}\left(E_{0} e^{j\left(\omega t-k_{x}-k_{z}\right)} \mathbf{i}_{\mathbf{y}}\right)$ is obliquely incident upon a right-angled perfectly conducting corner. The wave is incident at angle θ_{i} to the $z=0$ wall.

(a) Try a solution composed of the incident and reflected waves off each surface of the conductor. What is the general form of solution? (Hint: There are four different waves.)
(b) Applying the boundary conditions, what are the electric and magnetic fields?
(c) What are the surface charge and current distributions on the conducting walls?
(d) What is the force per unit area on each wall?
(e) What is the power flow density?

Section 7.9

26. Fermat's principle of least time states that light, when reflected or refracted off an interface, will pick the path of least time to propagate between two points.

(a) A beam of light from point \boldsymbol{A} is incident upon a dielectric interface at angle θ_{i} from the normal and is reflected through the point B at angle θ_{r} In terms of $\theta_{i}, \theta_{r}, h_{1}$ and h_{2}, and the speed of light c_{1}, how long does it take light to travel from A to B along this path? What other relation is there between θ_{i}, θ_{r}, $L_{A B}, h_{1}$ and h_{2} ?
(b) Find the angle θ_{i} that satisfies Fermat's principle. What is θ_{r} ?
(c) In terms of $\theta_{i}, \theta_{i}, h_{1}, h_{3}$, and the light speeds c_{1} and c_{2} in each medium, how long does it take light to travel from A to C ?
(d) Find the relationship between θ_{i} and θ_{i} that satisfies Fermat's principle.
27. In many cases the permeability of dielectric media equals that of free space. In this limit show that the reflection and transmission coefficients for waves obliquely incident upon dielectric media are: \mathbf{E} parallel to the interface

$$
R=-\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)}, \quad T=\frac{2 \cos \theta_{i} \sin \theta_{t}}{\sin \left(\theta_{i}+\theta_{t}\right)}
$$

H parallel to the interface

$$
R=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}, \quad T=\frac{2 \cos \theta_{i} \sin \theta_{t}}{\sin \left(\theta_{i}+\theta_{t}\right) \cos \left(\theta_{i}-\theta_{t}\right)}
$$

28. White light is composed of the entire visible spectrum. The index of refraction n for most materials is a weak function of wavelength λ, often described by Cauchy's equation

$$
n=A+B / \lambda^{2}
$$

A beam of white light is incident at 30° to a piece of glass with $A=1.5$ and $B=5 \times 10^{-15} \mathrm{~m}^{2}$. What are the transmitted angles for the colors violet (400 nm), blue (450 nm), green (550 nm), yellow (600 nm), orange (650 nm), and red (700 nm)? This separation of colors is called dispersion.
29. A dielectric slab of thickness d with speed of light c_{2} is placed within another dielectric medium of infinite extent with speed of light c_{1}, where $c_{1}<c_{2}$. An electromagnetic wave with \mathbf{H} parallel to the interface is incident onto the slab at angle $\boldsymbol{\theta}_{\boldsymbol{i}}$.
(a) Find the electric and magnetic fields in each region. (Hint: Use Cramer's rule to find the four unknown field amplitudes in terms of E_{i}.)

(b) For what range of incident angle do we have uniform or nonuniform plane waves through the middle region?
(c) What is the transmitted time-average power density with uniform or nonuniform plane waves through the middle region. How can we have power flow through the middle region with nonuniform plane waves?
Section 7.10
30. Consider the various prisms shown.

(a) What is the minimum index of refraction n_{1} necessary for no time-average power to be transmitted across the hypotenuse when the prisms are in free space, $n_{2}=1$, or water, $n_{2}=1.33$?
(b) At these values of refractive index, what are the exiting angles θ_{a} ?
31. A fish below the surface of water with index of refraction $n=1.33$ sees a star that he measures to be at 30° from the normal. What is the star's actual angle from the normal?

32. A straight light pipe with refractive index n_{1} has a dielectric coating with index n_{2} added for protection. The light pipe is usually within free space so that n_{3} is typically unity.

(a) Light within the pipe is incident upon the first interface at angle θ_{1}. What are the angles θ_{2} and θ_{3} ?
(b) What value of θ_{1} will make θ_{3} just equal the critical angle for total internal reflection at the second interface?
(c) How does this value differ from the critical angle if the coating was not present so that n_{1} was directly in contact with n_{3} ?
(d) If we require that total reflection occur at the first interface, what is the allowed range of incident angle θ_{1}. Must the coating have a larger or smaller index of refraction than the light pipe?
33. A spherical piece of glass of radius R has refractive index n.
(a) A vertical light ray is incident at the distance $x(x<R)$ from the vertical diameter. At what distance y from the top of the sphere will the light ray intersect the vertical diameter? For what range of n and x will the refracted light intersect the vertical diameter within the sphere?

(b) A vertical light beam of radius $\alpha R(\alpha<1)$ is incident upon a hemisphere of this glass that rests on a table top. What is the radius R^{\prime} of the light on the table?

chapter 8

guided electromagnetic
waves

The uniform plane wave solutions developed in Chapter 7 cannot in actuality exist throughout all space, as an infinite amount of energy would be required from the sources. However, TEM waves can also propagate in the region of finite volume between electrodes. Such electrode structures, known as transmission lines, are used for electromagnetic energy flow from power (60 Hz) to microwave frequencies, as delay lines due to the finite speed c of electromagnetic waves, and in pulse forming networks due to reflections at the end of the line. Because of the electrode boundaries, more general wave solutions are also permitted where the electric and magnetic fields are no longer perpendicular. These new solutions also allow electromagnetic power flow in closed single conductor structures known as waveguides.

8-1 THE TRANSMISSION LINE EQUATIONS

8-1-1 The Parallel Plate Transmission Line

The general properties of transmission lines are illustrated in Figure 8-1 by the parallel plate electrodes a small distance d apart enclosing linear media with permittivity ε and permeability μ. Because this spacing d is much less than the width w or length l, we neglect fringing field effects and assume that the fields only depend on the z coordinate.

The perfectly conducting electrodes impose the boundary conditions:
(i) The tangential component of \mathbf{E} is zero.
(ii) The normal component of \mathbf{B} (and thus \mathbf{H} in the linear media) is zero.

With these constraints and the neglect of fringing near the electrode edges, the fields cannot depend on x or y and thus are of the following form:

$$
\begin{align*}
\mathbf{E} & =E_{x}(z, t) \mathbf{i}_{x} \tag{1}\\
\mathbf{H} & =H_{y}(z, t) \mathbf{i}_{y}
\end{align*}
$$

which when substituted into Maxwell's equations yield

Figure 8-1 The simplest transmission line consists of two parallel perfectly conducting plates a small distance d apart.

$$
\begin{align*}
& \nabla \times \mathbf{E}=-\mu \frac{\partial \mathbf{H}}{\partial t} \Rightarrow \frac{\partial E_{x}}{\partial z}=-\mu \frac{\partial H_{y}}{\partial t} \\
& \nabla \times \mathbf{H}=\varepsilon \frac{\partial \mathbf{E}}{\partial t} \Rightarrow \frac{\partial H_{y}}{\partial z}=-\varepsilon \frac{\partial E_{x}}{\partial t} \tag{2}
\end{align*}
$$

We recognize these equations as the same ones developed for plane waves in Section 7-3-1. The wave solutions found there are also valid here. However, now it is more convenient to introduce the circuit variables of voltage and current along the transmission line, which will depend on z and t.

Kirchoff's voltage and current laws will not hold along the transmission line as the electric field in (2) has nonzero curl and the current along the electrodes will have a divergence due to the time varying surface charge distribution, $\sigma_{f}=$ ${ }^{ \pm} E_{x}(z, t)$. Because E has a curl, the voltage difference measured between any two points is not unique, as illustrated in Figure 8-2, where we see time varying magnetic flux passing through the contour L_{1}. However, no magnetic flux passes through the path L_{2}, where the potential difference is measured between the two electrodes at the same value of z, as the magnetic flux is parallel to the surface. Thus, the voltage can be uniquely defined between the two electrodes at the same value of z :

$$
\begin{equation*}
v(z, t)=\int_{\substack{1 \\ z=\text { const }}}^{2} \mathbf{E} \cdot \mathbf{d} \mathbf{l}=E_{x}(z, t) d \tag{3}
\end{equation*}
$$

Figure 8-2 The potential difference measured between any two arbitrary points at different positions z_{1} and z_{2} on the transmission line is not unique-the line integral L_{1} of the electric field is nonzero since the contour has magnetic flux passing through it. If the contour $L_{\mathbf{2}}$ lies within a plane of constant z such as at z_{3}, no magnetic flux passes through it so that the voltage difference between the two electrodes at the same value of z is unique.

Similarly, the tangential component of \mathbf{H} is discontinuous at each plate by a surface current $\pm \mathbf{K}$. Thus, the total current $i(x, t)$ flowing in the z direction on the lower plate is

$$
\begin{equation*}
i(x, t)=K_{x} w=H_{y} w \tag{4}
\end{equation*}
$$

Substituting (3) and (4) back into (2) results in the transmission line equations:

$$
\begin{align*}
& \frac{\partial v}{\partial z}=-L \frac{\partial i}{\partial t} \\
& \frac{\partial i}{\partial z}=-C \frac{\partial v}{\partial t} \tag{5}
\end{align*}
$$

where L and C are the inductance and capacitance per unit length of the parallel plate structure:

$$
\begin{equation*}
L=\frac{\mu d}{w} \text { henry } / \mathrm{m}, \quad C=\frac{\varepsilon w}{d} \mathrm{farad} / \mathrm{m} \tag{6}
\end{equation*}
$$

If both quantities are multiplied by the length of the line l, we obtain the inductance of a single turn plane loop if the line were short circuited, and the capacitance of a parallel plate capacitor if the line were open circuited.

It is no accident that the $L C$ product

$$
\begin{equation*}
L C=\varepsilon \mu=1 / c^{2} \tag{7}
\end{equation*}
$$

is related to the speed of light in the medium.

8-1-2 General Transmission Line Structures

The transmission line equations of (5) are valid for any two-conductor structure of arbitrary shape in the transverse
$x y$ plane but whose cross-sectional area does not change along its axis in the z direction. L and C are the inductance and capacitance per unit length as would be calculated in the quasi-static limits. Various simple types of transmission lines are shown in Figure 8-3. Note that, in general, the field equations of (2) must be extended to allow for x and y components but still no z components:

$$
\begin{align*}
\mathbf{E}=\mathbf{E}_{T}(x, y, z, t)=E_{x} \mathbf{i}_{x}+E_{y} \mathbf{i}_{y}, & E_{z}=0 \\
\mathbf{H}=\mathbf{H}_{T}(x, y, z, t)=H_{x} \mathbf{i}_{x}+H_{y} \mathbf{i}_{y,}, & H_{z}=0 \tag{8}
\end{align*}
$$

We use the subscript T in (8) to remind ourselves that the fields lie purely in the transverse $x y$ plane. We can then also distinguish between spatial derivatives along the z axis ($\partial / \partial z$) from those in the transverse plane ($\partial / \partial x, \partial / \partial y$):

$$
\begin{equation*}
\nabla \underbrace{=\nabla_{T}}_{i_{x} \frac{\partial}{\partial x}+i_{y} \frac{\partial}{\partial y}}+i_{z} \frac{\partial}{\partial z} \tag{9}
\end{equation*}
$$

We may then write Maxwell's equations as

$$
\begin{align*}
\nabla_{T} \times \mathbf{E}_{T}+\frac{\partial}{\partial z}\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{E}_{T}\right) & =-\mu \frac{\partial \mathbf{H}_{T}}{\partial t} \\
\nabla_{T} \times \mathbf{H}_{T}+\frac{\partial}{\partial z}\left(\mathbf{i}_{z} \times \mathbf{H}_{T}\right) & =\varepsilon \frac{\partial \mathbf{E}_{T}}{\partial t} \\
\nabla_{T} \cdot \mathbf{E}_{T} & =0 \tag{10}\\
\nabla_{T} \cdot \mathbf{H}_{T} & =0
\end{align*}
$$

The following vector properties for the terms in (10) apply:
(i) $\nabla_{T} \times \mathbf{H}_{T}$ and $\nabla_{T} \times \mathbf{E}_{T}$ lie purely in the z direction.
(ii) $\mathbf{i}_{\mathbf{z}} \times \mathbf{E}_{T}$ and $\mathbf{i}_{\mathbf{z}} \times \mathbf{H}_{T}$ lie purely in the $x y$ plane.

Figure 8-3 Various types of simple transmission lines.

Thus, the equations in (10) may be separated by equating vector components:

$$
\begin{gather*}
\nabla_{T} \times \mathbf{E}_{T}=0, \quad \nabla_{T} \times \mathbf{H}_{T}=0 \\
\nabla_{T} \cdot \mathbf{E}_{T}=0, \quad \nabla_{T} \cdot \mathbf{H}_{T}=0 \tag{11}\\
\frac{\partial}{\partial z}\left(\mathbf{i}_{z} \times \mathbf{E}_{T}\right)=-\mu \frac{\partial \mathbf{H}_{T}}{\partial t} \Rightarrow \frac{\partial \mathbf{E}_{T}}{\partial z}=\mu \frac{\partial}{\partial t}\left(\mathbf{i}_{2} \times \mathbf{H}_{T}\right) \tag{12}\\
\frac{\partial}{\partial z}\left(\mathbf{i}_{z} \times \mathbf{H}_{T}\right)=\varepsilon \frac{\partial \mathbf{E}_{T}}{\partial t}
\end{gather*}
$$

where the Faraday's law equalities are obtained by crossing with i_{r} and expanding the double cross product

$$
\begin{equation*}
i_{z} \times\left(i_{z} \times E_{T}\right)=i_{z}\left(i_{z} ; ;_{E_{T}}^{0}\right)-E_{T}\left(i_{z} \cdot i_{z}\right)=-E_{T} \tag{13}
\end{equation*}
$$

and remembering that $\mathbf{i}_{\boldsymbol{z}} \cdot \mathbf{E}_{\boldsymbol{T}}=\mathbf{0}$.
The set of equations in (11) tell us that the field dependences on the transverse coordinates are the same as if the system were static and source free. Thus, all the tools developed for solving static field solutions, including the twodimensional Laplace's equations and the method of images, can be used to solve for \mathbf{E}_{T} and \mathbf{H}_{T} in the transverse $x y$ plane.
We need to relate the fields to the voltage and current defined as a function of z and t for the transmission line of arbitrary shape shown in Figure 8-4 as

$$
\begin{align*}
& v(z, t)=\int_{z=\text { const }}^{2} \mathbf{E}_{T} \cdot \mathbf{d l} \tag{14}\\
& i(z, t)=\oint_{\substack{\text { connourt } \\
\text { ant } \\
\text { anconsining } \\
\text { inner }}} \mathbf{H}_{T} \cdot \mathbf{d s}
\end{align*}
$$

The related quantities of charge per unit length q and flux per unit length λ along the transmission line are

$$
\begin{align*}
& q(z, t)=\varepsilon \oint_{i=\text { const }} \mathbf{E}_{T} \cdot \mathbf{n} d s \tag{15}\\
& \lambda(z, t)=\mu \int_{i=\text { const }}^{2} \mathbf{H}_{\boldsymbol{T}} \cdot\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{d}\right)
\end{align*}
$$

The capacitance and inductance per unit length are then defined as the ratios:

$$
\begin{align*}
& C=\frac{q(z, t)}{v(x, t)}=\left.\frac{\varepsilon \oint_{L} \mathbf{E}_{T} \cdot \mathbf{d s}}{\int_{1}^{2} \mathbf{E}_{T} \cdot \mathbf{d} \mathbf{l}}\right|_{z=\text { const }} \\
& L=\frac{\lambda(z, t)}{i(z, t)}=\left.\frac{\mu \int_{1}^{2} \mathbf{H}_{T} \cdot\left(\mathbf{i}_{2} \times \mathbf{d} \mathbf{l}\right)}{\oint_{L} \mathbf{H}_{T} \cdot \mathbf{d s}}\right|_{z=\text { const }} \tag{16}
\end{align*}
$$

Figure 8-4 A general transmission line has two perfect conductors whose crosssectional area does not change in the direction along its z axis, but whose shape in the transverse $x y$ plane is arbitrary. The electric and magnetic fields are perpendicular, lie in the transverse $x y$ plane, and have the same dependence on x and y as if the fields were static.
which are constants as the geometry of the transmission line does not vary with z. Even though the fields change with z, the ratios in (16) do not depend on the field amplitudes.

To obtain the general transmission line equations, we dot the upper equation in (12) with dl, which can be brought inside the derivatives since dl only varies with x and y and not z or t. We then integrate the resulting equation over a line at constant z joining the two electrodes:

$$
\begin{align*}
\frac{\partial}{\partial \mathrm{z}}\left(\int_{1}^{2} \mathbf{E}_{T} \cdot \mathrm{~d} \mathbf{l}\right) & =\frac{\partial}{\partial t}\left(\mu \int_{1}^{2}\left(\mathbf{i}_{z} \times \mathbf{H}_{T}\right) \cdot \mathrm{d} \mathbf{l}\right) \\
& =-\frac{\partial}{\partial t}\left(\mu \int_{\mathrm{l}}^{2} \mathbf{H}_{T} \cdot\left(\mathbf{i}_{z} \times \mathrm{d} \mathbf{l}\right)\right) \tag{17}
\end{align*}
$$

where the last equality is obtained using the scalar triple product allowing the interchange of the dot and the cross:

$$
\begin{equation*}
\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{H}_{T}\right) \cdot d \mathbf{l}=-\left(\mathbf{H}_{T} \times \mathbf{i}_{z}\right) \cdot \mathbf{d} \mathbf{l}=-\mathbf{H}_{T} \cdot\left(\mathbf{i}_{z} \times \mathbf{d} \mathbf{l}\right) \tag{18}
\end{equation*}
$$

We recognize the left-hand side of (17) as the z derivative of the voltage defined in (14), while the right-hand side is the negative time derivative of the flux per unit length defined in (15):

$$
\begin{equation*}
\frac{\partial v}{\partial z}=-\frac{\partial \lambda}{\partial t}=-L \frac{\partial i}{\partial t} \tag{19}
\end{equation*}
$$

We could also have derived this last relation by dotting the upper equation in (12) with the normal n to the inner
conductor and then integrating over the contour L surrounding the inner conductor:

$$
\begin{equation*}
\frac{\partial}{\partial z}\left(\oint_{L} \mathbf{n} \cdot \mathbf{E}_{T} d s\right)=\frac{\partial}{\partial t}\left(\mu \oint_{L} \mathbf{n} \cdot\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{H}_{T}\right) d s\right)=-\frac{\partial}{\partial t}\left(\mu \oint_{L} \mathbf{H}_{T} \cdot \mathbf{d s}\right) \tag{20}
\end{equation*}
$$

where the last equality was again obtained by interchanging the dot and the cross in the scalar triple product identity:

$$
\begin{equation*}
\mathbf{n} \cdot\left(\mathbf{i}_{z} \times \mathbf{H}_{T}\right)=\left(\mathbf{n} \times \mathbf{i}_{z}\right) \cdot \mathbf{H}_{T}=-\mathbf{H}_{T} \cdot \mathbf{d s} \tag{21}
\end{equation*}
$$

The left-hand side of (20) is proportional to the charge per unit length defined in (15), while the right-hand side is proportional to the current defined in (14):

$$
\begin{equation*}
\frac{1}{\varepsilon} \frac{\partial q}{\partial z}=-\mu \frac{\partial i}{\partial t} \Rightarrow C \frac{\partial v}{\partial z}=-\varepsilon \mu \frac{\partial i}{\partial t} \tag{22}
\end{equation*}
$$

Since (19) and (22) must be identical, we obtain the general result previously obtained in Section 6-5-6 that the inductance and capacitance per unit length of any arbitrarily shaped transmission line are related as

$$
\begin{equation*}
L C=\varepsilon \mu \tag{23}
\end{equation*}
$$

We obtain the second transmission line equation by dotting the lower equation in (12) with dl and integrating between electrodes:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\varepsilon \int_{1}^{2} \mathbf{E}_{T} \cdot \mathrm{dl}\right)=\frac{\partial}{\partial z}\left(\int_{1}^{2}\left(\mathbf{i}_{z} \times \mathbf{H}_{T}\right) \cdot \mathrm{dl}\right)=-\frac{\partial}{\partial z}\left(\int_{1}^{2} \mathbf{H}_{T} \cdot\left(\mathbf{i}_{z} \times \mathrm{dl}\right)\right) \tag{24}
\end{equation*}
$$

to yield from (14)-(16) and (23)

$$
\begin{equation*}
\varepsilon \frac{\partial v}{\partial t}=-\frac{1}{\mu} \frac{\partial \lambda}{\partial z}=-\frac{L}{\mu} \frac{\partial i}{\partial z} \Rightarrow \frac{\partial i}{\partial z}=-C \frac{\partial v}{\partial t} \tag{25}
\end{equation*}
$$

EXAMPLE 8-1 THE COAXIAL TRANSMISSION LINE

Consider the coaxial transmission line shown in Figure 8-3 composed of two perfectly conducting concentric cylinders of radii a and b enclosing a linear medium with permittivity ε and permeability μ. We solve for the transverse dependence of the fields as if the problem were static, independent of time. If the voltage difference between cylinders is v with the inner cylinder carrying a total current i the static fields are

$$
E_{r}=\frac{v}{\mathrm{r} \ln (b / a)}, \quad H_{\phi}=\frac{i}{2 \pi \mathrm{r}}
$$

The surface charge per unit length q and magnetic flux per unit length λ are

$$
\begin{aligned}
& q=\varepsilon E_{\tau}(r=a) 2 \pi a=\frac{2 \pi \varepsilon v}{\ln (b / a)} \\
& \lambda=\int_{a}^{b} \mu H_{\phi} d r=\frac{\mu i}{2 \pi} \ln \frac{b}{a}
\end{aligned}
$$

so that the capacitance and inductance per unit length of this structure are

$$
C=\frac{q}{v}=\frac{2 \pi \varepsilon}{\ln (b / a)}, \quad L=\frac{\lambda}{i}=\frac{\mu}{2 \pi} \ln \frac{b}{a}
$$

where we note that as required

$$
L C=\varepsilon \mu
$$

Substituting E_{r} and H_{ϕ} into (12) yields the following transmission line equations:

$$
\begin{aligned}
& \frac{\partial E_{\mathrm{r}}}{\partial z}=-\mu \frac{\partial H_{\phi}}{\partial t} \Rightarrow \frac{\partial v}{\partial z}=-L \frac{\partial i}{\partial t} \\
& \frac{\partial H_{\phi}}{\partial z}=-\varepsilon \frac{\partial E_{\mathrm{r}}}{\partial t} \Rightarrow \frac{\partial i}{\partial z}=-C \frac{\partial v}{\partial t}
\end{aligned}
$$

8-1-3 Distributed Circuit Representation

Thus far we have emphasized the field theory point of view from which we have derived relations for the voltage and current. However, we can also easily derive the transmission line equations using a distributed equivalent circuit derived from the following criteria:
(i) The flow of current through a lossless medium between two conductors is entirely by displacement current, in exactly the same way as a capacitor.
(ii) The flow of current along lossless electrodes generates a magnetic field as in an inductor.

Thus, we may discretize the transmission line into many small incremental sections of length Δz with series inductance $L \Delta z$ and shunt capacitance $C \Delta z$, where L and C are the inductance and capacitance per unit lengths. We can also take into account the small series resistance of the electrodes $R \Delta z$, where R is the resistance per unit length (ohms per meter) and the shunt conductance loss in the dielectric $G \Delta z$, where G is the conductance per unit length (siemens per meter). If the transmission line and dielectric are lossless, $R=0, G=0$.

The resulting equivalent circuit for a lossy transmission line shown in Figure 8-5 shows that the current at $z+\Delta z$ and z differ by the amount flowing through the shunt capacitance and conductance:

$$
\begin{equation*}
i(z, t)-i(z+\Delta z, t)=C \Delta z \frac{\partial v(z, t)}{\partial t}+G \Delta z v(z, t) \tag{26}
\end{equation*}
$$

Similarly, the voltage difference at $z+\Delta z$ from z is due to the drop across the series inductor and resistor:
$v(z, t)-v(z+\Delta z, t)=L \Delta z \frac{\partial i(z+\Delta z, t)}{\partial t}+i(z+\Delta z, t) R \Delta z$
By dividing (26) and (27) through by Δz and taking the limit as $\Delta z \rightarrow 0$, we obtain the lossy transmission line equations:

$$
\begin{align*}
& \lim _{\Delta x \rightarrow 0} \frac{i(z+\Delta z, t)-i(z, t)}{\Delta z}=\frac{\partial i}{\partial z}=-C \frac{\partial v}{\partial t}-G v \\
& \lim _{\Delta z \rightarrow 0} \frac{v(z+\Delta z, t)-v(z, t)}{\Delta z}=\frac{\partial v}{\partial z}=-L \frac{\partial i}{\partial t}-i R \tag{28}
\end{align*}
$$

which reduce to (19) and (25) when R and G are zero.

8-1-4 Power Flow

Multiplying the upper equation in (28) by v and the lower by i and then adding yields the circuit equivalent form of Poynting's theorem:

$$
\begin{equation*}
\frac{\partial}{\partial z}(v i)=-\frac{\partial}{\partial t}\left(\frac{1}{2} C v^{2}+\frac{1}{2} L i^{2}\right)-G v^{2}-i^{2} R \tag{29}
\end{equation*}
$$

Figure 8-5 Distributed circuit model of a transmission line including small series and shunt resistive losses.

The power flow $v i$ is converted into energy storage $\left(\frac{1}{2} \mathrm{Cv}^{2}+\right.$ $\frac{1}{2} L i^{2}$) or is dissipated in the resistance and conductance per unit lengths.

From the fields point of view the total electromagnetic power flowing down the transmission line at any position z is

$$
\begin{equation*}
P(z, t)=\int_{S}\left(\mathbf{E}_{T} \times \mathbf{H}_{T}\right) \cdot i_{z} d S=\int_{S} \mathbf{E}_{T} \cdot\left(\mathbf{H}_{T} \times i_{z}\right) d S \tag{30}
\end{equation*}
$$

where S is the region between electrodes in Figure 8-4. Because the transverse electric field is curl free, we can define the scalar potential

$$
\begin{equation*}
\nabla \times \mathbf{E}_{T}=0 \Rightarrow \mathbf{E}_{T}=-\nabla_{T} V \tag{31}
\end{equation*}
$$

so that (30) can be rewritten as

$$
\begin{equation*}
P(z, t)=\int_{S}\left(\mathbf{i}_{z} \times \mathbf{H}_{T}\right) \cdot \nabla_{T} V d S \tag{32}
\end{equation*}
$$

It is useful to examine the vector expansion

$$
\begin{equation*}
\nabla_{T} \cdot\left[V\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{H}_{T}\right)\right]=\left(\mathbf{i}_{z} \times \mathbf{H}_{T}\right) \cdot \nabla_{T} V+V \nabla_{T} \cdot\left(\mathbf{i}_{Y} \times \mathbf{H}_{T}^{0}\right) \tag{33}
\end{equation*}
$$

where the last term is zero because i_{z} is a constant vector and \mathbf{H}_{T} is also curl free:

$$
\begin{equation*}
\nabla_{T} \cdot\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{H}_{T}\right)=\mathbf{H}_{T} \cdot\left(\nabla_{T} \times \mathbf{i}_{z}\right)-\mathbf{i}_{\mathbf{z}} \cdot\left(\nabla_{T} \times \mathbf{H}_{T}\right)=0 \tag{34}
\end{equation*}
$$

Then (32) can be converted to a line integral using the twodimensional form of the divergence theorem:

$$
\begin{align*}
P(z, t) & =\int_{S} \nabla_{T} \cdot\left[V\left(i_{z} \times \mathbf{H}_{T}\right)\right] d S \\
& =-\iint_{\substack{\text { contours on } \\
\text { the surfaces of } \\
\text { both electrodes }}} V\left(\mathbf{i}_{T}\right) \cdot \mathbf{n} d s \tag{35}
\end{align*}
$$

where the line integral is evaluated at constant z along the surface of both electrodes. The minus sign arises in (35) because n is defined inwards in Figure 8-4 rather than outwards as is usual in the divergence theorem. Since we are free to pick our zero potential reference anywhere, we take the outer conductor to be at zero voltage. Then the line integral in (35) is only nonzero over the inner conductor,
where $V=v$:

$$
\begin{align*}
P(z, t) & =-v \oint_{\substack{\text { inner } \\
\text { conductor }}}\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{H}_{T}\right) \cdot \mathbf{n} d s \\
& =v \oint_{\substack{\text { iner } \\
\text { conductor }}}\left(\mathbf{H}_{T} \times \mathbf{i}_{z}\right) \cdot \mathbf{n} d s \\
& =v \oint_{\substack{\text { inner } \\
\text { conductor }}} \mathbf{H}_{T} \cdot\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{n}\right) d s \\
& =v \oint_{\substack{\text { inner } \\
\text { conductor }}} \mathbf{H}_{T} \cdot \mathbf{d s} \\
& =v i
\end{align*}
$$

where we realized that $\left(\mathbf{i}_{\mathbf{z}} \times \mathbf{n}\right) d s=\mathbf{d s}$, defined in Figure 8-4 if L lies along the surface of the inner conductor. The electromagnetic power flowing down a transmission line just equals the circuit power.

8-1-5 The Wave Equation

Restricting ourselves now to lossless transmission lines so that $R=G=0$ in (28), the two coupled equations in voltage and current can be reduced to two single wave equations in v and i :

$$
\begin{align*}
& \frac{\partial^{2} v}{\partial t^{2}}=c^{2} \frac{\partial^{2} v}{\partial z^{2}} \\
& \frac{\partial^{2} i}{\partial t^{2}}=c^{2} \frac{\partial^{2} i}{\partial z^{2}} \tag{37}
\end{align*}
$$

where the speed of the waves is

$$
\begin{equation*}
c=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\varepsilon \mu}} \mathrm{~m} / \mathrm{sec} \tag{38}
\end{equation*}
$$

As we found in Section 7-3-2 the solutions to (37) are propagating waves in the $\pm z$ directions at the speed c :

$$
\begin{align*}
v(z, t) & =V_{+}(t-z / c)+V_{-}(t+z / c) \\
i(z, t) & =I_{+}(t-z / c)+I_{-}(t+z / c) \tag{39}
\end{align*}
$$

where the functions V_{+}, V_{-}, I_{+}, and I_{-}are determined by boundary conditions imposed by sources and transmission
line terminations. By substituting these solutions back into (28) with $R=G=0$, we find the voltage and current functions related as

$$
\begin{align*}
& \mathrm{V}_{+}=I_{+} Z_{0} \tag{40}\\
& \mathrm{~V}_{-}=-I_{-} Z_{0}
\end{align*}
$$

where

$$
\begin{equation*}
Z_{0}=\sqrt{L / C} \mathrm{ohm} \tag{41}
\end{equation*}
$$

is known as the characteristic impedance of the transmission line, analogous to the wave impedance η in Chapter 7. Its inverse $Y_{0}=1 / Z_{0}$ is also used and is termed the characteristic admittance. In practice, it is difficult to measure L and C of a transmission line directly. It is easier to measure the wave speed c and characteristic impedance Z_{0} and then calculate L and C from (38) and (41).

The most useful form of the transmission line solutions of (39) that we will use is

$$
\begin{align*}
v(z, t) & =\mathrm{V}_{+}(t-z / c)+\mathrm{V}_{-}(t+z / c) \tag{42}\\
i(z, t) & =Y_{0}\left[\mathrm{~V}_{+}(t-z / c)-\mathrm{V}_{-}(t+z / c)\right]
\end{align*}
$$

Note the complete duality between these voltage-current solutions and the plane wave solutions in Section 7-3-2 for the electric and magnetic fields.

8-2 TRANSMISSION LINE TRANSIENT WAVES

The easiest way to solve for transient waves on transmission lines is through use of physical reasoning as opposed to mathematical rigor. Since the waves travel at a speed c, once generated they cannot reach any position z until a time z / c later. Waves traveling in the positive z direction are described by the function $\mathrm{V}_{+}(t-z / c)$ and waves traveling in the $-z$ direction by $V_{-}(t+z / c)$. However, at any time t and position z, the voltage is equal to the sum of both solutions while the current is proportional to their difference.

8-2-1 Transients on Infinitely Long Transmission Lines

The transmission line shown in Figure 8-6a extends to infinity in the positive z direction. A time varying voltage source $V(t)$ that is turned on at $t=0$ is applied at $z=0$ to the line which is initially unexcited. A positively traveling wave $\mathrm{V}_{+}(t-z / c)$ propagates away from the source. There is no negatively traveling wave, $\mathrm{V}_{-}(t+z / c)=0$. These physical

Figure 8-6 (a) A semi-infinite transmission line excited by a voltage source at $z=0$. (b) To the source, the transmission line looks like a resistor Z_{0} equal to the characteristic impedance. (c) The spatial distribution of the voltage $v(z, t)$ at various times for a staircase pulse of $V(t)$. (d) If the voltage source is applied to the transmission line through a series resistance R_{s} the voltage across the line at $z=0$ is given by the voltage divider relation.
arguments are verified mathematically by realizing that at $t=0$ the voltage and current are zero for $z>0$,

$$
\begin{align*}
& v(z, t=0)=V_{+}(-z / c)+V_{-}(z / c)=0 \\
& i(z, t=0)=Y_{0}\left[V_{+}(-z / c)-V_{-}(z / c)\right]=0 \tag{1}
\end{align*}
$$

which only allows the trivial solutions

$$
\begin{equation*}
V_{+}(-z / c)=0, \quad V_{-}(z / c)=0 \tag{2}
\end{equation*}
$$

Since z can only be positive, whenever the argument of V_{+}is negative and of V_{-}positive, the functions are zero. Since t can only be positive, the argument of $V_{-}(t+z / c)$ is always positive
so that the function is always zero. The argument of $\mathrm{V}_{+}(t-$ z / c) can be positive, allowing a nonzero solution if $t>z / c$ agreeing with our conclusions reached by physical arguments.

With $\mathrm{V}_{-}(t+z / c)=0$, the voltage and current are related as

$$
\begin{align*}
v(z, t) & =V_{+}(t-z / c) \\
i(z, t) & =Y_{0} \mathrm{~V}_{+}(t-z / c) \tag{3}
\end{align*}
$$

The line voltage and current have the same shape as the source, delayed in time for any z by z / c with the current scaled in amplitude by Y_{0}. Thus as far as the source is concerned, the transmission line looks like a resistor of value Z_{0} yielding the equivalent circuit at $z=0$ shown in Figure $8-6 b$. At $z=0$, the voltage equals that of the source

$$
\begin{equation*}
v(0, t)=\mathrm{V}(t)=\mathrm{V}_{+}(t) \tag{4}
\end{equation*}
$$

If $V(t)$ is the staircase pulse of total duration T shown in Figure $8-6 c$, the pulse extends in space over the spatial interval:

$$
\begin{align*}
0 \leq z \leq c t, & 0 \leq t \leq T \\
c(t-T) \leq z \leq c t, & t>T \tag{5}
\end{align*}
$$

The analysis is the same even if the voltage source is in series with a source resistance R_{s}, as in Figure 8-6d. At $z=0$ the transmission line still looks like a resistor of value Z_{0} so that the transmission line voltage divides in the ratio given by the equivalent circuit shown:

$$
\begin{align*}
& v(z=0, t)=\frac{Z_{0}}{R_{\mathrm{s}}+Z_{0}} \mathrm{~V}(t)=\mathrm{V}_{+}(t) \tag{6}\\
& i(z=0, t)=Y_{0} \mathrm{~V}_{+}(t)=\frac{\mathrm{V}(t)}{R_{\mathrm{s}}+Z_{0}}
\end{align*}
$$

The total solution is then identical to that of (3) and (4) with the voltage and current amplitudes reduced by the voltage divider ratio $Z_{0} /\left(R_{\mathrm{s}}+Z_{0}\right)$.

8-2-2 Reflections from Resistive Terminations

(a) Reflection Coefficient

All transmission lines must have an end. In Figure 8-7 we see a positively traveling wave incident upon a load resistor $\boldsymbol{R}_{\mathbf{L}}$ at $z=l$. The reflected wave will travel back towards the source at $z=0$ as a V_{-}wave. At the $z=l$ end the following circuit

Figure 8-7 A V_{+}wave incident upon the end of a transmission line with a load resistor \boldsymbol{R}_{L} is reflected as a V_{-}wave.
relations hold:

$$
\begin{align*}
v(l, t) & =\mathrm{V}_{+}(t-l / c)+\mathrm{V}_{-}(t+l / c) \\
& =i(l, t) R_{L} \\
& =Y_{0} R_{L}\left[\mathrm{~V}_{+}(t-l / c)-\mathrm{V}_{-}(t+l / c)\right] \tag{7}
\end{align*}
$$

We then find the amplitude of the negatively traveling wave in terms of the incident positively traveling wave as

$$
\begin{equation*}
\Gamma_{L}=\frac{\mathrm{V}_{-}(t+l / c)}{\mathrm{V}_{+}(t-l / c)}=\frac{R_{L}-Z_{0}}{R_{\mathrm{L}}+Z_{0}} \tag{8}
\end{equation*}
$$

where Γ_{L} is known as the reflection coefficient that is of the same form as the reflection coefficient R in Section 7-6-1 for normally incident uniform plane waves on a dielectric.
The reflection coefficient gives us the relative amplitude of the returning V_{-}wave compared to the incident V_{+}wave. There are several important limits of (8):
(i) If $R_{L}=Z_{0}$, the reflection coefficient is zero $\left(\Gamma_{L}=0\right)$ so that there is no reflected wave and the line is said to be matched.
(ii) If the line is short circuited ($R_{L}=0$), then $\Gamma_{L}=-1$. The reflected wave is equal in amplitude but opposite in sign to the incident wave. In general, if $R_{L}<Z_{0}$, the reflected voltage wave has its polarity reversed.
(iii) If the line is open circuited ($R_{L}=\infty$), then $\Gamma_{L}=+1$. The reflected wave is identical to the incident wave. In general, if $R_{L}>Z_{0}$, the reflected voltage wave is of the same polarity as the incident wave.
(b) Step Voltage

A dc battery of voltage V_{0} with series resistance R_{s} is switched onto the transmission line at $t=0$, as shown in Figure $8-8 a$. At $z=0$, the source has no knowledge of the

Figure 8-8 (a) A dc voltage V_{0} is switched onto a resistively loaded transmission line through a source resistance R_{f}. (b) The equivalent circuits at $z=0$ and $z=l$ allow us to calculate the reflected voltage wave amplitudes in terms of the incident waves.
line's length or load termination, so as for an infinitely long line the transmission line looks like a resistor of value Z_{0} to the source. There is no V_{-}wave initially. The V_{+}wave is determined by the voltage divider ratio of the series source resistance and transmission line characteristic impedance as given by (6).

This V_{+}wave travels down the line at speed c where it is reflected at $z=l$ for $t>T$, where $T=l / c$ is the transit time for a wave propagating between the two ends. The new $V_{\text {- wave }}$ generated is related to the incident V_{+}wave by the reflection coefficient Γ_{L}. As the V_{+}wave continues to propagate in the positive z direction, the V - wave propagates back towards the source. The total voltage at any point on the line is equal to the sum of V_{+}and V_{-}while the current is proportional to their difference.

When the V_{-}wave reaches the end of the transmission line at $z=0$ at time $2 T$, in general a new V_{+}wave is generated, which can be found by solving the equivalent circuit shown in Figure 8-8b:

$$
\begin{align*}
v(0, t)+i(0, t) R_{s}= & V_{0} \Rightarrow V_{+}(0, t)+V_{-}(0, t) \\
& +Y_{0} R_{s}\left[V_{+}(0, t)-V_{-}(0, t)\right]=V_{0} \tag{9}
\end{align*}
$$

to yield

$$
\begin{equation*}
V_{+}(0, t)=\Gamma_{s} V_{-}(0, t)+\frac{Z_{0} V_{0}}{Z_{0}+R_{s}}, \quad \Gamma_{s}=\frac{R_{s}-Z_{0}}{R_{s}+Z_{0}} \tag{10}
\end{equation*}
$$

where Γ_{s} is just the reflection coefficient at the source end. This new V_{+}wave propagates towards the load again generating a new V_{-}wave as the reflections continue.

If the source resistance is matched to the line, $R_{s}=Z_{0}$ so that $\Gamma_{s}=0$, then V_{+}is constant for all time and the steady state is reached for $t>2 T$. If the load was matched, the steady state is reached for $t>T$ no matter the value of R_{s}. There are no further reflections from the end of a matched line. In Figure 8 -9 we plot representative voltage and current spatial distributions for various times assuming the source is matched to the line for the load being matched, open, or short circuited.

(i) Matched Line

When $R_{L}=Z_{0}$ the load reflection coefficient is zero so that $V_{+}=V_{0} / 2$ for all time. The wavefront propagates down the line with the voltage and current being identical in shape. The system is in the dc steady state for $t \geq T$.

(a)

(b)

Figure 8-9 (a) A dc voltage is switched onto a transmission line with load resistance $\boldsymbol{R}_{\boldsymbol{L}}$ through a source resistance R_{s} matched to the line. (b) Regardless of the load resistance, half the source voltage propagates down the line towards the load. If the load is also matched to the line ($R_{L}=Z_{0}$), there are no reflections and the steady state of $v(z, t \geq T)=V_{0} / 2, i(z, t \geq T)=Y_{0} V_{0} / 2$ is reached for $t \geq T$. (c) If the line is short circuited ($R_{L}=0$), then $\Gamma_{L}=-1$ so that the V_{+}and V_{-}waves cancel for the voltage but add for the current wherever they overlap in space. Since the source end is matched, no further reflections arise at $z=0$ so that the steady state is reached for $t \geq 2 T$. (d) If the line is open circuited $\left(R_{L}=\infty\right)$ so that $\Gamma_{L}=+1$, the V_{+}and V_{-}waves add for the voltage but cancel for the current.

Short circuited line, $R_{L}=0,\left(v(z, t \geqslant 2 T)=0, i(z, t \geqslant 2 T)=Y_{0} V_{0}\right)$
(c)

(d)

Figure 8-9

(ii) Open Circuited Line

When $R_{L}=\infty$ the reflection coefficient is unity so that $\mathrm{V}_{+}=$ V_{-}. When the incident and reflected waves overlap in space the voltages add to a stairstep pulse shape while the current is zero. For $t \geq 2 T$, the voltage is V_{0} everywhere on the line while the current is zero.
(iii) Short Circuited Line

When $R_{L}=0$ the load reflection coefficient is -1 so that $\mathrm{V}_{+}=-\mathrm{V}_{-}$. When the incident and reflected waves overlap in space, the total voltage is zero while the current is now a stairstep pulse shape. For $t \geq 2 T$ the voltage is zero everywhere on the line while the current is V_{0} / Z_{0}.

8-2-3 Approach to the dc Steady State

If the load end is matched, the steady state is reached after one transit time $T=l / c$ for the wave to propagate from the source to the load. If the source end is matched, after one
round trip $2 T=2 / / \mathrm{c}$ no further reflections occur. If neither end is matched, reflections continue on forever. However, for nonzero and noninfinite source and load resistances, the reflection coefficient is always less than unity in magnitude so that each successive reflection is reduced in amplitude. After a few round-trips, the changes in V_{+}and V_{-}become smaller and eventually negligible. If the source resistance is zero and the load resistance is either zero or infinite, the transient pulses continue to propagate back and forth forever in the lossless line, as the magnitude of the reflection coefficients are unity.
Consider again the dc voltage source in Figure 8-8a switched through a source resistance R_{s} at $t=0$ onto a transmission line loaded at its $z=l$ end with a load resistor R_{L}. We showed in (10) that the V_{+}wave generated at the $z=0$ end is related to the source and an incoming V_{-}wave as

$$
\begin{equation*}
\mathrm{V}_{+}=\Gamma_{0} V_{0}+\Gamma_{s} \mathrm{~V}_{-}, \quad \Gamma_{0}=\frac{Z_{0}}{R_{s}+Z_{0}}, \quad \Gamma_{s}=\frac{R_{s}-Z_{0}}{R_{s}+Z_{0}} \tag{1}
\end{equation*}
$$

Similarly, at $z=l$, an incident V_{+}wave is converted into a V_{-} wave through the load reflection coefficient:

$$
\begin{equation*}
\mathrm{V}_{-}=\Gamma_{L} \mathrm{~V}_{+}, \quad \Gamma_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \tag{12}
\end{equation*}
$$

We can now tabulate the voltage at $z=l$ using the following reasoning:
(i) For the time interval $t<T$ the voltage at $z=l$ is zero as no wave has yet reached the end.
(ii) At $z=0$ for $0 \leq t \leq 2 T, V_{-}=0$ resulting in a V_{+}wave emanating from $z=0$ with amplitude $V_{+}=\Gamma_{0} V_{0}$.
(iii) When this V_{+}wave reaches $z=l_{\text {, a }} \mathrm{V}_{-}$wave is generated with amplitude $\mathrm{V}_{-}=\Gamma_{L} \mathrm{~V}_{+}$. The incident V_{+}wave at $z=l$ remains unchanged until another interval of $2 T$, whereupon the just generated V_{-}wave after being reflected from $z=0$ as a new V_{+}wave given by (11) again returns to $z=l$.
(iv) Thus, the voltage at $z=l$ only changes at times ($2 n-$ 1) $T, n=1,2, \ldots$, while the voltage at $z=0$ changes at times $2(n-1) T$. The resulting voltage waveforms at the ends are stairstep patterns with steps at these times.

The \boldsymbol{n} th traveling V_{+}wave is then related to the source and the $(n-1)$ th V - wave at $z=0$ as

$$
\begin{equation*}
V_{+n}=\Gamma_{0} V_{0}+\Gamma_{s} V_{-(n-1)} \tag{13}
\end{equation*}
$$

while the $(n-1)$ th V_{-}wave is related to the incident ($n-1$)th V_{+}wave at $z=l$ as

$$
\begin{equation*}
V_{-(n-1)}=\Gamma_{L} V_{+(n-1)} \tag{14}
\end{equation*}
$$

Using (14) in (13) yields a single linear constant coefficient difference equation in V_{+n} :

$$
\begin{equation*}
V_{+n}-\Gamma_{s} \Gamma_{L} V_{+(n-1)}=\Gamma_{0} V_{0} \tag{15}
\end{equation*}
$$

For a particular solution we see that V_{+n} being a constant satisfies (15):

$$
\begin{equation*}
\mathrm{V}_{+n}=C \Rightarrow C\left(1-\Gamma_{s} \Gamma_{L}\right)=\Gamma_{0} V_{0} \Rightarrow \mathrm{C}=\frac{\Gamma_{0}}{1-\Gamma_{s} \Gamma_{L}} V_{0} \tag{16}
\end{equation*}
$$

To this solution we can add any homogeneous solution assuming the right-hand side of (15) is zero:

$$
\begin{equation*}
\mathrm{V}_{+n}-\Gamma_{s} \Gamma_{L} \mathrm{~V}_{+(n-1)}=0 \tag{17}
\end{equation*}
$$

We try a solution of the form

$$
\begin{equation*}
V_{+n}=A \lambda^{n} \tag{18}
\end{equation*}
$$

which when substituted into (17) requires

$$
\begin{equation*}
A \lambda^{n-1}\left(\lambda-\Gamma_{s} \Gamma_{L}\right)=0 \Rightarrow \lambda=\Gamma_{s} \Gamma_{L} \tag{19}
\end{equation*}
$$

The total solution is then a sum of the particular and homogeneous solutions:

$$
\begin{equation*}
V_{+n}=\frac{\Gamma_{0}}{1-\Gamma_{s} \Gamma_{L}} V_{0}+A\left(\Gamma_{s} \Gamma_{L}\right)^{n} \tag{20}
\end{equation*}
$$

The constant A is found by realizing that the first transient wave is

$$
\begin{equation*}
V_{+1}=\Gamma_{0} V_{0}=\frac{\Gamma_{0}}{1-\Gamma_{s} \Gamma_{L}} V_{0}+A\left(\Gamma_{s} \Gamma_{L}\right) \tag{21}
\end{equation*}
$$

which requires A to be

$$
\begin{equation*}
A=-\frac{\Gamma_{0} V_{0}}{1-\Gamma_{s} \Gamma_{L}} \tag{22}
\end{equation*}
$$

so that (20) becomes

$$
\begin{equation*}
V_{+n}=\frac{\Gamma_{0} V_{0}}{1-\Gamma_{s} \Gamma_{L}}\left[1-\left(\Gamma_{s} \Gamma_{L}\right)^{n}\right] \tag{23}
\end{equation*}
$$

Raising the index of (14) by one then gives the $n t h V_{-}$wave as

$$
\begin{equation*}
V_{-n}=\Gamma_{L} V_{+n} \tag{24}
\end{equation*}
$$

so that the total voltage at $z=l$ after n reflections at times $(2 n-1) T, n=1,2, \ldots$, is

$$
\begin{equation*}
V_{n}=V_{+n}+V_{-n}=\frac{V_{0} \Gamma_{0}\left(1+\Gamma_{L}\right)}{1-\Gamma_{s} \Gamma_{L}}\left[1-\left(\Gamma_{s} \Gamma_{L}\right)^{n}\right] \tag{25}
\end{equation*}
$$

or in terms of the source and load resistances

$$
\begin{equation*}
\mathrm{V}_{n}=\frac{R_{L}}{R_{L}+R_{s}} V_{0}\left[1-\left(\Gamma_{s} \Gamma_{L}\right)^{n}\right] \tag{26}
\end{equation*}
$$

The steady-state results as $n \rightarrow \infty$. If either R_{s} or R_{L} are nonzero or noninfinite, the product of $\Gamma_{s} \Gamma_{L}$ must be less than unity. Under these conditions

$$
\begin{equation*}
\lim _{\substack{\left.n \rightarrow \infty \\ \Gamma_{s}, \Gamma_{L}<1\right)}}\left(\Gamma_{s} \Gamma_{L}\right)^{n}=0 \tag{27}
\end{equation*}
$$

so that in the steady state

$$
\begin{equation*}
\lim _{n \rightarrow \infty} V_{n}=\frac{R_{L}}{R_{s}+R_{L}} V_{0} \tag{28}
\end{equation*}
$$

which is just the voltage divider ratio as if the transmission line was just a pair of zero-resistance connecting wires. Note also that if either end is matched so that either Γ_{s} or Γ_{L} is zero, the voltage at the load end is immediately in the steady state after the time T.
In Figure 8-10 the load is plotted versus time with $R_{s}=0$ and $R_{L}=3 Z_{0}$ so that $\Gamma_{s} \Gamma_{L}=-\frac{1}{2}$ and with $R_{L}=\frac{1}{3} Z_{0}$ so that

Figure 8-10 The load voltage as a function of time when $R_{s}=0$ and $R_{L}=3 Z_{0}$ so that $\Gamma_{s} \Gamma_{L}=-\frac{1}{2}$ (solid) and with $R_{L}=\frac{1}{3} Z_{0}$ so that $\Gamma_{s} \Gamma_{L}=\frac{1}{2}$ (dashed). The dc steady state is the same as if the transmission line were considered a pair of perfectly conducting wires in a circuit.
$\Gamma_{s} \Gamma_{L}=+\frac{1}{2}$. Then (26) becomes

$$
\mathrm{V}_{\mathrm{n}}= \begin{cases}\mathrm{V}_{0}\left[1-\left(-\frac{1}{2}\right)^{n}\right], & R_{L}=3 Z_{0} \tag{29}\\ \mathrm{~V}_{\mathrm{o}}\left[1-\left(\frac{1}{2}\right)^{n}\right], & R_{\mathrm{L}}=\frac{1}{3} Z_{0}\end{cases}
$$

The step changes in load voltage oscillate about the steadystate value $V_{\infty}=V_{0}$. The steps rapidly become smaller having less than one-percent variation for $n>7$.

If the source resistance is zero and the load resistance is either zero or infinite (short or open circuits), a lossless transmission line never reaches a dc steady state as the limit of (27) does not hold with $\Gamma_{S} \Gamma_{L}= \pm 1$. Continuous reflections with no decrease in amplitude results in pulse waveforms for all time. However, in a real transmission line, small losses in the conductors and dielectric allow a steady state to be eventually reached.
Consider the case when $R_{s}=0$ and $R_{L}=\infty$ so that $\Gamma_{s} \Gamma_{L}=$ -1 . Then from (26) we have

$$
\mathrm{V}_{n}= \begin{cases}0, & n \text { even } \tag{30}\\ 2 V_{0}, & n \text { odd }\end{cases}
$$

which is sketched in Figure 8-11a.
For any source and load resistances the current through the load resistor at $z=l$ is

$$
\begin{align*}
I_{n} & =\frac{V_{n}}{R_{L}}=\frac{V_{0} \Gamma_{0}\left(1+\Gamma_{L}\right)}{R_{L}\left(1-\Gamma_{s} \Gamma_{L}\right)}\left[1-\left(\Gamma_{s} \Gamma_{L}\right)^{n}\right] \\
& =\frac{2 V_{0} \Gamma_{0}}{R_{L}+Z_{0}} \frac{\left[1-\left(\Gamma_{s} \Gamma_{L}\right)^{n}\right]}{\left(1-\Gamma_{s} \Gamma_{L}\right)} \tag{31}
\end{align*}
$$

If both R_{s} and R_{L} are zero so that $\Gamma_{s} \Gamma_{L}=1$, the short circuit current in (31) is in the indeterminate form $0 / 0$, which can be evaluated using l'Hôpital's rule:

$$
\begin{align*}
\lim _{r, \Gamma_{L} \rightarrow 1} I_{n} & =\frac{2 V_{0} \Gamma_{0}}{R_{L}+Z_{0}} \frac{\left[-n\left(\Gamma_{s} \Gamma_{L}\right)^{n-1}\right]}{(-1)} \\
& =\frac{2 V_{0} n}{Z_{0}} \tag{32}
\end{align*}
$$

As shown by the solid line in Figure 8-11b, the current continually increases in a stepwise fashion. As n increases to infinity, the current also becomes infinite, which is expected for a battery connected across a short circuit.

8-2-4 Inductors and Capacitors as Quasi-static Approximations to Transmission Lines

If the transmission line was one meter long with a free space dielectric medium, the round trip transit time $2 T=2 L / c$

Figure 8-11 The (a) open circuit voltage and (b) short circuit current at the $z=l$ end of the transmission line for $R_{s}=0$. No dc steady state is reached because the system is lossless. If the short circuited transmission line is modeled as an inductor in the quasi-static limit, a step voltage input results in a linearly increasing current (shown dashed). The exact transmission line response is the solid staircase waveform.
is approximately 6 nsec . For many circuit applications this time is so fast that it may be considered instantaneous. In this limit the quasi-static circuit element approximation is valid.

For example, consider again the short circuited transmission line ($R_{L}=0$) of length l with zero source resistance. In the magnetic quasi-static limit we would call the structure an inductor with inductance $L l$ (remember, L is the inductance per unit length) so that the terminal voltage and current are related as

$$
\begin{equation*}
v=(L l) \frac{d i}{d t} \tag{33}
\end{equation*}
$$

If a constant voltage V_{0} is applied at $t=0$, the current is obtained by integration of (33) as

$$
\begin{equation*}
i=\frac{V_{0}}{L l} t \tag{34}
\end{equation*}
$$

where we use the initial condition of zero current at $t=0$. The linear time dependence of the current, plotted as the dashed line in Figure $8-11 b$, approximates the rising staircase waveform obtained from the exact transmission line analysis of (32).

Similarly, if the transmission line were open circuited with $R_{L}=\infty$, it would be a capacitor of value $C l$ in the electric quasi-static limit so that the voltage on the line charges up through the source resistance R_{s} with time constant $\tau=R_{s} C l$ as

$$
\begin{equation*}
v(t)=V_{0}\left(1-e^{-\mu \tau}\right) \tag{35}
\end{equation*}
$$

The exact transmission line voltage at the $z=l$ end is given by (26) with $R_{L}=\infty$ so that $\Gamma_{L}=1$:

$$
\begin{equation*}
V_{n}=V_{0}\left(1-\Gamma_{s}^{n}\right) \tag{36}
\end{equation*}
$$

where the source reflection coefficient can be written as

$$
\begin{align*}
\Gamma_{s} & =\frac{R_{s}-Z_{0}}{R_{s}+Z_{0}} \\
& =\frac{R_{s}-\sqrt{L / C}}{R_{s}+\sqrt{L / C}} \tag{37}
\end{align*}
$$

If we multiply the numerator and denominator of (37) through by $\mathbf{C l}$, we have

$$
\begin{align*}
\Gamma_{s} & =\frac{R_{s} C l-l \sqrt{L C}}{R_{s} C l+l \sqrt{L C}} \\
& =\frac{\tau-T}{\tau+T}=\frac{1-T / \tau}{1+T / \tau} \tag{38}
\end{align*}
$$

where

$$
\begin{equation*}
T=l \sqrt{L C}=\langle c \tag{39}
\end{equation*}
$$

For the quasi-static limit to be valid, the wave transit time T must be much faster than any other time scale of interest so that $T / \tau \ll 1$. In Figure $8-12$ we plot (35) and (36) for two values of T / τ and see that the quasi-static and transmission line results approach each other as T / τ. becomes small.

When the roundtrip wave transit time is so small compared to the time scale of interest so as to appear to be instantaneous, the circuit treatment is an excellent approximation.

Figure 8-12 The open circuit voltage at $z=l$ for a step voltage applied at $t=0$ through a source resistance R, for various values of T / τ, which is the ratio of propagation time $T=U c$ to quasi-static charging time $\tau=R, C l$. The dashed curve shows the exponential rise obtained by a circuit analysis assuming the open circuited transmission line is a capacitor.

If this propagation time is significant, then the transmission line equations must be used.

8-2-5 Reflections from Arbitrary Terminations

For resistive terminations we have been able to relate reflected wave amplitudes in terms of an incident wave amplitude through the use of a reflection coefficient because the voltage and current in the resistor are algebraically related. For an arbitrary termination, which may include any component such as capacitors, inductors, diodes, transistors, or even another transmission line with perhaps a different characteristic impedance, it is necessary to solve a circuit problem at the end of the line. For the arbitrary element with voltage V_{L} and current I_{L} at $z=l$, shown in Figure 8-13a, the voltage and current at the end of line are related as

$$
\begin{align*}
& v(z=l, t)=\mathrm{V}_{\mathrm{L}}(t)=\mathrm{V}_{+}(t-l / c)+\mathrm{V}_{-}(t+l / c) \tag{40}\\
& i(\mathrm{z}=l, t)=I_{\mathrm{L}}(t)=Y_{0}\left[\mathrm{~V}_{+}(t-l / c)-\mathrm{V}_{-}(t+l / c)\right] \tag{41}
\end{align*}
$$

We assume that we know the incident V_{+}wave and wish to find the reflected V_{-}wave. We then eliminate the unknown V_{-}in (40) and (41) to obtain

$$
\begin{equation*}
2 \mathrm{~V}_{+}(t-l / c)=\mathrm{V}_{L}(t)+I_{L}(t) Z_{0} \tag{42}
\end{equation*}
$$

which suggests the equivalent circuit in Figure 8-13b.
For a particular lumped termination we solve the equivalent circuit for $V_{L}(t)$ or $I_{L}(t)$. Since $V_{+}(t-l / c)$ is already known as it is incident upon the termination, once $V_{L}(t)$ or

Figure 8-13 A transmission line with an (a) arbitrary load at the $z=l$ end can be analyzed from the equivalent circuit in (b). Since V_{+}is known, calculation of the load current or voltage yields the reflected wave $V_{\text {- }}$.
$I_{L}(t)$ is calculated from the equivalent circuit, $V_{-}(t+l / c)$ can be calculated as $V_{-}=V_{L}-V_{+}$.

For instance, consider the lossless transmission lines of length l shown in Figure 8-14a terminated at the end with either a lumped capacitor C_{L} or an inductor L_{L}. A step voltage at $t=0$ is applied at $z=0$ through a source resistor matched to the line.

The source at $z=0$ is unaware of the termination at $z=l$ until a time $2 T$. Until this time it launches a V_{+}wave of amplitude $V_{0} / 2$. At $z=l$, the equivalent circuit for the capacitive termination is shown in Figure 8-14b. Whereas resistive terminations just altered wave amplitudes upon reflection, inductive and capacitive terminations introduce differential equations.

From (42), the voltage across the capacitor v_{c} obeys the differential equation

$$
\begin{equation*}
Z_{0} C_{L} \frac{d v_{c}}{d t}+v_{c}=2 V_{+}=V_{0}, \quad t>T \tag{43}
\end{equation*}
$$

with solution

$$
\begin{equation*}
v_{c}(t)=V_{0}\left[1-e^{-(t-n) / z_{0} c_{L}}\right], \quad t>T \tag{44}
\end{equation*}
$$

Note that the voltage waveform plotted in Figure 8-14b begins at time $T=l / c$.

Thus, the returning V_{-}wave is given as

$$
\begin{equation*}
V_{-}=v_{c}-V_{+}=V_{0} / 2+V_{0} e^{-(1-T) / Z_{0} c_{L}} \tag{45}
\end{equation*}
$$

This reflected wave travels back to $z=0$, where no further reflections occur since the source end is matched. The current at $z=l$ is then

$$
\begin{equation*}
i_{c}=C_{L} \frac{d v_{c}}{d t} \approx \frac{V_{0}}{Z_{0}} e^{-(t-T) / Z_{0} c_{L}}, \quad t>T \tag{46}
\end{equation*}
$$

and is also plotted in Figure 8-14b.

Figure 8-14 (a) A step voltage is applied to transmission lines loaded at $z=l$ with a capacitor C_{L} or inductor L_{L}. The load voltage and current are calculated from the (b) resistive-capacitive or (c) resistive-inductive equivalent circuits at $z=l$ to yield exponential waveforms with respective time constants $\tau=Z_{0} C_{\mathrm{L}}$ and $\tau=L_{\nu} Z_{0}$ as the solutions approach the dc steady state. The waveforms begin after the initial \mathbf{V}_{+}wave arrives at $z=l$ after a time $T=\| c$. There are no further reflections as the source end is matched.

If the end at $z=0$ were not matched, a new V_{+}would be generated. When it reached $z=l$, we would again solve the $R C$ circuit with the capacitor now initially charged. The reflections would continue, eventually becoming negligible if R_{s} is nonzero.
Similarly, the governing differential equation for the inductive load obtained from the equivalent circuit in Figure $8-14 c$ is

$$
\begin{equation*}
L_{L} \frac{d i_{L}}{d t}+i_{L} Z_{0}=2 \mathrm{~V}_{+}=V_{0}, \quad t>T \tag{47}
\end{equation*}
$$

with solution

$$
\begin{equation*}
i_{L}=\frac{V_{0}}{Z_{0}}\left(1-e^{-\left(t-T Z_{0} / L_{L}\right.}\right), \quad t>T \tag{48}
\end{equation*}
$$

The voltage across the inductor is

$$
\begin{equation*}
v_{L}=L_{L} \frac{d i_{L}}{d t}=V_{0} e^{-(t-T) z_{0} / L_{L}}, \quad t>T \tag{49}
\end{equation*}
$$

Again since the end at $z=0$ is matched, the returning V_{-} wave from $z=l$ is not reflected at $z=0$. Thus the total voltage and current for all time at $z=l$ is given by (48) and (49) and is sketched in Figure 8-14c.

8-3 SINUSOIDAL TIME VARIATIONS

8-3-1 Solutions to the Transmission Line Equations

Often transmission lines are excited by sinusoidally varying sources so that the line voltage and current also vary sinusoidally with time:

$$
\begin{align*}
v(z, t) & =\operatorname{Re}\left[\hat{v}(z) e^{j \omega t}\right] \\
i(z, t) & =\operatorname{Re}\left[\hat{\imath}(z) e^{j \omega t}\right] \tag{1}
\end{align*}
$$

Then as we found for TEM waves in Section 7-4, the voltage and current are found from the wave equation solutions of Section 8-1-5 as linear combinations of exponential functions with arguments $t-z / c$ and $t+z / c$:

$$
\begin{align*}
& v(z, t)=\operatorname{Re}\left[\hat{\mathrm{V}}_{+} e^{j \omega(t-z / c)}+\hat{\mathrm{V}}_{-} e^{j \omega(t+z / c)}\right] \\
& i(z, t)=Y_{0} \operatorname{Re}\left[\hat{\mathrm{~V}}_{+} e^{j \omega(t-\mu / c)}-\hat{\mathrm{V}}_{-} e^{j \omega(t+z / c)}\right] \tag{2}
\end{align*}
$$

Now the phasor amplitudes $\hat{\mathbf{V}}_{+}$and $\hat{\mathbf{V}}_{-}$are complex numbers and do not depend on z or t.

By factoring out the sinusoidal time dependence in (2), the spatial dependences of the voltage and current are

$$
\begin{align*}
& \hat{v}(z)=\hat{V}_{+} e^{-j k z}+\hat{V}_{-} e^{+j k z} \\
& \hat{\imath}(z)=Y_{0}\left(\hat{V}_{+} e^{-j k z}-\hat{V}_{-} e^{+j k z}\right) \tag{3}
\end{align*}
$$

where the wavenumber is again defined as

$$
\begin{equation*}
k=\omega / c \tag{4}
\end{equation*}
$$

8-3-2 Lossless Terminations

(a) S'Sort Circuited Line

The transmission line shown in Figure $8-15 a$ is excited by a sinusoidal voltage source at $z=-l$ imposing the boundary condition

$$
\begin{align*}
v(z=-l, t) & =V_{0} \cos \omega t \\
& =\operatorname{Re}\left(V_{0} e^{j \omega x}\right) \Rightarrow \hat{v}(z=-l)=V_{0}=\hat{\mathrm{V}}_{+} e^{j k l}+\hat{\mathrm{V}}_{-} e^{-j \omega l} \tag{5}
\end{align*}
$$

Note that to use (3) we must write all sinusoids in complex notation. Then since all time variations are of the form $e^{\text {jat }}$, we may suppress writing it each time and work only with the spatial variations of (3).

Because the transmission line is short circuited, we have the additional boundary condition

$$
\begin{equation*}
v(z=0, t)=0 \Rightarrow \hat{v}(z=0)=0=\hat{V}_{+}+\hat{V}_{-} \tag{6}
\end{equation*}
$$

which when simultaneously solved with (5) yields

$$
\begin{equation*}
\hat{\mathbf{V}}_{+}=-\hat{\mathrm{V}}_{-}=\frac{V_{0}}{2 j \sin k l} \tag{7}
\end{equation*}
$$

The spatial dependences of the voltage and current are then

$$
\begin{align*}
& \hat{v}(z)=\frac{V_{0}\left(e^{-j k z}-e^{j k z}\right)}{2 j \sin k l}=-\frac{V_{0} \sin k z}{\sin k l} \\
& \hat{\imath}(z)=\frac{V_{0} Y_{0}\left(e^{-j k z}+e^{+j k z}\right)}{2 j \sin k l}=-j \frac{V_{0} Y_{0} \cos k z}{\sin k l} \tag{8}
\end{align*}
$$

The instantaneous voltage and current as functions of space and time are then

$$
\begin{align*}
& v(z, t)=\operatorname{Re}\left[\hat{v}(z) e^{j \alpha t}\right]=-V_{0} \frac{\sin k z}{\sin k l} \cos \omega t \\
& i(z, t)=\operatorname{Re}\left[\hat{\imath}(z) e^{j \omega t}\right]=\frac{V_{0} Y_{0} \cos k z \sin \omega t}{\sin k l} \tag{9}
\end{align*}
$$

(a)

Figure 8-15 The voltage and current distributions on a (a) short circuited and (b) open circuited transmission line excited by sinusoidal voltage sources at $z=-l$. If the lines are much shorter than a wavelength, they act like reactive circuit elements. (c) As the frequency is raised, the impedance reflected back as a function of z can look capacitive or inductive making the transition through open or short circuits.

The spatial distributions of voltage and current as a function of z at a specific instant of time are plotted in Figure $8-15 a$ and are seen to be 90° out of phase with one another in space with their distributions periodic with wavelength λ given by

$$
\begin{equation*}
\lambda=\frac{2 \pi}{k}=\frac{2 \pi c}{\omega} \tag{10}
\end{equation*}
$$

(b)

(c)

Figure 8-15

The complex impedance at any position z is defined as

$$
\begin{equation*}
Z(z)=\frac{\hat{v}(z)}{\hat{i}(z)} \tag{11}
\end{equation*}
$$

which for this special case of a short circuited line is found from (8) as

$$
\begin{equation*}
Z(z)=-j Z_{0} \tan k z \tag{12}
\end{equation*}
$$

In particular, at $z=-l$, the transmission line appears to the generator as an impedance of value

$$
\begin{equation*}
Z(z=-l)=j Z_{0} \tan k l \tag{13}
\end{equation*}
$$

From the solid lines in Figure 8-15c we see that there are various regimes of interest:
(i) When the line is an integer multiple of a half wavelength long so that $k l=n \pi, n=1,2,3, \ldots$, the impedance at $z=-l$ is zero and the transmission line looks like a short circuit.
(ii) When the-line is an odd integer multiple of a quarter wavelength long so that $k l=(2 n-1) \pi / 2, n=1,2, \ldots$, the impedance at $z=-l$ is infinite and the transmission line looks like an open circuit.
(iii) Between the short and open circuit limits $(n-1) \pi<k l<$ $(2 n-1) \pi / 2, n=1,2,3, \ldots, Z(z=-l)$ has a positive reactance and hence looks like an inductor.
(iv) Between the open and short circuit limits ($n-\frac{1}{2}$) $\pi<k l<$ $n \pi, n=1,2, \ldots, Z(z=-l)$ has a negative reactance and so looks like a capacitor.

Thus, the short circuited transmission line takes on all reactive values, both positive (inductive) and negative (capacitive), including open and short circuits as a function of $k l$. Thus, if either the length of the line l or the frequency is changed, the impedance of the transmission line is changed.
Examining (8) we also notice that if $\sin k l=0,(k l=n \pi$, $n=1,2, \ldots$), the voltage and current become infinite (in practice the voltage and current become large limited only by losses). Under these conditions, the system is said to be resonant with the resonant frequencies given by

$$
\begin{equation*}
\omega_{n}=n \pi c / l, \quad n=1,2,3, \ldots \tag{14}
\end{equation*}
$$

Any voltage source applied at these frequencies will result in very large voltages and currents on the line.

(b) Open Circuited Line

If the short circuit is replaced by an open circuit, as in Figure $8-15 b$, and for variety we change the source at $z=-l$ to
$V_{0} \sin \omega t$ the boundary conditions are

$$
\begin{align*}
i(z=0, t) & =0 \\
v(z=-l, t) & =V_{0} \sin \omega t=\operatorname{Re}\left(-j V_{0} e^{j \omega t}\right) \tag{15}
\end{align*}
$$

Using (3) the complex amplitudes obey the relations

$$
\begin{align*}
\hat{\imath}(z=0) & =0=Y_{0}\left(\hat{\mathrm{~V}}_{+}-\hat{\mathrm{V}}_{-}\right) \\
\hat{v}(z=-l) & =-j V_{0}=\hat{\mathrm{V}}_{+} e^{j k l}+\hat{\mathrm{V}}_{-} e^{-j k i} \tag{16}
\end{align*}
$$

which has solutions

$$
\begin{equation*}
\hat{\mathbf{V}}_{+}=\hat{\mathbf{V}}_{-}=\frac{-j V_{0}}{2 \cos k l} \tag{17}
\end{equation*}
$$

The spatial dependences of the voltage and current are then

$$
\begin{align*}
& \hat{v}(z)=\frac{-j V_{0}}{2 \cos k l}\left(e^{-j k x}+e^{j k z}\right)=\frac{-j V_{0}}{\cos k l} \cos k z \tag{18}\\
& \hat{\imath}(z)=\frac{-j V_{0} Y_{0}}{2 \cos k l}\left(e^{-j k z}-e^{+j k z}\right)=-\frac{V_{0} Y_{0}}{\cos k l} \sin k z
\end{align*}
$$

with instantaneous solutions as a function of space and time:

$$
\begin{align*}
& v(z, t)=\operatorname{Re}\left[\hat{v}(z) e^{j \omega t}\right]=\frac{V_{0} \cos k z}{\cos k l} \sin \omega t \\
& i(z, t)=\operatorname{Re}\left[\hat{\imath}(z) e^{j \omega t}\right]=-\frac{V_{0} Y_{0}}{\cos k l} \sin k z \cos \omega t \tag{19}
\end{align*}
$$

The impedance at $z=-l$ is

$$
\begin{equation*}
Z(z=-l)=\frac{\hat{v}(-l)}{\hat{\imath}(-l)}=-j Z_{0} \cot k l \tag{20}
\end{equation*}
$$

Again the impedance is purely reactive, as shown by the dashed lines in Figure 8-15c, alternating signs every quarter wavelength so that the open circuit load looks to the voltage source as an inductor, capacitor, short or open circuit depending on the frequency and length of the line.

Resonance will occur if

$$
\begin{equation*}
\cos k l=0 \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
k l=(2 n-1) \pi / 2, \quad n=1,2,3, \ldots \tag{22}
\end{equation*}
$$

so that the resonant frequencies are

$$
\begin{equation*}
\omega_{n}=\frac{(2 n-1) \pi c}{2 l} \tag{23}
\end{equation*}
$$

8-3-3 Reactive Circuit Elements as Approximations to Short Transmission Lines

Let us re-examine the results obtained for short and open circuited lines in the limit when l is much shorter than the wavelength λ so that in this long wavelength limit the spatial trigonometric functions can be approximated as

$$
\lim _{k l<1}\left\{\begin{array}{l}
\sin k z \approx k z \tag{24}\\
\cos k z \approx 1
\end{array}\right.
$$

Using these approximations, the voltage, current, and impedance for the short circuited line excited by a voltage source $V_{0} \cos \omega t$ can be obtained from (9) and (13) as

$$
\lim _{k l<1}\left\{\begin{array}{l}
v(z, t)=-\frac{V_{0} z}{l} \cos \omega t, \quad v(-l, t)=V_{0} \cos \omega t \tag{25}\\
i(z, t)=\frac{V_{0} Y_{0}}{k l} \sin \omega t, \quad i(-l, t)=\frac{V_{0} \sin \omega t}{(L l) \omega} \\
Z(-l)=j Z_{0} k l=j \frac{\omega Z_{0} l}{c}=j \omega(L l)
\end{array}\right.
$$

We see that the short circuited transmission line acts as an inductor of value ($L l$) (remember that L is the inductance per unit length), where we used the relations

$$
\begin{equation*}
Z_{0}=\frac{1}{Y_{0}}=\sqrt{\frac{L}{C}}, \quad c=\frac{1}{\sqrt{L C}} \tag{26}
\end{equation*}
$$

Note that at $z=-l$,

$$
\begin{equation*}
v(-l, t)=(L l) \frac{d i(-l, t)}{d t} \tag{27}
\end{equation*}
$$

Similarly for the open circuited line we obtain:

$$
\lim _{k l<1}\left\{\begin{array}{l}
v(z, t)=V_{0} \sin \omega t \tag{28}\\
i(z, t)=-V_{0} Y_{0} k z \cos \omega t, \quad i(-l, t)=(C l) \omega V_{0} \cos \omega t \\
Z(-l)=\frac{-j Z_{0}}{k l}=\frac{-j}{(C l) \omega}
\end{array}\right.
$$

For the upen circuited transmission line, the terminal voltage and current are simply related as for a capacitor,

$$
\begin{equation*}
i(-l, t)=(C l) \frac{d v(-l, t)}{d t} \tag{29}
\end{equation*}
$$

with capacitance given by (Cl).
In general, if the frequency of excitation is low enough so that the length of a transmission line is much shorter than the
wavelength, the circuit approximations of inductance and capacitance are appropriate. However, it must be remembered that if the frequencies of interest are so high that the length of a circuit element is comparable to the wavelength, it no longer acts like that element. In fact, as found in Section 8-3-2, a capacitor can even look like an inductor, a short circuit, or an open circuit at high enough frequency while vice versa an inductor can also look capacitive, a short or an open circuit.

In general, if the termination is neither a short nor an open circuit, the voltage and current distribution becomes more involved to calculate and is the subject of Section 8-4.

8-3-4 Effects of Line Losses

(a) Distributed Circuit Approach

If the dielectric and transmission line walls have Ohmic losses, the voltage and current waves decay as they propagate. Because the governing equations of Section 8-1-3 are linear with constant coefficients, in the sinusoidal steady state we assume solutions of the form

$$
\begin{align*}
v(z, t) & =\operatorname{Re}\left(\hat{V} e^{j(\omega t-k z)}\right) \\
i(z, t) & =\operatorname{Re}\left(\hat{I} e^{j(\omega t-k z)}\right) \tag{30}
\end{align*}
$$

where now ω and k are not simply related as the nondispersive relation in (4). Rather we substitute (30) into Eq. (28) in Section 8-1-3:

$$
\begin{align*}
& \frac{\partial i}{\partial z}=-C \frac{\partial v}{\partial t}-G v \Rightarrow-j k \hat{I}=-(C j \omega+G) \hat{V} \tag{31}\\
& \frac{\partial v}{\partial z}=-L \frac{\partial i}{\partial t}-i R \Rightarrow-j k \hat{V}=-(L j \omega+R) \hat{I}
\end{align*}
$$

which requires that

$$
\begin{equation*}
\frac{\hat{\mathrm{V}}}{\hat{I}}=\frac{j k}{(C j \omega+G)}=\frac{L j \omega+R}{j k} \tag{32}
\end{equation*}
$$

We solve (32) self-consistently for k as

$$
\begin{equation*}
k^{2}=-(L j \omega+R)(C j \omega+G)=L C \omega^{2}-j \omega(R C+L G)-R G \tag{33}
\end{equation*}
$$

The wavenumber is thus complex so that we find the real and imaginary parts from (33) as

$$
\begin{align*}
k=k_{r}+j k_{i} \Rightarrow k_{r}^{2}-k_{i}^{2} & =L C \omega^{2}-R G \tag{34}\\
2 k_{r} k_{i} & =-\omega(R C+L G)
\end{align*}
$$

In the low loss limit where $\omega R C \ll 1$ and $\omega L G \ll 1$, the spatial decay of k_{i} is small compared to the propagation wavenumber k_{r} In this limit we have the following approximate solution:

$$
\lim _{\substack{\omega R C \times 1 \tag{35}\\
\omega L C<1}}\left\{\begin{align*}
k_{r} & \approx \pm \omega \sqrt{L C}= \pm \omega / c \\
k_{i}=-\frac{\omega(R C+L G)}{2 k_{r}} & \approx \mp \frac{1}{2}\left[R \sqrt{\frac{C}{L}}+G \sqrt{\frac{L}{C}}\right] \\
& \approx \mp \frac{1}{2}\left(R Y_{0}+G Z_{0}\right)
\end{align*}\right.
$$

We use the upper sign for waves propagating in the $+z$ direction and the lower sign for waves traveling in the $-z$ direction.
(b) Distortionless lines

Using the value of k of (33),

$$
\begin{equation*}
k= \pm[-(L j \omega+R)(C j \omega+G)]^{1 / 2} \tag{36}
\end{equation*}
$$

in (32) gives us the frequency dependent wave impedance for waves traveling in the $\pm z$ direction as

$$
\begin{equation*}
\frac{\hat{\mathrm{V}}}{\hat{I}}= \pm\left(\frac{L j \omega+R}{C j \omega+G}\right)^{1 / 2}= \pm \sqrt{\frac{L}{C}}\left(\frac{j \omega+R / L}{j \omega+G / C}\right)^{1 / 2} \tag{37}
\end{equation*}
$$

If the line parameters are adjusted so that

$$
\begin{equation*}
\frac{R}{L}=\frac{G}{C} \tag{38}
\end{equation*}
$$

the impedance in (37) becomes frequency independent and equal to the lossless line impedance. Under the conditions of (38) the complex wavenumber reduces to

$$
\begin{equation*}
k_{\mathrm{r}}= \pm \omega \sqrt{L C}, \quad k_{i}=\mp \sqrt{R G} \tag{39}
\end{equation*}
$$

Although the waves are attenuated, all frequencies propagate at the same phase and group velocities as for a lossless line

$$
\begin{align*}
& v_{p}=\frac{\omega}{k_{r}}= \pm \frac{1}{\sqrt{L C}} \tag{40}\\
& v_{g}=\frac{d \omega}{d k_{r}}= \pm \frac{1}{\sqrt{L C}}
\end{align*}
$$

Since all the Fourier components of a pulse excitation will travel at the same speed, the shape of the pulse remains unchanged as it propagates down the line. Such lines are called distortionless.

(c) Fields Approach

If $R=0$, we can directly find the TEM wave solutions using the same solutions found for plane waves in Section 7-4-3. There we found that a dielectric with permittivity ε and small Ohmic conductivity σ has a complex wavenumber:

$$
\begin{equation*}
\lim _{\sigma \omega \in \ll 1} k \approx \pm\left(\frac{\omega}{c}-\frac{j \sigma \eta}{2}\right) \tag{41}
\end{equation*}
$$

Equating (41) to (35) with $R=0$ requires that $G Z_{0}=\sigma \eta$.
The tangential component of \mathbf{H} at the perfectly conducting transmission line walls is discontinuous by a surface current. However, if the wall has a large but noninfinite Ohmic conductivity σ_{w}, the fields penetrate in with a characteristic distance equal to the skin depth $\delta=\sqrt{2 / \omega \mu} \sigma_{\omega}$. The resulting z-directed current gives rise to a z-directed electric field so that the waves are no longer purely TEM.

Because we assume this loss to be small, we can use an approximate perturbation method to find the spatial decay rate of the fields. We assume that the fields between parallel plane electrodes are essentially the same as when the system is lossless except now being exponentially attenuated as $e^{-\alpha z}$, where $\alpha=-k_{i}$:

$$
\begin{align*}
& E_{x}(x, t)=\operatorname{Re}\left[\hat{E} e^{j\left(\omega t-k_{r} x\right)} e^{-\alpha z}\right] \\
& H_{y}(x, t)=\operatorname{Re}\left[\frac{\hat{E}}{\eta} e^{j\left(\omega t-k_{r}\right)} e^{-\alpha z}\right], \quad k_{r}=\frac{\omega}{c} \tag{42}
\end{align*}
$$

From the real part of the complex Poynting's theorem derived in Section 7-2-4, we relate the divergence of the time-average electromagnetic power density to the timeaverage dissipated power:

$$
\begin{equation*}
\nabla \cdot\langle S\rangle=-\left\langle P_{d}\right\rangle \tag{43}
\end{equation*}
$$

Using the divergence theorem we integrate (43) over a volume of thickness Δz that encompasses the entire width and thickness of the line, as shown in Figure 8-16:

$$
\begin{align*}
\int_{V} \nabla \cdot<S>d V= & \oint_{S}<S>\cdot d S \\
= & \int_{z+\Delta z}<S_{z}(z+\Delta z)>d S \\
& -\int_{z}<S_{z}(z)>d S=-\int_{V}<P_{d}>d V \tag{44}
\end{align*}
$$

The power $<P_{d}>$ is dissipated in the dielectric and in the walls. Defining the total electromagnetic power as

$$
\begin{equation*}
<P(z)>=\int_{z}<S_{z}(z)>d \mathrm{~S} \tag{45}
\end{equation*}
$$

Figure 8-16 A transmission line with lossy walls and dielectric results in waves that decay as they propagate. The spatial decay rate α of the fields is approximately proportional to the ratio of time average dissipated power per unit length $\left.<P_{d L}\right\rangle$ to the total time average electromagnetic power flow $\langle P\rangle$ down the line.
(44) can be rewritten as

$$
\begin{equation*}
<P(z+\Delta z)>-<P(z)>=-\int<P_{d}>d x d y d z \tag{46}
\end{equation*}
$$

Dividing through by $d z=\Delta z$, we have in the infinitesimal limit

$$
\begin{align*}
\lim _{\Delta z \rightarrow 0} \frac{\langle P(z+\Delta z)>-<P(z)>}{\Delta z} & =\frac{d<P>}{d z}=-\int_{\mathrm{S}}<P_{d}>d x d y \\
& =-<P_{d L}> \tag{47}
\end{align*}
$$

where $\left\langle P_{d L}\right\rangle$ is the power dissipated per unit length. Since the fields vary as $e^{-\alpha \boldsymbol{a}}$, the power flow that is proportional to the square of the fields must vary as $e^{-2 a z}$ so that

$$
\begin{equation*}
\frac{d<P>}{d z}=-2 \alpha<P>=-<P_{d L}> \tag{48}
\end{equation*}
$$

which when solved for the spatial decay rate is proportional to the ratio of dissipated power per unit length to the total
electromagnetic power flowing down the transmission line:

$$
\begin{equation*}
\alpha=\frac{1}{2} \frac{\left\langle P_{d L}\right\rangle}{\langle P\rangle} \tag{4}
\end{equation*}
$$

For our lossy transmission line, the power is dissipated both in the walls and in the dielectric. Fortunately, it is not necessary to solve the complicated field problem within the walls because we already approximately know the magnetic field at the walls from (42). Since the wall current is effectively confined to the skin depth δ, the cross-sectional area through which the current flows is essentially $w \delta$ so that we can define the surface conductivity as $\sigma_{w} \delta$, where the electric field at the wall is related to the lossless surface current as

$$
\begin{equation*}
\mathbf{K}_{w}=\sigma_{w} \delta \mathbf{E}_{w} \tag{50}
\end{equation*}
$$

The surface current in the wall is approximately found from the magnetic field in (42) as

$$
\begin{equation*}
K_{z}=-H_{y}=-E_{x} / \eta \tag{5}
\end{equation*}
$$

The time-average power dissipated in the wall is then

$$
\begin{equation*}
<P_{d L}>_{\text {wall }}=\frac{w}{2} \operatorname{Re}\left(\mathbf{E}_{w} \cdot \mathbf{K}_{w}^{*}\right\rangle=\frac{1}{2} \frac{\left|\mathbf{K}_{w}\right|^{2} w}{\sigma_{w} \delta}=\frac{1}{2} \frac{|\hat{E}|^{2} w}{\sigma_{w} \delta \eta^{2}} \tag{52}
\end{equation*}
$$

The total time-average dissipated power in the walls and dielectric per unit length for a transmission line system of depth w and plate spacing d is then

$$
\begin{align*}
\left\langle P_{d L}\right\rangle & =2\left\langle P_{d L}\right\rangle_{\text {wall }}+\frac{1}{2} \sigma|\hat{E}|^{2} w d \\
& =\frac{1}{2}|\hat{E}|^{2} w\left(\frac{2}{\eta^{2} \sigma_{w} \delta}+\sigma d\right) \tag{53}
\end{align*}
$$

where we multiply (52) by two because of the losses in both electrodes. The time-average electromagnetic power is

$$
\begin{equation*}
<P>=\frac{1}{2} \frac{|\hat{E}|^{2}}{\eta} w d \tag{54}
\end{equation*}
$$

so that the spatial decay rate is found from (49) as

$$
\begin{equation*}
\alpha=-k_{i}=\frac{1}{2}\left(\frac{2}{\eta^{2} \sigma_{w} \delta}+\sigma d\right) \frac{\eta}{d}=\frac{1}{2}\left(\sigma \eta+\frac{2}{\eta \sigma_{w} \delta d}\right) \tag{55}
\end{equation*}
$$

Comparing (55) to (35) we see that

$$
\begin{align*}
& G Z_{0}=\sigma \eta, \quad R Y_{0}=\frac{2}{\eta \sigma_{w} \delta d} \\
& \Rightarrow Z_{0}=\frac{1}{Y_{0}}=\frac{d}{w} \eta, \quad G=\frac{\sigma w}{d}, \quad R=\frac{2}{\sigma_{w} w \delta} \tag{56}
\end{align*}
$$

8-4 ARBITRARY IMPEDANCE TERMINATIONS

8-4-1 The Generalized Reflection Coefficient

A lossless transmission line excited at $z=-l$ with a sinusoidal voltage source is now terminated at its other end at $z=0$ with an arbitrary impedance Z_{L}, which in general can be a complex number. Defining the load voltage and current at $z=0$ as

$$
\begin{align*}
v(z & =0, t) \tag{1}\\
i(z=0, t) & =v_{L}(t)=\operatorname{Re}\left(\mathrm{V}_{L} e^{j \omega t}\right)=\operatorname{Re}\left(I_{L} e^{j \omega t}\right), \quad I_{L}=\mathrm{V}_{L} / Z_{L}
\end{align*}
$$

where V_{L} and I_{L} are complex amplitudes, the boundary conditions at $z=0$ are

$$
\begin{gather*}
\mathrm{V}_{+}+\mathrm{V}_{-}=\mathrm{V}_{L} \tag{2}\\
Y_{0}\left(\mathrm{~V}_{+}-\mathrm{V}_{-}\right)=I_{L}=\mathrm{V}_{L} / Z_{L}
\end{gather*}
$$

We define the reflection coefficient as the ratio

$$
\begin{equation*}
\Gamma_{L}=V_{-} / V_{+} \tag{3}
\end{equation*}
$$

and solve as

$$
\begin{equation*}
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \tag{4}
\end{equation*}
$$

Here in the sinusoidal steady state with reactive loads, Γ_{L} can be a complex number as Z_{L} may be complex. For transient pulse waveforms, Γ_{L} was only defined for resistive loads. For capacitative and inductive terminations, the reflections were given by solutions to differential equations in time. Now that we are only considering sinusoidal time variations so that time derivatives are replaced by $j \omega$, we can generalize Γ_{L} for the sinusoidal steady state.

It is convenient to further define the generalized reflection coefficient as

$$
\begin{equation*}
\Gamma(x)=\frac{V_{-} e^{j k z}}{V_{+} e^{-j k z}}=\frac{V_{-}}{V_{+}} e^{2 j k z}=\Gamma_{L} e^{2 j k z} \tag{5}
\end{equation*}
$$

where Γ_{L} is just $\Gamma(z=0)$. Then the voltage and current on the line can be expressed as

$$
\begin{align*}
& \hat{v}(z)=V_{+} e^{-j k z}[1+\Gamma(z)] \\
& \hat{\imath}(z)=Y_{0} V_{+} e^{-j k z}[1-\Gamma(z)] \tag{6}
\end{align*}
$$

The advantage to this notation is that now the impedance along the line can be expressed as

$$
\begin{equation*}
Z_{n}(\mathrm{z})=\frac{Z(z)}{Z_{0}}=\frac{\hat{v}(z)}{\hat{\imath}(z) Z_{0}}=\frac{1+\Gamma(z)}{1-\Gamma(z)} \tag{7}
\end{equation*}
$$

where Z_{n} is defined as the normalized impedance. We can now solve (7) for $\Gamma(z)$ as

$$
\begin{equation*}
\Gamma(z)=\frac{Z_{n}(z)-1}{Z_{n}(z)+1} \tag{8}
\end{equation*}
$$

Note the following properties of $Z_{n}(z)$ and $\Gamma(z)$ for passive loads:
(i) $Z_{n}(z)$ is generally complex. For passive loads its real part is allowed over the range from zero to infinity while its imaginary part can extend from negative to positive infinity.
(ii) The magnitude of $\Gamma(z),\left|\Gamma_{L}\right|$ must be less than or equal to 1 for passive loads.
(iii) From (5), if z is increased or decreased by a half wavelength, $\Gamma(z)$ and hence $Z_{n}(z)$ remain unchanged. Thus, if the impedance is known at any position, the impedance of all-points integer multiples of a half wavelength away have the same impedance.
(iv) From (5), if z is increased or decreased by a quarter wavelength, $\Gamma(z)$ changes sign, while from (7) $Z_{n}(z)$ goes to its reciprocal $\Rightarrow 1 / Z_{n}(z)=Y_{n}(z)$.
(v) If the line is matched, $Z_{L}=Z_{0}$, then $\Gamma_{L}=0$ and $Z_{n}(z)=1$. The impedance is the same everywhere along the line.

8-4-2 Simple Examples

(a) Load Impedance Reflected Back to the Source

Properties (iii)-(v) allow simple computations for transmission line systems that have lengths which are integer multiples of quarter or half wavelengths. Often it is desired to maximize the power delivered to a load at the end of a transmission line by adding a lumped admittance Y across the line. For the system shown in Figure 8-17a, the impedance of the load is reflected back to the generator and then added in parallel to the lumped reactive admittance Y. The normalized load impedance of ($\left.R_{L}+j X_{L}\right) / Z_{0}$ inverts when reflected back to the source by a quarter wavelength to $Z_{0} /\left(R_{L}+j X_{L}\right)$. Since this is the normalized impedance the actual impedance is found by multiplying by Z_{0} to yield $Z(z=-\lambda / 4)=$ $Z_{0}^{2} /\left(R_{L}+j X_{L}\right)$. The admittance of this reflected load then adds in parallel to Y to yield a total admittance of $Y+\left(R_{L}+j X_{L}\right) / Z_{0}^{2}$. If Y is pure imaginary and of opposite sign to the reflected load susceptance with value $-j X_{L} / Z_{0}^{2}$, maximum power is delivered to the line if the source resistance R_{S} also equals the resulting line input impedance, $R_{S}=Z_{0}^{2} / R_{L}$. Since Y is purely

Figure 8-17 The normalized impedance reflected back through a quarter-wave-long line inverts. (a) The time-average power delivered to a complex load can be maximized if Y is adjusted to just cancel the reactive admittance of the load reflected back to the source with R_{s} equaling the resulting input resistance. (b) If the length l_{2} of the second transmission line shown is a quarter wave long or an odd integer multiple of $\lambda / 4$ and its characteristic impedance is equal to the geometric average of Z_{1} and R_{L}, the input impedance $Z_{\text {in }}$ is matched to Z_{1}.
reactive and the transmission line is lossless, half the timeaverage power delivered by the source is dissipated in the load:

$$
\begin{equation*}
<P>=\frac{1}{8} \frac{V_{0}^{2}}{R_{S}}=\frac{1}{8} \frac{R_{L} V_{0}^{2}}{Z_{0}^{2}} \tag{9}
\end{equation*}
$$

Such a reactive element Y is usually made from a variable length short circuited transmission line called a stub. As shown in Section 8-3-2a, a short circuited lossless line always has a pure reactive impedance.

To verify that the power in (9) is actually dissipated in the load, we write the spatial distribution of voltage and current along the line as

$$
\begin{align*}
& \hat{v}(z)=V_{+} e^{-j k z}\left(1+\Gamma_{L} e^{2 j k z}\right) \\
& \hat{\imath}(z)=Y_{0} V_{+} e^{-j k z}\left(1-\Gamma_{L} e^{2 j k z}\right) \tag{10}
\end{align*}
$$

where the reflection coefficient for this load is given by (4) as

$$
\begin{equation*}
\Gamma_{L}=\frac{R_{L}+j X_{L}-Z_{0}}{R_{L}+j X_{L}+Z_{0}} \tag{11}
\end{equation*}
$$

At $z=-l=-\lambda / 4$ we have the boundary condition

$$
\begin{align*}
\hat{v}(z=-l)=V_{0} / 2 & =V_{+} e^{j k l}\left(1+\Gamma_{L} e^{-2 j k l}\right) \\
& =j V_{+}\left(1-\Gamma_{L}\right) \tag{12}
\end{align*}
$$

which allows us to solve for V_{+}as

$$
\begin{equation*}
V_{+}=\frac{-j V_{0}}{2\left(1-\Gamma_{L}\right)}=\frac{-j V_{0}}{4 Z_{0}}\left(R_{L}+j X_{L}+Z_{0}\right) \tag{13}
\end{equation*}
$$

The time-average power dissipated in the load is then

$$
\begin{align*}
<P_{L}> & =\frac{1}{2} \operatorname{Re}\left[\hat{v}(z=0) \hat{\imath}^{*}(z=0)\right] \\
& =\frac{1}{2}|\hat{\imath}(z=0)|^{2} R_{L} \\
& =\frac{1}{2}\left|V_{+}\right|^{2}\left|1-\Gamma_{L}\right|^{2} Y_{0}^{2} R_{L} \\
& =\frac{1}{8} V_{0}^{2} Y_{0}^{2} R_{L} \tag{14}
\end{align*}
$$

which agrees with (9).
(b) Quarter Wavelength Matching

It is desired to match the load resistor R_{L} to the transmission line with characteristic impedance Z_{1} for any value of its length l_{1}. As shown in Figure 8-17b, we connect the load to Z_{1} via another transmission line with characteristic impedance Z_{2}. We wish to find the values of Z_{2} and l_{2} necessary to match R_{L} to Z_{1}.

This problem is analogous to the dielectric coating problem of Example 7-1, where it was found that reflections could be eliminated if the coating thickness between two different dielectric media was an odd integer multiple of a quarter wavelength and whose wave impedance was equal to the geometric average of the impedance in each adjacent region. The normalized load on Z_{2} is then $Z_{n 2}=R_{V} / Z_{2}$. If l_{2} is an odd integer multiple of a quarter wavelength long, the normalized impedance $Z_{n 2}$ reflected back to the first line inverts to Z_{2} / R_{L}. The actual impedance is obtained by multiplying this normalized impedance by Z_{2} to give Z_{2}^{2} / R_{L}. For $Z_{i n}$ to be matched to Z_{1} for any value of l_{1}, this impedance must be matched to Z_{1} :

$$
\begin{equation*}
Z_{1}=Z_{2}^{2} / R_{L} \Rightarrow Z_{2}=\sqrt{Z_{1} R_{L}} \tag{15}
\end{equation*}
$$

8-4-3 The Smith Chart

Because the range of allowed values of Γ_{L} must be contained within a unit circle in the complex plane, all values of $Z_{n}(z)$ can be mapped by a transformation within this unit circle using (8). This transformation is what makes the substitutions of (3)-(8) so valuable. A graphical aid of this mathematical transformation was developed by P. H. Smith in 1939 and is known as the Smith chart. Using the Smith chart avoids the tedium in problem solving with complex numbers.

Let us define the real and imaginary parts of the normalized impedance at some value of z as

$$
\begin{equation*}
Z_{n}(z)=r+j x \tag{16}
\end{equation*}
$$

The reflection coefficient similarly has real and imaginary parts given as

$$
\begin{equation*}
\Gamma(x)=\Gamma_{r}+j \Gamma_{i} \tag{17}
\end{equation*}
$$

Using (7) we have

$$
\begin{equation*}
r+j x=\frac{1+\Gamma_{r}+j \Gamma_{i}}{1-\Gamma_{r}-j \Gamma_{i}} \tag{18}
\end{equation*}
$$

Multiplying numerator and denominator by the complex conjugate of the denominator ($1-\Gamma_{r}+j \Gamma_{i}$) and separating real and imaginary parts yields

$$
\begin{align*}
& r=\frac{1-\Gamma_{r}^{2}-\Gamma_{i}^{2}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}} \tag{19}\\
& x=\frac{2 \Gamma_{i}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}}
\end{align*}
$$

Since we wish to plot (19) in the $\Gamma_{r}-\Gamma_{i}$ plane we rewrite these equations as

$$
\begin{align*}
\left(\Gamma_{r}-\frac{r}{1+r}\right)^{2}+\Gamma_{i}^{2} & =\frac{1}{(1+r)^{2}} \tag{20}\\
\left(\Gamma_{r}-1\right)^{2}+\left(\Gamma_{i}-\frac{1}{x}\right)^{2} & =\frac{1}{x^{2}}
\end{align*}
$$

Both equations in (20) describe a family of orthogonal circles. The upper equation is that of a circle of radius $1 /(1+r)$ whose center is at the position $\Gamma_{i}=0, \Gamma_{r}=r /\left(1^{\prime}+r\right)$. The lower equation is a circle of radius $|1 / x|$ centered at the position $\Gamma_{r}=1, \Gamma_{i}=1 / x$. Figure 8-18a illustrates these circles for a particular value of r and x, while Figure 8-18b shows a few representative values of r and x. In Figure 8-19, we have a complete Smith chart. Only those parts of the circles that lie within the unit circle in the Γ plane are considered for passive

Figure 8-18 For passive loads the Smith chart is constructed within the unit circle in the complex Γ plane. (a) Circles of constant normalized resistance r and reactance x are constructed with the centers and radii shown. (b) Smith chart construction for various values of r and x.
resistive-reactive loads. The values of $\Gamma(z)$ themselves are usually not important and so are not listed, though they can be easily found from (8). Note that all circles pass through the point $\Gamma_{r}=1, \Gamma_{i}=0$.

The outside of the circle is calibrated in wavelengths toward the generator, so if the impedance is known at any point on the transmission line (usually at the load end), the impedance at any other point on the line can be found using just a compass and a ruler. From the definition of $\Gamma(z)$ in (5) with z negative, we move clockwise around the Smith chart when heading towards the source and counterclockwise when moving towards the load.

(b)

Figure 8-18
In particular, consider the transmission line system in Figure 8-20a. The normalized load impedance is $Z_{n}=1+j$. Using the Smith chart in Figure $8-20 b$, we find the load impedance at position A. The effective impedance reflected back to $z=-l$ must lie on the circle of constant radius returning to A whenever l is an integer multiple of a half wavelength. The table in Figure 8-20 lists the impedance at $z=-l$ for various line lengths. Note that at point C, where $l=\lambda / 4$, that the normalized impedance is the reciprocal of

Figure 8-19 A complete Smith chart.
that at A. Similarly the normalized impedance at B is the reciprocal of that at D.

The current from the voltage source is found using the equivalent circuit shown in Figure 8-20c as

$$
\begin{equation*}
i=|\hat{I}| \sin (\omega t-\phi) \tag{21}
\end{equation*}
$$

where the current magnitude and phase angle are

$$
\begin{equation*}
|\hat{I}|=\frac{V_{0}}{|50+Z(z=-l)|}, \quad \phi=\tan ^{-1} \frac{\operatorname{Im}[Z(z=-l)]}{50+\operatorname{Re}[Z(z=-l)]} \tag{22}
\end{equation*}
$$

Representative numerical values are listed in Figure 8-20.

(a)

Figure 8-20 (a) The load impedance at $z=0$ reflected back to the source is found using the (b) Smith chart for various line lengths. Once this impedance is known the source current is found by solving the simple series circuit in (c).

8-4-4 Standing Wave Parameters

The impedance and reflection coefficient are not easily directly measured at microwave frequencies. In practice, one slides an ac voltmeter across a slotted transmission line and measures the magnitude of the peak or rms voltage and not its phase angle.

From (6) the magnitude of the voltage and current at any position z is

$$
\begin{align*}
& |\hat{v}(z)|=\left|V_{+}\right||1+\Gamma(z)| \tag{23}\\
& |\hat{\imath}(z)|=Y_{0}\left|V_{+}\right||1-\Gamma(z)|
\end{align*}
$$

From (23), the variations of the voltage and current magnitudes can be drawn by a simple construction in the Γ plane, as shown in Figure 8-21. Note again that $\left|V_{+}\right|$is just a real number independent of z and that $|\Gamma(z)| \leq 1$ for a passive termination. We plot $|1+\Gamma(z)|$ and $|1-\Gamma(z)|$ since these terms are proportional to the voltage and current magnitudes, respectively. The following properties from this con-

Figure 8-21 The voltage and current magnitudes along a transmission line are respectively proportional to the lengths of the vectors $|1+\Gamma(z)|$ and $|1-\Gamma(z)|$ in the complex Γ plane.
struction are apparent:
(i) The magnitude of the current is smallest and the voltage magnitude largest when $\Gamma(z)=1$ at point A and vice versa when $\Gamma(z)=-1$ at point B.
(ii) The voltage and current are in phase at the points of maximum or minimum magnitude of either at points A or B.
(iii) A rotation of $\Gamma(z)$ by an angle π corresponds to a change of $\lambda / 4$ in z, thus any voltage (or current) maximum is separated by $\lambda / 4$ from its nearest minima on either side.

By plotting the lengths of the phasors $|1 \pm \Gamma(z)|$, as in Figure 8-22, we obtain a plot of what is called the standing wave pattern on the line. Observe that the curves are not sinusoidal. The minima are sharper than the maxima so the minima are usually located in position more precisely by measurement than the maxima.

From Figures $8-21$ and $8-22$, the ratio of the maximum voltage magnitude to the minimum voltage magnitude is defined as the voltage standing wave ratio, or VSWR for short:

$$
\begin{equation*}
\frac{|\hat{v}(z)|_{\text {max }}}{|\hat{v}(z)|_{\text {min }}}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|}=\text { VSWR } \tag{2}
\end{equation*}
$$

The VSWR is measured by simply recording the largest and smallest readings of a sliding voltmeter. Once the VSWR is measured, the reflection coefficient magnitude can be calculated from (24) as

$$
\begin{equation*}
\left|\Gamma_{L}\right|=\frac{V S W R-1}{\operatorname{VSWR}+1} \tag{25}
\end{equation*}
$$

The angle ϕ of the reflection coefficient

$$
\begin{equation*}
\Gamma_{L}=\left|\Gamma_{L}\right| e^{j \phi} \tag{26}
\end{equation*}
$$

can also be determined from these standing wave measurements. According to Figure 8-21, $\Gamma(z)$ must swing clockwise through an angle $\phi+\pi$ as we move from the load at $z=0$ toward the generator to the first voltage minimum at B. The shortest distance $d_{\text {min }}$ that we must move to reach the first voltage minimum is given by

$$
\begin{equation*}
2 k d_{\min }=\phi+\pi \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\phi}{\pi}=4 \frac{d_{\min }}{\lambda}-1 \tag{28}
\end{equation*}
$$

Figure 8-22 Voltage and current standing wave patterns plotted for various values of the VSWR.

A measurement of $d_{\min }$, as well as a determination of the wavelength (the distance between successive minima or maxima is $\lambda / 2$) yields the complex reflection coefficient of the load using (25) and (28). Once we know the complex reflection coefficient we can calculate the load impedance
from (7). These standing wave measurements are sufficient to determine the terminating load impedance Z_{L}. These measurement properties of the load reflection coefficient and its relation to the load impedance are of great importance at high frequencies where the absolute measurement of voltage or current may be difficult. Some special cases of interest are:
(i) Matched line-If $\Gamma_{L}=0$, then VSWR $=1$. The voltage magnitude is constant everywhere on the line.
(ii) Short or open circuited line-If $\left|\Gamma_{L}\right|=1$, then VSWR $=$ ∞. The minimum voltage on the line is zero.
(iii) The peak normalized voltage $\left|\hat{v}(z) / V_{+}\right|$is $1+\left|\Gamma_{L}\right|$ while the minimum normalized voltage is $1-\left|\Gamma_{L}\right|$.
(iv) The normalized voltage at $z=0$ is $\left|1+\Gamma_{\cdot}\right|$ while the normalized current $\left|\hat{i}(z) / Y_{0} V_{+}\right|$at $z=0$ is $\left|1-\Gamma_{L}\right|$.
(v) If the load impedance is real ($Z_{L}=R_{L}$), then (4) shows us that Γ_{L} is real. Then evaluating (7) at $z=0$, where $\Gamma(z=0)=\Gamma_{L}$, we see that when $Z_{L}>Z_{0}$ that VSWR $=$ Z_{L} / Z_{0} while if $Z_{L}<Z_{0}, \mathrm{VSWR}=Z_{0} / Z_{\mathrm{L}}$.

For a general termination, if we know the VSWR and $d_{\text {min }}$, we can calculate the load impedance from (7) as

$$
\begin{align*}
Z_{L} & =Z_{0} \frac{1+\left|\Gamma_{L}\right| e^{j \phi}}{1-\left|\Gamma_{L}\right| e^{i \phi}} \\
& =Z_{0} \frac{\left[\text { VSWR }+1+(\text { VSWR }-1) e^{j \phi}\right]}{\left[\text { VSWR }+1-(\text { VSWR }-1) e^{j \phi}\right]} \tag{29}
\end{align*}
$$

Multiplying through by $e^{-j \phi / 2}$ and then simplifying yields

$$
\begin{align*}
Z_{L} & =\frac{Z_{0}[V S W R-j \tan (\phi / 2)]}{[1-j V S W R \tan (\phi / 2)]} \\
& =\frac{Z_{0}\left[1-j V S W R \tan k d_{\min }\right]}{\left[V S W R-j \tan k d_{\min }\right]} \tag{30}
\end{align*}
$$

EXAMPLE 8-2 VOLTAGE STANDING WAVE RATIO

The VSWR on a $50-\mathrm{Ohm}$ (characteristic impedance) transmission line is 2 . The distance between successive voltage minima is 40 cm while the distance from the load to the first minima is 10 cm . What is the reflection coefficient and load impedance?

SOLUTION

We are given

$$
\begin{aligned}
V S W R & =2 \\
k d_{\min } & =\frac{2 \pi(10)}{2(40)}=\frac{\pi}{4}
\end{aligned}
$$

The reflection coefficient is given from (25)-(28) as

$$
\Gamma_{L}=\frac{1}{3} e^{-j \pi / 2}=\frac{-j}{3}
$$

while the load impedance is found from (30) as

$$
\begin{aligned}
Z_{L} & =\frac{50(1-2 j)}{2-j} \\
& =40-30 j \mathrm{ohm}
\end{aligned}
$$

8-5 STUB TUNING

In practice, most sources are connected to a transmission line through a series resistance matched to the line. This eliminates transient reflections when the excitation is turned on or off. To maximize the power flow to a load, it is also necessary for the load impedance reflected back to the source to be equal to the source impedance and thus equal to the characteristic impedance of the line, Z_{0}. This matching of the load to the line for an arbitrary termination can only be performed by adding additional elements along the line.

Usually these elements are short circuited transmission lines, called stubs, whose lengths can be varied. The reactance of the stub can be changed over the range from $-j \infty$ to $j \infty$ simply by varying its length, as found in Section 8-3-2, for the short circuited line. Because stubs are usually connected in parallel to a transmission line, it is more convenient to work with admittances rather than impedances as admittances in parallel simply add.

8-5-1 Use of the Smith Chart for Admittance Calculations

Fortunately the Smith chart can also be directly used for admittance calculations where the normalized admittance is defined as

$$
\begin{equation*}
Y_{n}(z)=\frac{Y(z)}{Y_{0}}=\frac{1}{Z_{n}(z)} \tag{1}
\end{equation*}
$$

If the normalized load admittance $Y_{n L}$ is known, straightforward impedance calculations first require the computation

$$
\begin{equation*}
Z_{n L}=1 / Y_{n L} \tag{2}
\end{equation*}
$$

so that we could enter the Smith chart at $Z_{n L}$. Then we rotate by the required angle corresponding to 2 kz and read the new $Z_{n}(z)$. Then we again compute its reciprocal to find

$$
\begin{equation*}
Y_{n}(z)=1 / Z_{n}(z) \tag{3}
\end{equation*}
$$

The two operations of taking the reciprocal are tedious. We can use the Smith chart itself to invert the impedance by using the fact that the normalized impedance is inverted by a $\lambda / 4$ section of line, so that a rotation of $\Gamma(z)$ by 180° changes a normalized impedance into its reciprocal. Hence, if the admittance is given, we enter the Smith chart with a given value of normalized admittance Y_{n} and rotate by 180° to find Z_{n}. We then rotate by the appropriate number of wavelengths to find $Z_{n}(z)$. Finally, we again rotate by 180° to find $Y_{n}(z)=$ $1 / Z_{n}(z)$. We have actually rotated the reflection coefficient by an angle of $2 \pi+2 k z$. Rotation by 2π on the Smith chart, however, brings us back to wherever we started, so that only the $2 k z$ rotation is significant. As long as we do an even number of π rotations by entering the Smith chart with an admittance and leaving again with an admittance, we can use the Smith chart with normalized admittances exactly as if they were normalized impedances.

EXAMPLE 8-3 USE OF THE SMITH CHART FOR ADMITTANCE CALCULATIONS

The load impedance on a $50-\mathrm{Ohm}$ line is

$$
Z_{L}=50(1+j)
$$

What is the admittance of the load?

SOLUTION

By direct computation we have

$$
Y_{L}=\frac{1}{Z_{L}}=\frac{1}{50(1+j)}=\frac{(1-j)}{100}
$$

To use the Smith chart we find the normalized impedance at A in Figure 8-23:

$$
Z_{n L}=1+j
$$

Figure 8-23 The Smith chart offers a convenient way to find the reciprocal of a complex number using the property that the normalized impedance reflected back by a quarter wavelength inverts. Thus, the normalized admittance is found by locating the normalized impedance and rotating this point by 180° about the constant $\left|\Gamma_{L}\right|$ circle.

The normalized admittance that is the reciprocal of the normalized impedance is found by locating the impedance a distance $\lambda / 4$ away from the load end at B :

$$
Y_{n L}=0.5(1-j) \Rightarrow Y_{L}=Y_{n} Y_{0}=(1-j) / 100
$$

Note that the point B is just 180° away from A on the constant $\left|\Gamma_{L}\right|$ circle. For more complicated loads the Smith chart is a convenient way to find the reciprocal of a complex number.

8-5-2 Single-Stub Matching

A termination of value $Z_{L}=50(1+j)$ on a 50 -Ohm transmission line is to be matched by means of a short circuited stub at a distance l_{1} from the load, as shown in Figure 8-24a. We need to find the line length l_{1} and the length of the stub l_{2} such that the impedance at the junction is matched to the line ($Z_{\text {in }}=50 \mathrm{Ohm}$). Then we know that all further points to the left of the junction have the same impedance of 50 Ohms .

Because of the parallel connection, it is simpler to use the Smith chart as an admittance transformation. The normalized load admittance can be computed using the Smith chart by rotating by 180° from the normalized load impedance at A, as was shown in Figure 8-23 and Example 8-3,

$$
\begin{equation*}
Z_{n L}=1+j \tag{4}
\end{equation*}
$$

to yield

$$
\begin{equation*}
Y_{n L}=0.5(1-j) \tag{5}
\end{equation*}
$$

at the point B.
Now we know from Section 8-3-2 that the short circuited stub can only add an imaginary component to the admittance. Since we want the total normalized admittance to be unity to the left of the stub in Figure 8-24

$$
\begin{equation*}
Y_{i n}=Y_{1}+Y_{2}=1 \tag{6}
\end{equation*}
$$

when $Y_{n L}$ is reflected back to be Y_{1} it must wind up on the circle whose real part is 1 (as Y_{2} can only be imaginary), which occurs either at C or back at A allowing l_{1} to be either 0.25λ at A or $(0.25+0.177) \lambda=0.427 \lambda$ at C (or these values plus any integer multiple of $\lambda / 2$). Then Y_{1} is either of the following two conjugate values:

$$
Y_{1}= \begin{cases}1+j, & l_{1}=0.25 \lambda(A) \tag{7}\\ 1-j, & l_{1}=0.427 \lambda(C)\end{cases}
$$

For $Y_{\text {in }}$ to be unity we must pick Y_{2} to have an imaginary part to just cancel the imaginary part of Y_{1} :

$$
Y_{2}= \begin{cases}-j, & l_{1}=0.25 \lambda \tag{8}\\ +j, & l_{1}=0.427 \lambda\end{cases}
$$

which means, since the shorted end has an infinite admittance at D that the stub must be of length such as to rotate the admittance to the points E or F requiring a stub length l_{2} of $(\lambda / 8)(E)$ or $(3 \lambda / 8)(F)$ (or these values plus any integer multiple

(a)

(b)

Figure 8-24 (a) A single stub tuner consisting of a variable length short circuited line \boldsymbol{l}_{2} can match any load to the line by putting the stub at the appropriate distance \boldsymbol{l}_{1} from the load. (b) Smith chart construction. (c) Voltage standing wave pattern.

(c)

Figure 8-24
of $\lambda / 2$). Thus, the solutions can be summarized as
or

$$
\begin{array}{ll}
l_{1}=0.25 \lambda+n \lambda / 2, & l_{2}=\lambda / 8+m \lambda / 2 \tag{9}\\
l_{1}=0.427 \lambda+n \lambda / 2, & l_{2}=3 \lambda / 8+m \lambda / 2
\end{array}
$$

where n and m are any nonnegative integers (including zero).
When the load is matched by the stub to the line, the VSWR to the left of the stub is unity, while to the right of the stub over the length l_{1} the reflection coefficient is

$$
\begin{equation*}
\Gamma_{L}=\frac{Z_{n L}-1}{Z_{n L}+1}=\frac{j}{2+j} \tag{10}
\end{equation*}
$$

which has magnitude

$$
\begin{equation*}
\left|\Gamma_{L}\right|=1 / \sqrt{5} \approx 0.447 \tag{ll}
\end{equation*}
$$

so that the voltage standing wave ratio is

$$
\begin{equation*}
\operatorname{VSWR}=\frac{1+\left|\Gamma_{L}\right|}{1-\left|\Gamma_{L}\right|} \approx 2.62 \tag{12}
\end{equation*}
$$

The disadvantage to single-stub tuning is that it is not easy to vary the length l_{1}. Generally new elements can only be connected at the ends of the line and not inbetween.

8-5-3 Double-Stub Matching

This difficulty of not having a variable length line can be overcome by using two short circuited stubs a fixed length apart, as shown in Figure 8-25a. This fixed length is usually $\frac{3}{8} \lambda$. A match is made by adjusting the length of the stubs l_{1} and

Figure 8-25 (a) A double stub tuner of fixed spacing cannot match all loads but is useful because additional elements can only be placed at transmission line terminations and not at any general position along a line as required for a single-stub tuner. (b) Smith chart construction. If the stubs are $\frac{8}{8} \lambda$ apart, normalized load admittances whose real part exceeds 2 cannot be matched.
l_{2}. One problem with the double-stub tuner is that not all loads can be matched for a given stub spacing.

The normalized admittances at each junction are related as

$$
\begin{align*}
& Y_{a}=Y_{1}+Y_{L} \tag{13}\\
& Y_{n}=Y_{2}+Y_{b}
\end{align*}
$$

where Y_{1} and Y_{2} are the purely reactive admittances of the stubs reflected back to the junctions while Y_{b} is the admittance of Y_{a} reflected back towards the load by $\frac{8}{8} \lambda$. For a match we require that Y_{n} be unity. Since Y_{2} is purely imaginary, the real part of Y_{b} must lie on the circle with a real part of unity. Then Y_{a} must lie somewhere on this circle when each point on the circle is reflected back by $\frac{3}{8} \lambda$. This generates another circle that is $\frac{3}{2} \pi$ back in the counterclockwise direction as we are moving toward the load, as illustrated in Figure 8-25b. To find the conditions for a match, we work from left to right towards the load using the following reasoning:
(i) Since Y_{2} is purely imaginary, the real part of Y_{b} must lie on the circle with a real part of unity, as in Figure 8-25b.
(ii) Every possible point on Y_{b} must be reflected towards the load by $\frac{3}{8} \lambda$ to find the locus of possible match for \boldsymbol{Y}_{a}. This generates another circle that is $\frac{3}{2} \pi$ back in the counterclockwise direction as we move towards the load, as in Figure 8-25b.
Again since Y_{1} is purely imaginary, the real part of Y_{a} must also equal the real part of the load admittance. This yields two possible solutions if the load admittance is outside the forbidden circle enclosing all load admittances with a real part greater than 2. Only loads with normalized admittances whose real part is less than 2 can be matched by the doublestub tuner of $\frac{3}{8} \lambda$ spacing. Of course, if a load is within the forbidden circle, it can be matched by a double-stub tuner if the stub spacing is different than $\frac{3}{8} \lambda$.

EXAMPLE 8-4 DOUBLE-STUB MATCHING

The load impedance $Z_{L}=50(1+j)$ on a 50 -Ohm line is to be matched by a double-stub tuner of $\frac{3}{8} \lambda$ spacing. What stub lengths l_{1} and l_{2} are necessary?

SOLUTION

The normalized load impedance $Z_{n L}=1+j$ corresponds to a normalized load admittance:

$$
Y_{n L}=0.5(1-j)
$$

Figure 8-26 (a) The Smith chart construction for a double-stub tuner of $\frac{9}{8} \lambda$ spacing with $Z_{n L}=1+j$. (b) The voltage standing wave pattern.

Then the two solutions for Y_{a} lie on the intersection of the circle shown in Figure 8-26a with the $r=0.5$ circle:

$$
\begin{aligned}
& Y_{a 1}=0.5-0.14 j \\
& Y_{a 2}=0.5-1.85 j
\end{aligned}
$$

We then find Y_{1} by solving for the imaginary part of the upper equation in (13):

$$
Y_{1}=j \operatorname{Im}\left(Y_{a}-Y_{L}\right)=\left\{\begin{array}{l}
0.36 j \Rightarrow l_{1}=0.305 \lambda(F) \\
-1.35 j \Rightarrow l_{1}=0.1 \lambda(E)
\end{array}\right.
$$

By rotating the Y_{a} solutions by $\frac{3}{8} \lambda$ back to the generator (270° clockwise, which is equivalent to 90° counterclockwise), their intersection with the $r=1$ circle gives the solutions for Y_{b} as

$$
\begin{aligned}
& Y_{b 1}=1.0-0.72 j \\
& Y_{b 2}=1.0+2.7 j
\end{aligned}
$$

This requires Y_{2} to be

$$
Y_{2}=-j \operatorname{Im}\left(Y_{b}\right)= \begin{cases}0.72 j \Rightarrow l_{2}=0.349 \lambda & (G) \\ -2.7 j \Rightarrow l_{2}=0.056 \lambda & (H)\end{cases}
$$

The voltage standing wave pattern along the line and stubs is shown in Figure 8.26 b . Note the continuity of voltage at the junctions. The actual stub lengths can be those listed plus any integer multiple of $\lambda / 2$.

8-6 THE RECTANGULAR WAVEGUIDE

We showed in Section 8-1-2 that the electric and magnetic fields for TEM waves have the same form of solutions in the plane transverse to the transmission line axis as for statics. The inner conductor within a closed transmission line structure such as a coaxial cable is necessary for TEM waves since it carries a surface current and a surface charge distribution, which are the source for the magnetic and electric fields. A hollow conducting structure, called a waveguide, cannot propagate TEM waves since the static fields inside a conducting structure enclosing no current or charge is zero.

However, new solutions with electric or magnetic fields along the waveguide axis as well as in the transverse plane are allowed. Such solutions can also propagate along transmission lines. Here the axial displacement current can act as a source
of the transverse magnetic field giving rise to transverse magnetic (TM) modes as the magnetic field lies entirely within the transverse plane. Similarly, an axial time varying magnetic field generates transverse electric (TE) modes. The most general allowed solutions on a transmission line are TEM, TM, and TE modes. Removing the inner conductor on a closed transmission line leaves a waveguide that can only propagate TM and TE modes.

8-6-1 Governing Equations

To develop these general solutions we return to Maxwell's equations in a linear source-free material:

$$
\begin{align*}
\nabla \times \mathbf{E} & =-\mu \frac{\partial \mathbf{H}}{\partial t} \\
\nabla \times \mathbf{H} & =\varepsilon \frac{\partial \mathbf{E}}{\partial t} \\
\varepsilon \nabla \cdot \mathbf{E} & =0 \tag{1}\\
\mu \nabla \cdot \mathbf{H} & =0
\end{align*}
$$

Taking the curl of Faraday's law, we expand the double cross product and then substitute Ampere's law to obtain a simple vector equation in \mathbf{E} alone:

$$
\begin{align*}
\nabla \times(\nabla \times \mathbf{E}) & =\nabla(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E} \\
& =-\mu \frac{\partial}{\partial t}(\nabla \times \mathbf{H}) \\
& =-\varepsilon \mu \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \tag{2}
\end{align*}
$$

Since $\nabla \cdot \mathbf{E}=0$ from Gauss's law when the charge density is zero, (2) reduces to the vector wave equation in E :

$$
\begin{equation*}
\nabla^{2} E=\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}, \quad c^{2}=\frac{1}{\varepsilon \mu} \tag{3}
\end{equation*}
$$

If we take the curl of Ampere's law and perform similar operations, we also obtain the vector wave equation in H :

$$
\begin{equation*}
\nabla^{2} \mathbf{H}=\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{H}}{\partial t^{2}} \tag{4}
\end{equation*}
$$

The solutions for \mathbf{E} and \mathbf{H} in (3) and (4) are not independent. If we solve for either \mathbf{E} or \mathbf{H}, the other field is obtained from (1). The vector wave equations in (3) and (4) are valid for any shaped waveguide. In particular, we limit ourselves in this text to waveguides whose cross-sectional shape is rectangular, as shown in Figure 8-27.

8-6-2 Transverse Magnetic (TM) Modes

We first consider TM modes where the magnetic field has x and y components but no z component. It is simplest to solve (3) for the z component of electric field and then obtain the other electric and magnetic field components in terms of E_{2} directly from Maxwell's equations in (1).

We thus assume solutions of the form

$$
\begin{equation*}
E_{z}=\operatorname{Re}\left[\hat{E}_{z}(x, y) e^{j\left(\omega t-k_{z} z\right)}\right] \tag{5}
\end{equation*}
$$

where an exponential z dependence is assumed because the cross-sectional area of the waveguide is assumed to be uniform in z so that none of the coefficients in (1) depends on z. Then substituting into (3) yields the Helmholtz equation:

$$
\begin{equation*}
\frac{\partial^{2} E_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}-\left(k_{z}^{2}-\frac{\omega^{2}}{c^{2}}\right) \hat{E}_{z}=0 \tag{6}
\end{equation*}
$$

Figure 8-27 A lossless waveguide with rectangular cross section.

This equation can be solved by assuming the same product solution as used for solving Laplace's equation in Section 4-2-1, of the form

$$
\begin{equation*}
\hat{E}_{z}(x, y)=X(x) Y(y) \tag{7}
\end{equation*}
$$

where $X(x)$ is only a function of the x coordinate and $Y(y)$ is only a function of y. Substituting this assumed form of solution into (6) and dividing through by $X(x) Y(y)$ yields

$$
\begin{equation*}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=k_{z}^{2}-\frac{\omega^{2}}{c^{2}} \tag{8}
\end{equation*}
$$

When solving Laplace's equation in Section 4-2-1 the righthand side was zero. Here the reasoning is the same. The first term on the left-hand side in (8) is only a function of x while the second term is only a function of y. The only way a function of x and a function of y can add up to a constant for all x and y is if each function alone is a constant,

$$
\begin{align*}
& \frac{1}{X} \frac{d^{2} X}{d x^{2}}=-k_{x}^{2} \\
& \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-k_{y}^{2} \tag{9}
\end{align*}
$$

where the separation constants must obey the relation

$$
\begin{equation*}
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=k^{2}=\omega^{2} / c^{2} \tag{10}
\end{equation*}
$$

When we solved Laplace's equation in Section 4-2-6, there was no time dependence so that $\omega=0$. Then we found that at least one of the wavenumbers was imaginary, yielding decaying solutions. For finite frequencies it is possible for all three wavenumbers to be real for pure propagation. The values of these wavenumbers will be determined by the dimensions of the waveguide through the boundary conditions.
The solutions to (9) are sinusoids so that the transverse dependence of the axial electric field $\hat{E}_{x}(x, y)$ is

$$
\begin{equation*}
\hat{E}_{z}(x, y)=\left(A_{1} \sin k_{x} x+A_{2} \cos k_{x} x\right)\left(B_{1} \sin k_{y} y+B_{2} \cos k_{y} y\right) \tag{11}
\end{equation*}
$$

Because the rectangular waveguide in Figure 8-27 is composed of perfectly conducting walls, the tangential component of electric field at the walls is zero:

$$
\begin{array}{ll}
\hat{E}_{x}(x, y=0)=0, & \hat{E}_{z}(x=0, y)=0 \\
\hat{E}_{z}(x, y=b)=0, & \hat{E}_{x}(x=a, y)=0 \tag{12}
\end{array}
$$

These boundary conditions then require that A_{2} and B_{2} are zero so that (11) simplifies to

$$
\begin{equation*}
\hat{E}_{x}(x, y)=E_{0} \sin k_{x} x \sin k_{y} y \tag{13}
\end{equation*}
$$

where E_{0} is a field amplitude related to a source strength and the transverse wavenumbers must obey the equalities

$$
\begin{array}{ll}
k_{x}=m \pi / a, & m=1,2,3, \ldots \\
k_{y}=n \pi / b, & n=1,2,3, \ldots \tag{14}
\end{array}
$$

Note that if either m or n is zero in (13), the axial electric field is zero. The waveguide solutions are thus described as $\mathrm{TM}_{m n}$ modes where both m and n are integers greater than zero.

The other electric field components are found from the z component of Faraday's law, where $\mathbf{H}_{\mathbf{z}}=0$ and the chargefree Gauss's law in (1):

$$
\begin{gather*}
\frac{\partial E_{y}}{\partial x}=\frac{\partial E_{x}}{\partial y} \tag{15}\\
\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=0
\end{gather*}
$$

By taking $\partial / \partial x$ of the top equation and $\partial / \partial y$ of the lower equation, we eliminate E_{x} to obtain

$$
\begin{equation*}
\frac{\partial^{2} E_{y}}{\partial x^{2}}+\frac{\partial^{2} E_{y}}{\partial y^{2}}=-\frac{\partial^{2} E_{z}}{\partial y \partial z} \tag{16}
\end{equation*}
$$

where the right-hand side is known from (13). The general solution for E_{y} must be of the same form as (11), again requiring the tangential component of electric field to be zero at the waveguide walls,

$$
\begin{equation*}
\hat{E}_{y}(x=0, y)=0, \quad \hat{E}_{y}(x=a, y)=0 \tag{17}
\end{equation*}
$$

so that the solution to (16) is

$$
\begin{equation*}
\hat{E}_{y}=-\frac{j k_{y} k_{z} E_{0}}{k_{x}^{2}+k_{y}^{2}} \sin k_{x} x \cos k_{y} y \tag{18}
\end{equation*}
$$

We then solve for E_{x} using the upper equation in (15):

$$
\begin{equation*}
\hat{E}_{x}=-\frac{j k_{x} k_{z} E_{0}}{k_{x}^{2}+k_{y}^{2}} \cos k_{x} x \sin k_{y} y \tag{19}
\end{equation*}
$$

where we see that the boundary conditions

$$
\begin{equation*}
\hat{E}_{x}(x, y=0)=0, \quad \hat{E}_{x}(x, y=b)=0 \tag{20}
\end{equation*}
$$

are satisfied.

The magnetic field is most easily found from Faraday's law

$$
\begin{equation*}
\hat{\mathbf{H}}(x, y)=-\frac{1}{j \omega \mu} \nabla \times \hat{\mathbf{E}}(x, y) \tag{21}
\end{equation*}
$$

to yield

$$
\begin{align*}
\hat{H}_{x} & =-\frac{1}{j \omega \mu}\left(\frac{\partial \dot{E}_{x}}{\partial y}-\frac{\partial \hat{E}_{y}}{\partial z}\right) \\
& =-\frac{k_{y} k^{2}}{j \omega \mu\left(k_{x}^{2}+k_{y}^{2}\right)} E_{0} \sin k_{x} x \cos k_{y} y \\
& =\frac{j \omega \varepsilon k_{y}}{k_{x}^{2}+k_{y}^{2}} E_{0} \sin k_{x} x \cos k_{y} y \\
\hat{H}_{y} & =-\frac{1}{j \omega \mu}\left(\frac{\partial \hat{E}_{x}}{\partial z}-\frac{\partial \hat{E}_{x}}{\partial x}\right) \tag{22}\\
& =\frac{k_{x} k^{2} E_{0}}{j \omega \mu\left(k_{x}^{2}+k_{y}^{2}\right)} \cos k_{x} x \sin k_{y} y \\
& =-\frac{j \omega \varepsilon k_{x}}{k_{x}^{2}+k_{y}^{2}} E_{0} \cos k_{x} x \sin k_{y} y \\
\hat{H}_{x} & =0
\end{align*}
$$

Note the boundary conditions of the normal component of \mathbf{H} being zero at the waveguide walls are automatically satisfied:

$$
\begin{array}{ll}
\hat{H}_{y}(x, y=0)=0, & \hat{H}_{y}(x, y=b)=0 \\
\hat{H}_{x}(x=0, y)=0, & \hat{H}_{y}(x=a, y)=0 \tag{23}
\end{array}
$$

The surface charge distribution on the waveguide walls is found from the discontinuity of normal D fields:

$$
\begin{gather*}
\hat{\sigma}_{f}(x=0, y)=\varepsilon \hat{E}_{x}(x=0, y)=-\frac{j k_{2} k_{x} \varepsilon}{k_{x}^{2}+k_{y}^{2}} E_{0} \sin k_{y} y \\
\hat{\sigma}_{f}(x=a, y)=-\varepsilon \hat{E}_{x}(x=a, y)=\frac{j k_{2} k_{x} \varepsilon}{k_{x}^{2}+k_{y}^{2}} E_{0} \cos m \pi \sin k_{y} y \tag{24}\\
\hat{\sigma}_{f}(x, y=0)=\varepsilon \hat{E}_{y}(x, y=0)=-\frac{j k_{2} k_{y} \varepsilon}{k_{x}^{2}+k_{y}^{2}} E_{0} \sin k_{x} x \\
\hat{\sigma}_{f}(x, y=b)=-\varepsilon \hat{E}_{y}(x, y=b)=\frac{j k_{z} k_{y} \varepsilon}{k_{x}^{2}+k_{y}^{2}} E_{0} \cos n \pi \sin k_{x} x
\end{gather*}
$$

Similarly, the surface currents are found by the discontinuity in the tangential components of \mathbf{H} to be purely z directed:

$$
\begin{align*}
& \hat{K}_{z}(x, y=0)=-\hat{H}_{x}(x, y=0)=\frac{k_{y} k^{2} E_{0} \sin k_{x} x}{j \omega \mu\left(k_{x}^{2}+k_{y}^{2}\right)} \\
& \hat{K}_{z}(x, y=b)=\hat{H}_{x}(x, y=b)=-\frac{k_{y} k^{2} E_{0}}{j \omega \mu\left(k_{x}^{2}+k_{y}^{2}\right)} \sin k_{x} x \cos n \pi \\
& \hat{K}_{z}(x=0, y)=\hat{H}_{y}(x=0, y)=\frac{k_{x} k^{2} E_{0}}{j \omega \mu\left(k_{x}^{2}+k_{y}^{2}\right)} \sin k_{y} y \tag{25}\\
& \hat{K}_{z}(x=a, y)=-\hat{H}_{y}(x=a, y)=-\frac{k_{x} k^{2} E_{0} \cos m \pi \sin k_{y} y}{j \omega \mu\left(k_{x}^{2}+k_{y}^{2}\right)}
\end{align*}
$$

We see that if m or n are even, the surface charges and surface currents on opposite walls are of opposite sign, while if m or n are odd, they are of the same sign. This helps us in plotting the field lines for the various $\mathrm{TM}_{m n}$ modes shown in Figure 8-28. The electric field is always normal and the magnetic field tangential to the waveguide walls. Where the surface charge is positive, the electric field points out of the wall, while it points in where the surface charge is negative. For higher order modes the field patterns shown in Figure $8-28$ repeat within the waveguide.

Slots are often cut in waveguide walls to allow the insertion of a small sliding probe that measures the electric field. These slots must be placed at positions of zero surface current so that the field distributions of a particular mode are only negligibly disturbed. If a slot is cut along the z direction on the $y=b$ surface at $x=a / 2$, the surface current given in (25) is zero for TM modes if $\sin \left(k_{x} a / 2\right)=0$, which is true for the $m=$ even modes.

8-6-3 Transverse Electric (TE) Modes

When the electric field lies entirely in the $x y$ plane, it is most convenient to first solve (4) for H_{z}. Then as for TM modes we assume a solution of the form

$$
\begin{equation*}
H_{z}=\operatorname{Re}\left[\hat{H}_{z}(x, y) e^{j\left(\omega t-k_{z} z\right)}\right] \tag{26}
\end{equation*}
$$

which when substituted into (4) yields

$$
\begin{equation*}
\frac{\partial^{2} \hat{H}_{z}}{\partial x^{2}}+\frac{\partial^{2} \hat{H}_{z}}{\partial y^{2}}-\left(k_{z}^{2}-\frac{\omega^{2}}{c^{2}}\right) \hat{H}_{z}=0 \tag{27}
\end{equation*}
$$

Electric field (-)

$$
\begin{aligned}
& \hat{E}_{x}=\frac{-j k_{x} k_{x} E_{0}}{k_{x}^{2}+k_{y}^{2}} \cos k_{x} x \sin k_{y} y \\
& \hat{E}_{y}=\frac{-j k_{y} k_{z} E_{0}}{k_{x}^{2}+k_{y}^{2}} \sin k_{x} x \cos k_{y} y \\
& \hat{E}_{x}=E_{0} \sin k_{x} x \sin k_{y} y \\
& \frac{d y}{d x}=\frac{E_{y}}{E_{x}}=\frac{k_{y}}{k_{x}} \frac{\tan k_{x} x}{\tan k_{y} y} \\
& \Rightarrow \frac{\left[\cos k_{x} x\right]^{\left(k_{y} k_{x}\right)^{2}}}{\cos k_{y} y}=\text { const }
\end{aligned}
$$

Magnetic field (----)

$$
\begin{aligned}
& \hat{H}_{x}=\frac{j \omega E k_{y}}{k_{x}^{2}+k_{y}^{2}} E_{0} \sin k_{x} x \cos k_{y} y \\
& \hat{H}_{y}=\frac{-j \omega \varepsilon k_{x}}{k_{x}^{2}+k_{y}^{2}} E_{0} \cos k_{x} x \sin k_{y} y \\
& \frac{d y}{d x}=\frac{H_{y}}{H_{x}}=\frac{-k_{x} \cot k_{x} x}{k_{y} \cot k_{y} y}
\end{aligned}
$$

$\Rightarrow \sin k_{x} x \sin k_{y} y=$ const

$$
k_{x}=\frac{m \pi}{a}, \quad k_{y}=\frac{n \pi}{b}, \quad k_{x}=\left[\frac{\omega^{2}}{c^{2}}-k_{x}^{2}-k_{y}^{2}\right]^{1 / 2}
$$

Figure 8-28 The transverse electric and magnetic field lines for the TM_{11} and TM_{21} modes. The electric field is purely z directed where the field lines converge.

Again this equation is solved by assuming a product solution and separating to yield a solution of the same form as (11): $\hat{H}_{z}(x, y)=\left(A_{1} \sin k_{x} x+A_{2} \cos k_{x} x\right)\left(B_{1} \sin k_{y} y+B_{2} \cos k_{y} y\right)$

The boundary conditions of zero normal components of \mathbf{H} at the waveguide walls require that

$$
\begin{align*}
\hat{H}_{x}(x=0, y)=0, & \hat{H}_{x}(x=a, y)=0 \\
\hat{H}_{y}(x, y=0)=0, & \hat{H}_{y}(x, y=b)=0 \tag{29}
\end{align*}
$$

Using identical operations as in (15)-(20) for the TM modes the magnetic field solutions are

$$
\begin{align*}
& \hat{H}_{x}=\frac{j k_{x} k_{x} H_{0}}{k_{x}^{2}+k_{y}^{2}} \sin k_{x} x \cos k_{y} y, \quad k_{x}=\frac{m \pi}{a}, \quad k_{y}=\frac{n \pi}{b} \\
& \hat{H}_{y}=\frac{j k_{x} k_{y} H_{0}}{k_{x}^{2}+k_{y}^{2}} \cos k_{x} x \sin k_{y} y \tag{30}\\
& \hat{H}_{z}=H_{0} \cos k_{x} x \cos k_{y} y
\end{align*}
$$

The electric field is then most easily obtained from Ampere's law in (1),

$$
\begin{equation*}
\hat{\mathbf{E}}=\frac{\mathbf{l}}{j \omega \varepsilon} \nabla \times \hat{\mathbf{H}} \tag{31}
\end{equation*}
$$

to yield

$$
\begin{align*}
\hat{E}_{x} & =\frac{1}{j \omega \varepsilon}\left(\frac{\partial}{\partial y} \hat{H}_{z}-\frac{\partial}{\partial z} \hat{H}_{y}\right) \\
& =-\frac{k_{y} k^{2} H_{0}}{j \omega \varepsilon\left(k_{x}^{2}+k_{y}^{2}\right)} \cos k_{x} x \sin k_{y} y \\
& =\frac{j \omega \mu k_{y}}{k_{x}^{2}+k_{y}^{2}} H_{0} \cos k_{x} x \sin k_{y} y \\
\hat{E}_{y} & =\frac{1}{j \omega \varepsilon}\left(\frac{\partial \hat{H}_{x}}{\partial z}-\frac{\partial \hat{H}_{x}}{\partial x}\right) \tag{32}\\
& =\frac{k_{x} k^{2} H_{0}}{j \omega \varepsilon\left(k_{x}^{2}+k_{y}^{2}\right)} \sin k_{x} x \cos k_{y} y \\
& =-\frac{j \omega \mu k_{x}}{k_{x}^{2}+k_{y}^{2}} H_{0} \sin k_{x} x \cos k_{y} y \\
\hat{E}_{z} & =0
\end{align*}
$$

We see in (32) that as required the tangential components of the electric field at the waveguide walls are zero. The
surface charge densities on each of the walls are:

$$
\begin{align*}
& \hat{\sigma}_{f}(x=0, y)=\varepsilon \hat{E}_{x}(x=0, y)=\frac{-k_{y} k^{2} H_{0}}{j \omega\left(k_{x}^{2}+k_{y}^{2}\right)} \sin k_{y} y \\
& \hat{\sigma}_{f}(x=a, y)=-\varepsilon \hat{E}_{x}(x=a, y)=\frac{k_{y} k^{2} H_{0}}{j \omega\left(k_{x}^{2}+k_{y}^{2}\right)} \cos m \pi \sin k_{y} y \\
& \hat{\sigma}_{f}(x, y=0)=\varepsilon \hat{E}_{y}(x, y=0)=\frac{k_{x} k^{2} H_{0}}{j \omega\left(k_{x}^{2}+k_{y}^{2}\right)} \sin k_{x} x \tag{33}\\
& \hat{\sigma}_{f}(x, y=b)=-\varepsilon \hat{E}_{y}(x, y=b)=-\frac{k_{x} k^{2} H_{0}}{j \omega\left(k_{x}^{2}+k_{y}^{2}\right)} \cos n \pi \sin k_{x} x
\end{align*}
$$

For TE modes, the surface currents determined from the discontinuity of tangential \mathbf{H} now flow in closed paths on the waveguide walls:

$$
\begin{align*}
\hat{\mathbf{K}}(x=0, y) & =i_{x} \times \hat{\mathbf{H}}(x=0, y) \\
& =i_{z} \hat{H}_{y}(x=0, y)-i_{y} \hat{H}_{z}(x=0, y) \\
\hat{\mathbf{K}}(x=a, y) & =-i_{x} \times \hat{\mathbf{H}}(x=a, y) \\
& =-i_{z} \hat{H}_{y}(x=a, y)+i_{y} \hat{H}_{z}(x=a, y) \\
\hat{\mathbf{K}}(x, y=0) & =i_{y} \times \hat{\mathbf{H}}(x, y=0) \tag{34}\\
& =-i_{z} \hat{H}_{x}(x, y=0)+i_{x} \hat{H}_{z}(x, y=0) \\
\hat{\mathbf{K}}(x, y=b) & =-i_{y} \times \hat{\mathbf{H}}(x, y=b) \\
& =i_{z} \hat{H}_{x}(x, y=b)-i_{x} \hat{H}_{z}(x, y=b)
\end{align*}
$$

Note that for TE modes either n or m (but not both) can be zero and still yield a nontrivial set of solutions. As shown in Figure 8-29, when n is zero there is no variation in the fields in the y direction and the electric field is purely y directed while the magnetic field has no y component. The $T E_{11}$ and TE_{21} field patterns are representative of the higher order modes.

8-6-4 Cut-Off

The transverse wavenumbers are

$$
\begin{equation*}
k_{x}=\frac{m \pi}{a}, \quad k_{y}=\frac{n \pi}{b} \tag{35}
\end{equation*}
$$

so that the axial variation of the fields is obtained from (10) as

$$
\begin{equation*}
k_{x}=\left[\frac{\omega_{2}}{c^{2}}-k_{x}^{2}-k_{y}^{2}\right]^{1 / 2}=\left[\frac{\omega^{2}}{c^{2}}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}\right]^{1 / 2} \tag{36}
\end{equation*}
$$

Electric field (\longrightarrow)

$$
\begin{aligned}
\hat{E}_{x} & =\frac{j \omega \mu k_{y}}{k_{x}^{2}+k_{y}^{2}} H_{0} \cos k_{x} x \sin k_{y} y \\
\hat{E}_{y} & =\frac{-j \omega \mu k_{x}}{k_{x}^{2}+k_{y}^{2}} H_{0} \sin k_{x} x \cos k_{y} y \\
k_{x} & =\frac{m \pi}{a}, \quad k_{y}=\frac{n \pi}{b}, \quad k_{x}=\left[\frac{\omega^{2}}{c^{2}}-k_{x}^{2}-k_{y}^{2}\right]^{1 / 2} \\
\frac{d y}{d x} & =\frac{E_{y}}{E_{x}}=\frac{-k_{x}}{k_{y}} \frac{\tan k_{x} x}{\tan k_{y} y} \\
& \Rightarrow \cos k_{x} x \cos k_{y} y=\text { const }
\end{aligned}
$$

Magnetic field (----)

$$
\begin{aligned}
\hat{H}_{x} & =\frac{j k_{x} k_{x} H_{0}}{k_{x}^{2}+k_{y}^{2}} \sin k_{x} x \cos k_{y} y \\
\hat{H}_{y} & =\frac{j k_{x} k_{y} H_{0}}{k_{x}^{2}+k_{y}^{2}} \cos k_{x} x \sin k_{y} y \\
\hat{H}_{x} & =H_{0} \cos k_{x} x \cos k_{y} y \\
\frac{d y}{d x} & =\frac{H_{y}}{H_{x}}=\frac{k_{y}}{k_{x}} \frac{\cot k_{x} x}{\cot k_{y} y} \\
& \Rightarrow \frac{\left[\sin k_{x} x\right]^{\left(k_{y} / k_{x}\right)^{2}}}{\sin k_{y} y}=\text { const }
\end{aligned}
$$

Figure 8-29 (a) The transverse electric and magnetic field lines for various TE modes. The magnetic field is purely z directed where the field lines converge. The TE_{10} mode is called the dominant mode since it has the lowest cut-off frequency. (b) Surface current lines for the TE_{10} mode.

(b)

Figure 8-29
Thus, although k_{x} and $k_{\text {, }}$ are real, k_{z} can be either pure real or pure imaginary. A real value of k_{z} represents power flow down the waveguide in the z direction. An imaginary value of k_{x} means exponential decay with no time-average power flow. The transition from propagating waves (k_{z} real) to evanescence (k_{2} imaginary) occurs for $k_{z}=0$. The frequency when k_{z} is zero is called the cut-off frequency ω_{c} :

$$
\begin{equation*}
\omega_{c}=c\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]^{1 / 2} \tag{37}
\end{equation*}
$$

This frequency varies for each mode with the mode parameters m and n. If we assume that a is greater than b, the lowest cut-off frequency occurs for the TE_{10} mode, which is called the dominant or fundamental mode. No modes can propagate below this lowest critical frequency $\omega_{c 0}$:

$$
\begin{equation*}
\omega_{c 0}=\frac{\pi c}{a} \Rightarrow f_{c 0}=\frac{\omega_{c 0}}{2 \pi}=\frac{c}{2 a} \mathrm{~Hz} \tag{38}
\end{equation*}
$$

If an air-filled waveguide has $a=1 \mathrm{~cm}$, then $f_{c 0}=$ $1.5 \times 10^{10} \mathrm{~Hz}$, while if $a=10 \mathrm{~m}$, then $f_{c 0}=15 \mathrm{MHz}$. This explains why we usually cannot hear the radio when driving through a tunnel. As the frequency is raised above $\omega_{c 0}$, further modes can propagate.

The phase and group velocity of the waves are

$$
\begin{align*}
& v_{p}=\frac{\omega}{k_{z}}=\frac{\omega}{\left[\frac{\omega^{2}}{c^{2}}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}\right]^{1 / 2}} \\
& v_{g}=\frac{d \omega}{d k_{z}}=\frac{k_{z} c^{2}}{\omega}=\frac{c^{2}}{v_{p}} \Rightarrow v_{g} v_{p}=c^{2} \tag{39}
\end{align*}
$$

At cut-off, $v_{g}=0$ and $v_{p}=\infty$ with their product always a constant.

8-6-5 Waveguide Power Flow

The time-averaged power flow per unit area through the waveguide is found from the Poynting vector:

$$
\begin{equation*}
<\boldsymbol{S}>=\frac{1}{2} \operatorname{Re}\left(\hat{\mathbf{E}} \times \hat{\mathbf{H}}^{*}\right) \tag{40}
\end{equation*}
$$

(a) Power Flow for the TM Modes

Substituting the field solutions found in Section 8-6-2 into (40) yields

$$
\begin{align*}
<\boldsymbol{S}> & =\frac{1}{2} \operatorname{Re}\left[\left(\hat{E}_{x} \mathbf{i}_{x}+\hat{E}_{y} \mathbf{i}_{y}+\hat{E}_{x} \mathbf{i}_{z}\right) e^{-j k_{z} z} \times\left(\hat{H}_{x}^{*} \mathbf{i}_{x}+\hat{H}_{y}^{*} \mathbf{i}_{y}\right) e^{+j k_{z}^{*} z}\right] \\
& =\frac{1}{2} \operatorname{Re}\left[\left(\hat{E}_{x} \hat{H}_{y}^{*}-\hat{E}_{y} \hat{H}_{x}^{*}\right) \mathbf{i}_{z}+\hat{E}_{z}\left(\hat{H}_{x}^{*} \mathbf{i}_{y}-\hat{H}_{y}^{*} \mathbf{i}_{x}\right)\right] e^{-j\left(k_{z}-k_{z}^{*}\right) \mathbf{z}} \tag{41}
\end{align*}
$$

where we remember that k_{z} may be imaginary for a particular mode if the frequency is below cut-off. For propagating modes where k_{z} is real so that $k_{z}=k_{2}^{*}$, there is no z dependence in (41). For evanescent modes where k_{z} is pure imaginary, the z dependence of the Poynting vector is a real decaying exponential of the form $e^{-2\left|k_{1}\right|_{1}}$. For either case we see from (13) and (22) that the product of \hat{E}_{z} with \hat{H}_{x} and \hat{H}_{y} is pure imaginary so that the real parts of the x - and y-directed time average power flow are zero in (41). Only the z-directed power flow can have a time average:

$$
\begin{align*}
<S>= & \frac{\omega \varepsilon\left|E_{0}\right|^{2}}{2\left(k_{x}^{2}+k_{y}^{2}\right)} \operatorname{Re}\left[k _ { z } e ^ { - j (k _ { z } - k _ { z } ^ { * }) x } \left(k_{x}^{2} \cos ^{2} k_{x} x \sin ^{2} k_{y} y\right.\right. \\
& \left.\left.+k_{y}^{2} \sin ^{2} k_{x} x \cos ^{2} k_{y} y\right)\right] \mathbf{i}_{z} \tag{42}
\end{align*}
$$

If k_{z} is imaginary, we have that $\langle\boldsymbol{S}\rangle=0$ while a real k_{z} results in a nonzero time-average power flow. The total z-directed
power flow is found by integrating (42) over the crosssectional area of the waveguide:

$$
\begin{align*}
<P> & =\int_{x=0}^{a} \int_{y=0}^{b}<S_{x}>d x d y \\
& =\frac{\omega E k_{x} a b E_{0}^{2}}{8\left(k_{x}^{2}+k_{y}^{2}\right)} \tag{43}
\end{align*}
$$

where it is assumed that k_{z} is real, and we used the following identities:

$$
\begin{align*}
\int_{0}^{a} \sin ^{2} \frac{m \pi x}{a} d x & =\left.\frac{a}{m \pi}\left(\frac{1}{2} \frac{m \pi x}{a}-\frac{1}{4} \sin \frac{2 m \pi x}{a}\right)\right|_{0} ^{a} \\
& = \begin{cases}a / 2, & m \neq 0 \\
0, & m=0\end{cases} \\
\int_{0}^{a} \cos ^{2} \frac{m \pi x}{a} d x & =\left.\frac{a}{m \pi}\left(\frac{1}{2} \frac{m \pi x}{a}+\frac{1}{4} \sin \frac{2 m \pi x}{a}\right)\right|_{0} ^{a} \tag{44}\\
& = \begin{cases}a / 2, & m \neq 0 \\
a, & m=0\end{cases}
\end{align*}
$$

For the TM modes, both m and n must be nonzero.

(b) Power Flow for the TE Modes

The same reasoning is used for the electromagnetic fields found in Section 8-6-3 substituted into (40):

$$
\begin{align*}
<S> & =\frac{1}{2} \operatorname{Re}\left[\left(\hat{E}_{x} \mathbf{i}_{x}+\hat{E}_{y} \mathbf{i}_{y}\right) e^{-j k_{z}^{2}} \times\left(\hat{H}_{x}^{*} \mathbf{i}_{x}+\hat{H}_{y}^{*} \mathbf{i}_{y}+\hat{H}_{z}^{*} \mathbf{i}_{z}\right) e^{+j \mathbf{k}_{x}^{*}{ }_{2}^{2}}\right] \\
& =\frac{1}{2} \operatorname{Re}\left[\left(\hat{E}_{x} \hat{H}_{y}^{*}-\hat{E}_{y} \hat{H}_{x}^{*}\right) \mathbf{i}_{z}-\hat{H}_{z}^{*}\left(\hat{E}_{x} \mathbf{i}_{y}-\hat{E}_{y} \mathbf{i}_{x}\right)\right] e^{-j\left(k_{z}-k_{z}^{*}\right) z} \tag{45}
\end{align*}
$$

Similarly, again we have that the product of H_{z}^{*} with \hat{E}_{x} and \hat{E}_{y} is pure imaginary so that there are no \boldsymbol{x} - and \boldsymbol{y}-directed time average power flows. The z-directed power flow reduces to

$$
\begin{align*}
<S_{z}>= & \frac{1}{2} \frac{\omega \mu H_{0}^{2}}{\left(k_{x}^{2}+k_{y}^{2}\right)}\left(k_{y}^{2} \cos ^{2} k_{x} x \sin ^{2} k_{y} y\right. \\
& \left.+k_{x}^{2} \sin ^{2} k_{x} x \cos ^{2} k_{y} y\right) \operatorname{Re}\left(k_{z} e^{-j\left(k_{x}-k_{z}^{*}\right) z}\right) \tag{46}
\end{align*}
$$

Again we have nonzero z-directed time average power flow only if k_{z} is real. Then the total z-directed power is
$<P>=\int_{x=0}^{a} \int_{y=0}^{b}<S_{z}>d x d y= \begin{cases}\frac{\omega \mu k_{z} a b H_{0}^{2}}{8\left(k_{x}^{2}+k_{y}^{2}\right)}, & m, n \neq 0 \\ \frac{\omega \mu k_{2} a b H_{0}^{2}}{4\left(k_{x}^{2}+k_{y}^{2}\right)}, & m \text { or } n=0\end{cases}$
where we again used the identities of (44). Note the factor of 2 differences in (47) for either the TE_{10} or TE_{01} modes. Both m and n cannot be zero as the TE_{00} mode reduces to the trivial spatially constant uncoupled z-directed magnetic field.

8-6-6 Wall Losses

If the waveguide walls have a high but noninfinite Ohmic conductivity σ_{w}, we can calculate the spatial attenuation rate using the approximate perturbation approach described in Section 8-3-4b. The fields decay as $e^{-\alpha z}$, where

$$
\begin{equation*}
\alpha=\frac{1}{2} \frac{\left\langle P_{d L}\right\rangle}{\langle P\rangle} \tag{48}
\end{equation*}
$$

where $\left\langle P_{d L}\right\rangle$ is the time-average dissipated power per unit length and $\langle P\rangle$ is the electromagnetic power flow in the lossless waveguide derived in Section 8-6-5 for each of the modes.

In particular, we calculate α for the TE_{10} mode ($k_{k_{2}}=$ $\left.\pi / a, k_{y}=0\right)$. The waveguide fields are then

$$
\begin{align*}
& \hat{\mathbf{H}}=H_{0}\left(i_{x} \frac{j k_{z} a}{\pi} \sin \frac{\pi x}{a}+\cos \frac{\pi x}{a} \mathbf{i}_{z}\right) \\
& \hat{\mathbf{E}}=-\frac{j \omega \mu a}{\pi} H_{0} \sin \frac{\pi x}{a} i_{y} \tag{49}
\end{align*}
$$

The surface current on each wall is found from (34) as
$\hat{\mathbf{K}}(x=0, y)=\hat{\mathbf{K}}(x=a, y)=-H_{0} \mathbf{i}$,
$\hat{\mathbf{K}}(x, y=0)=-\hat{\mathbf{K}}(x, y=b)=H_{0}\left(-\mathbf{i}_{\mathbf{z}} \frac{j \mathbf{k}_{2} a}{\pi} \sin \frac{\pi x}{a}+\mathrm{i}_{\mathrm{x}} \cos \frac{\pi x}{a}\right)$
With lossy walls the electric field component \mathbf{E}_{w} within the walls is in the same direction as the surface current proportional by a surface conductivity $\sigma_{\boldsymbol{w}} \delta$, where δ is the skin depth as found in Section 8-3-4b. The time-average dissipated power density per unit area in the walls is then:

$$
\begin{align*}
\left\langle P_{d}(x=0, y)\right\rangle & =\left\langle P_{d}(x=a, y)\right\rangle \\
& =\frac{1}{2} \operatorname{Re}\left(\hat{\mathbf{E}}_{w} \cdot \hat{\mathbf{K}}^{*}\right)=\frac{1}{2} \frac{H_{0}^{2}}{\sigma_{w} \delta} \tag{51}\\
\left\langle P_{d}(x, y=0)\right\rangle & =\left\langle P_{d}(x, y=b)\right\rangle \\
& =\frac{1}{2} \frac{H_{0}^{2}}{\sigma_{w} \delta}\left[\left(\frac{k_{2} a}{\pi}\right)^{2} \sin ^{2} \frac{\pi x}{a}+\cos ^{2} \frac{\pi x}{a}\right]
\end{align*}
$$

The total time average dissipated power per unit length $<P_{d L}>$ required in (48) is obtained by integrating each of the
terms in (51) along the waveguide walls:

$$
\begin{align*}
<P_{d L}>= & \int_{0}^{b}\left[<P_{d}(x=0, y)>+<P_{d}(x=a, y)>\right] d y \\
& +\int_{0}^{a}\left[<P_{d}(x, y=0)>+<P_{d}(x, y=b)>\right] d x \\
= & \frac{H_{0}^{2} b}{\sigma_{w} \delta}+\frac{H_{0}^{2}}{\sigma_{w} \delta} \int_{0}^{a}\left[\left(\frac{k_{z} a}{\pi}\right)^{2} \sin ^{2} \frac{\pi x}{a}+\cos ^{2} \frac{\pi x}{a}\right] d x \\
= & \frac{H_{0}^{2}}{\sigma_{w} \delta}\left\{b+\frac{a}{2}\left[\left(\frac{k_{z} a}{\pi}\right)^{2}+1\right]\right\}=\frac{H_{0}^{2}}{\sigma_{w} \delta}\left[b+\frac{a}{2}\left(\frac{\omega^{2} a^{2}}{\pi^{2} c^{2}}\right)\right] \tag{52}
\end{align*}
$$

while the electromagnetic power above cut-off for the TE_{10} mode is given by (47),

$$
\begin{equation*}
<P>=\frac{\omega \mu k_{z} a b H_{0}^{2}}{4(\pi / a)^{2}} \tag{53}
\end{equation*}
$$

so that

$$
\begin{equation*}
\alpha=\frac{1}{2} \frac{\left\langle P_{d L}\right\rangle}{\langle P>}=\frac{2\left(\frac{\pi}{a}\right)^{2}\left[b+\frac{a}{2}\left(\frac{\omega^{2} a^{2}}{\pi^{2} c^{2}}\right)\right]}{\omega \mu a b k_{z} \sigma_{w} \delta} \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{\mathrm{z}}=\left[\frac{\omega^{2}}{c^{2}}-\left(\frac{\pi}{a}\right)^{2}\right]^{1 / 2} ; \quad \frac{\omega}{c}>\frac{\pi}{a} \tag{55}
\end{equation*}
$$

8-7 DIELECTRIC WAVEGUIDE

We found in Section 7-10-6 for fiber optics that electromagnetic waves can also be guided by dielectric structures if the wave travels from the dielectric to free space at an angle of incidence greater than the critical angle. Waves propagating along the dielectric of thickness $2 d$ in Figure 8-30 are still described by the vector wave equations derived in Section 8-6-1.

8-7-1 TM Solutions

We wish to find solutions where the fields are essentially confined within the dielectric. We neglect variations with y so that for TM waves propagating in the z direction the z component of electric field is given in Section 8-6-2 as

$$
E_{z}(x, t)= \begin{cases}\operatorname{Re}\left[A_{2} e^{-\alpha(x-d)} e^{j\left(\omega t-k_{z} z\right)}\right], & x \geq d \tag{1}\\ \operatorname{Re}\left[\left(A_{1} \sin k_{x} x+B_{1} \cos k_{x} x\right) e^{j\left(\omega t-k_{x} z\right)}\right], & |x| \leq d \\ \operatorname{Re}\left[A_{3} e^{\alpha(x+d)} e^{j\left(\omega t-k_{z} z\right)}\right], & x \leq-d\end{cases}
$$

Figure 8-30 TE and TM modes can also propagate along dielectric structures. The fields can be essentially confined to the dielectric over a frequency range if the speed of the wave in the dielectric is less than that outside. It is convenient to separate the solutions into even and odd modes.
where we choose to write the solution outside the dielectric in the decaying wave form so that the fields are predominantly localized around the dielectric.

The wavenumbers and decay rate obey the relations

$$
\begin{align*}
k_{x}^{2}+k_{z}^{2} & =\omega^{2} \varepsilon \mu \tag{2}\\
-\alpha^{2}+k_{z}^{2} & =\omega^{2} \varepsilon_{0} \mu_{0}
\end{align*}
$$

The z component of the wavenumber must be the same in all regions so that the boundary conditions can be met at each interface. For propagation in the dielectric and evanescence in free space, we must have that

$$
\begin{equation*}
\omega^{2} \varepsilon_{0} \mu_{0}<k_{z}<\omega^{2} \varepsilon \mu \tag{3}
\end{equation*}
$$

All the other electric and magnetic field components can be found from (1) in the same fashion as for metal waveguides in Section 8-6-2. However, it is convenient to separately consider each of the solutions for E_{x} within the dielectric.

(a) Odd Solutions

If E_{z} in each half-plane above and below the centerline are oppositely directed, the field within the dielectric must vary solely as $\sin k_{x} x$:

$$
\hat{E}_{z}= \begin{cases}A_{2} e^{-\alpha(x-d)}, & x \geq d \tag{4}\\ A_{1} \sin k_{x} x, & |x| \leq d \\ A_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases}
$$

Then because in the absence of volume charge the electric field has no divergence,

$$
\frac{\partial \hat{E}_{x}}{\partial x}-j k_{x} \hat{E}_{x} \Rightarrow \hat{E}_{x}= \begin{cases}-\frac{j k_{z}}{\alpha} A_{2} e^{-\alpha(x-d)}, & x \geq d \tag{5}\\ -\frac{j k_{z}}{k_{x}} A_{1} \cos k_{x} x, & |x| \leq d \\ \frac{j k_{x}}{\alpha} A_{3} e^{\alpha(x+\alpha)}, & x \leq-d\end{cases}
$$

while from Faraday's law the magnetic field is

$$
\begin{align*}
& \hat{H}_{y}=-\frac{1}{j \omega \mu}\left(-j k_{x} \hat{E}_{x}-\frac{\partial \hat{E}_{z}}{\partial x}\right) \\
& \Rightarrow \hat{H}_{y}= \begin{cases}-\frac{j \omega \varepsilon_{0} A_{2}}{\alpha} e^{-\alpha(x-d)}, & x \geq d \\
-\frac{j \omega \varepsilon A_{1}}{k_{x}} \cos k_{x} x, & |x| \leq d \\
\frac{j \omega \varepsilon_{0} A_{3}}{\alpha} e^{\alpha(x+d)}, & x \leq-d\end{cases} \tag{6}
\end{align*}
$$

At the boundaries where $x= \pm d$ the tangential electric and magnetic fields are continuous:

$$
\begin{align*}
E_{z}\left(x= \pm d_{-}\right)=E_{z}\left(x= \pm d_{+}\right) \Rightarrow & A_{1} \sin k_{x} d=A_{2} \\
& -A_{1} \sin k_{x} d=A_{3} \\
H_{y}\left(x= \pm d_{-}\right)=H_{y}\left(x= \pm d_{+}\right) \Rightarrow & \frac{-j \omega \varepsilon A_{1}}{k_{x}} \cos k_{x} d=\frac{-j \omega \varepsilon_{0} A_{2}}{\alpha} \tag{7}\\
& \frac{-j \omega \varepsilon A_{1}}{k_{x}} \cos k_{x} d=\frac{j \omega \varepsilon_{0} A_{3}}{\alpha}
\end{align*}
$$

which when simultaneously solved yields

$$
\left.\begin{array}{l}
\frac{A_{2}}{A_{1}}=\sin k_{x} d=\frac{\varepsilon \alpha}{\varepsilon_{0} k_{x}} \cos k_{x} d \tag{8}\\
\frac{A_{g}}{A_{1}}=-\sin k_{x} d=-\frac{\varepsilon \alpha}{\varepsilon_{0} k_{x}} \cos k_{x} d
\end{array}\right\} \Rightarrow \alpha=\frac{\varepsilon_{0}}{\varepsilon} k_{x} \tan k_{x} d
$$

The allowed values of α and k_{x} are obtained by self-consistently solving (8) and (2), which in general requires a numerical method. The critical condition for a guided wave occurs when $\alpha=0$, which requires that $k_{x} d=n \pi$ and $k_{z}^{2}=$ $\omega^{2} \varepsilon_{0} \mu_{0}$. The critical frequency is then obtained from (2) as

$$
\begin{equation*}
\omega^{2}=\frac{k_{x}^{2}}{\varepsilon \mu-\varepsilon_{0} \mu_{0}}=\frac{(n \pi / d)^{2}}{\varepsilon \mu-\varepsilon_{0} \mu_{0}} \tag{9}
\end{equation*}
$$

Note that this occurs for real frequencies only if $\varepsilon \mu>\varepsilon_{0} \mu_{0}$.

(b) Even Solutions

If E_{z} is in the same direction above and below the dielectric, solutions are similarly

$$
\begin{gather*}
\hat{E}_{\mathrm{z}}= \begin{cases}B_{2} e^{-\alpha(x-d)}, & x \geq d \\
B_{1} \cos k_{x} x, & |x| \leq d \\
B_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases} \tag{10}\\
\hat{E}_{x}= \begin{cases}-\frac{j k_{x}}{\alpha} B_{2} e^{-\alpha(x-d)}, & x \geq d \\
\frac{j k_{x}}{k_{x}} B_{1} \sin k_{x} x, & |x| \leq d \\
\frac{j k_{2}}{\alpha} B_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases} \tag{11}\\
\hat{H}_{y}= \begin{cases}-\frac{j \omega \varepsilon_{0}}{\alpha} B_{2} e^{-\alpha(x-d)}, & x \geq d \\
\frac{j \omega \varepsilon}{k_{x}} B_{1} \sin k_{x} x, & |x| \leq d \\
\frac{j \omega \varepsilon_{0}}{\alpha} B_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases} \tag{12}
\end{gather*}
$$

Continuity of tangential electric and magnetic fields at $x= \pm d$ requires

$$
\begin{gather*}
B_{1} \cos k_{x} d=B_{2}, \quad B_{1} \cos k_{2} d=B_{3} \\
\frac{j \omega \varepsilon}{k_{x}} B_{1} \sin k_{x} d=-\frac{j \omega \varepsilon_{0}}{\alpha} B_{2}, \quad-\frac{j \omega \varepsilon B_{1}}{k_{x}} \sin k_{x} d=\frac{j \omega \varepsilon_{0} B_{3}}{\alpha} \tag{13}
\end{gather*}
$$

or

$$
\left.\begin{array}{l}
\frac{B_{2}}{B_{1}}=\cos k_{x} d=-\frac{\varepsilon \alpha}{\varepsilon_{0} k_{x}} \sin k_{x} d \tag{14}\\
\frac{B_{3}}{B_{1}}=\cos k_{x} d=-\frac{\varepsilon \alpha}{\varepsilon_{0} k_{x}} \sin k_{x} d
\end{array}\right\} \Rightarrow \alpha=-\frac{\varepsilon_{0} k_{x}}{\varepsilon} \cot k_{x} d
$$

8-7-2 TE Solutions

The same procedure is performed for the TE solutions by first solving for $\boldsymbol{H}_{\boldsymbol{x}}$.

(a) Odd Solutions

$$
\hat{H}_{2}= \begin{cases}A_{2} e^{-\alpha(x-d)}, & x \geq d \tag{15}\\ A_{1} \sin k_{2} x, & |x| \leq d \\ A_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases}
$$

$$
\begin{align*}
& \hat{H}_{x}= \begin{cases}-\frac{j k_{2}}{\alpha} A_{2} e^{-\alpha(x-d)}, & x \geq d \\
-\frac{j k_{2}}{k_{x}} A_{1} \cos k_{x} x, & |x| \leq d \\
\frac{j k_{2}}{\alpha} A_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases} \tag{16}\\
& \hat{E}_{y}= \begin{cases}\frac{j \omega \mu_{0}}{\alpha} A_{2} e^{-\alpha(x-d)}, & x \geq d \\
\frac{j \omega \mu}{k_{x}} A_{1} \cos k_{x} x, & |x| \leq d \\
-\frac{j \omega \mu_{0}}{\alpha} A_{3} e^{\alpha(x+d)}, & x \leqq-d\end{cases} \tag{17}
\end{align*}
$$

where continuity of tangential \mathbf{E} and \mathbf{H} across the boundaries requires

$$
\begin{equation*}
\alpha=\frac{\mu_{0}}{\mu} k_{x} \tan k_{x} d \tag{18}
\end{equation*}
$$

(b) Even Solutions

$$
\begin{gather*}
\hat{H}_{z}= \begin{cases}B_{2} e^{-\alpha(x-d)}, & x \geq d \\
B_{1} \cos k_{x} x, & |x| \leq d \\
B_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases} \tag{19}\\
\hat{H}_{x}= \begin{cases}-\frac{j k_{2}}{\alpha} B_{2} e^{-\alpha(x-d)}, & x \geq d \\
\frac{j k_{2}}{k_{x}} B_{1} \sin k_{x} x, & |x| \leq d \\
\frac{j k_{2}}{\alpha} B_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases} \tag{20}\\
\hat{E}_{y}= \begin{cases}\frac{j \omega \mu_{0}}{\alpha} B_{2} e^{-\alpha(x-d)}, & x \geq d \\
-\frac{j \omega \mu}{k_{x}} B_{1} \sin k_{x} x, & |x| \leq d \\
-\frac{j \omega \mu_{0}}{\alpha} B_{3} e^{\alpha(x+d)}, & x \leq-d\end{cases} \tag{21}
\end{gather*}
$$

where α and \boldsymbol{k}_{x} are related as

$$
\begin{equation*}
\alpha=-\frac{\mu_{0}}{\mu} k_{x} \cot k_{x} d \tag{22}
\end{equation*}
$$

PROBLEMS

Section 8-1

1. Find the inductance and capacitance per unit length and the characteristic impedance for the wire above plane and two wire line shown in Figure 8-3. (Hint: See Section 2-6-4c.)
2. The inductance and capacitance per unit length on a lossless transmission line is a weak function of z as the distance between electrodes changes slowly with z.

(a) For this case write the transmission line equations as single equations in voltage and current.
(b) Consider an exponential line, where

$$
L(z)=L_{0} e^{\alpha z}, \quad C(z)=C_{0} e^{-\alpha z}
$$

If the voltage and current vary sinusoidally with time as

$$
v(z, t)=\operatorname{Re}\left[\hat{v}(z) e^{j \omega t}\right], \quad i(z, t)=\operatorname{Re}\left[\hat{\imath}(z) e^{j \omega t}\right]
$$

find the general form of solution for the spatial distributions of $\hat{v}(z)$ and $\hat{i}(z)$.
(c) The transmission line is excited by a voltage source $V_{0} \cos \omega t$ at $z=0$. What are the voltage and current distributions if the line is short or open circuited at $z=l$?
(d) For what range of frequency do the waves strictly decay with distance? What is the cut-off frequency for wave propagation?
(e) What are the resonant frequencies of the short circuited line?
(f) What condition determines the resonant frequencies of the open circuited line.
3. Two conductors of length l extending over the radial distance $a \leq \mathrm{r} \leq b$ are at a constant angle α apart.
(a) What are the electric and magnetic fields in terms of the voltage and current?
(b) Find the inductance and capacitance per unit length. What is the characteristic impedance?

4. A parallel plate transmission line is filled with a conducting plasma with constitutive law

$$
\frac{\partial \mathbf{J}}{\partial t}=\omega_{p}^{2} \varepsilon \mathbf{E}
$$

(a) How are the electric and magnetic fields related?
(b) What are the transmission line equations for the voltage and current?
(c) For sinusoidal signals of the form $e^{i(\omega t-k z)}$, how are ω and k related? Over what frequency range do we have propagation or decay?
(d) The transmission line is short circuited at $z=0$ and excited by a voltage source $V_{0} \cos \omega t$ at $z=-l$. What are the voltage and current distributions?
(e) What are the resonant frequencies of the system?
5. An unusual type of distributed system is formed by series capacitors and shunt inductors.

(a) What are the governing partial differential equations relating the voltage and current?
(b) What is the dispersion relation between ω and k for signals of the form $e^{j(\omega t-k z)}$?
(c) What are the group and phase velocities of the waves? Why are such systems called "backward wave"?
(d) A voltage $V_{0} \cos \omega t$ is applied at $z=-l$ with the $z=0$ end short circuited. What are the voltage and current distributions along the line?
(e) What are the resonant frequencies of the system?

Section 8-2
6. An infinitely long transmission line is excited at its center by a step voltage V_{0} turned on at $t=0$. The line is initially at rest.

(a) Plot the voltage and current distributions at time T.
(b) At this time T the voltage is set to zero. Plot the voltage and current everywhere at time $2 T$.
7. A transmission line of length l excited by a step voltage source has its ends connected together. Plot the voltage and current at $z=l / 4, l / 2$, and $3 l / 4$ as a function of time.

8. The dc steady state is reached for a transmission line loaded at $z=l$ with a resistor R_{L} and excited at $z=0$ by a dc voltage V_{0} applied through a source resistor R_{s}. The voltage source is suddenly set to zero at $t=0$.
(a) What is the initial voltage and current along the line?

(b) Find the voltage at the $z=l$ end as a function of time. (Hint: Use difference equations.)
9. A step current source turned on at $t=0$ is connected to the $z=0$ end of a transmission line in parallel with a source resistance R_{s}. A load resistor R_{L} is connected at $z=l$.

(a) What is the load voltage and current as a function of time? (Hint: Use a Thevenin equivalent network at $z=0$ with the results of Section 8-2-3.)
(b) With $R_{s}=\infty$ plot versus time the load voltage when $R_{L}=\infty$ and the load current when $R_{L}=0$.
(c) If $R_{s}=\infty$ and $R_{t}=\infty$, solve for the load voltage in the quasi-static limit assuming the transmission line is a capacitor. Compare with (b).
(d) If R_{s} is finite but $R_{L}=0$, what is the time dependence of the load current?
(e) Repeat (d) in the quasi-static limit where the transmission line behaves as an inductor. When are the results of (d) and (e) approximately equal?
10. Switched transmission line systems with an initial dc voltage can be used to generate high voltage pulses of short time duration. The line shown is charged up to a dc voltage V_{0} when at $t=0$ the load switch is closed and the source switch is opened.

(a) What are the initial line voltage and current? What are V_{+}and V_{-}?
(b) Sketch the time dependence of the load voltage.
11. For the trapezoidal voltage excitation shown, plot versus time the current waveforms at $z=0$ and $z=l$ for $R_{L}=2 Z_{0}$ and $R_{L}=\frac{1}{2} Z_{0}$.

12. A step voltage is applied to a loaded transmission line with $R_{L}=2 Z_{0}$ through a matching source resistor.

(b)

(c)
(a) Sketch the source current $i_{s}(t)$.
(b) Using superposition of delayed step voltages find the time dependence of $i_{s}(t)$ for the various pulse voltages shown.
(c) By integrating the appropriate solution of (b), find $i_{s}(t)$ if the applied voltage is the triangle wave shown.
13. A dc voltage has been applied for a long time to the .transmission line circuit shown with switches S_{1} and S_{2} open
when at $t=0$:
(a) S_{2} is suddenly closed with S_{1} kept open;
(b) S_{1} is suddenly closed with S_{2} kept open;
(c) Both S_{1} and S_{2} are closed.

For each of these cases plot the source current $i_{s}(t)$ versus time.
14. For each of the transmission line circuits shown, the switch opens at $t=0$ after the dc voltage has been applied for a long time.

(a) What are the transmission line voltages and currents right before the switches open? What are V_{+}and V_{-}at $t=0$?
(b) Plot the voltage and current as a function of time at $z=\mu 2$.
15. A transmission line is connected to another transmission line with double the characteristic impedance.
(a) With switch S_{2} open, switch S_{1} is suddenly closed at $t=0$. Plot the voltage and current as a function of time halfway down each line at points a and b.
(b) Repeat (a) if S_{2} is closed.

Section 8-3
16. A transmission line is excited by a voltage source $V_{0} \cos \omega t$ at $z=-l$. The transmission line is loaded with a purely reactive load with impedance $j X$ at $z=0$.

(a) Find the voltage and current distribution along the line.
(b) Find an expression for the resonant frequencies of the system if the load is capacitive or inductive. What is the solution if $|X|=Z_{0}$?
(c) Repeat (a) and (b) if the transmission line is excited by a current source $I_{0} \cos \omega t$ at $z=-l$.
17. (a) Find the resistance and conductance per unit lengths for a coaxial cable whose dielectric has a small Ohmic conductivity σ and walls have a large conductivity σ_{w}. (Hint: The skin depth δ is much smaller than the radii or thickness of either conductor.)

(b) What is the decay rate of the fields due to the losses?
(c) If the dielectric is lossless ($\sigma=0$) with a fixed value of
outer radius b, what value of inner radius a will minimize the decay rate? (Hint: $1+1 / 3.6 \approx \ln 3.6$.)
18. A transmission line of length l is loaded by a resistor \boldsymbol{R}_{L}.

(a) Find the voltage and current distributions along the line.
(b) Reduce the solutions of (a) when the line is much shorter than a wavelength.
(c) Find the approximate equivalent circuits in the long wavelength limit ($k l \ll 1$) when R_{L} is very small $\left(R_{L} \ll Z_{0}\right)$ and when it is very large $\left(R_{L} \gg Z_{0}\right)$.

Section 8-4
19. For the transmission line shown:

(a) Find the values of lumped reactive admittance $Y=j B$ and non-zero source resistance R_{s} that maximizes the power delivered by the source. (Hint: Do not use the Smith chart.)
(b) What is the time-average power dissipated in the load?
20. (a) Find the time-average power delivered by the source for the transmission line system shown when the switch is open or closed. (Hint: Do not use the Smith chart.)

(b) For each switch position, what is the time average power dissipated in the load resistor \boldsymbol{R}_{L} ?
(c) For each switch position what is the VSWR on each line?
21. (a) Using the Smith chart find the source current delivered (magnitude and phase) for the transmission line system shown, for $l=\lambda / 8, \lambda / 4,3 \lambda / 8$, and $\lambda / 2$.

(b) For each value of l, what are the time-average powers delivered by the source and dissipated in the load impedance Z_{L} ?
(c) What is the VSWR?
22. (a) Without using the Smith chart find the voltage and current distributions for the transmission line system shown.

(b) What is the VSWR?
(c) At what positions are the voltages a maximum or a minimum? What is the voltage magnitude at these positions?
23. The VSWR on a $100-\mathrm{Ohm}$ transmission line is 3 . The distance between successive voltage minima is 50 cm while the distance from the load to the first minima is 20 cm . What are the reflection coefficient and load impedance?

Section 8-5

24. For each of the following load impedances in the singlestub tuning transmission line system shown, find all values of the length of the line l_{1} and stub length l_{2} necessary to match the load to the line.
(a) $Z_{L}=100(1-j)$
(c) $Z_{L}=25(2-j)$
(b) $Z_{L}=50(1+2 j)$
(d) $Z_{L}=25(1+2 j)$

25. For each of the following load impedances in the doublestub tuning transmission line system shown, find stub lengths l_{1} and l_{2} to match the load to the line.

(a) $Z_{L}=100(1-j)$
(c) $Z_{L}=25(2-j)$
(b) $Z_{L}=50(1+2 j)$
(d) $Z_{L}=25(1+2 j)$
26. (a) Without using the Smith chart, find the input impedance $Z_{\text {in }}$ at $z=-l=-\lambda / 4$ for each of the loads shown.
(b) What is the input current $i(z=-l, t)$ for each of the loads?

(c) The frequency of the source is doubled to $2 \omega_{0}$. The line length l and loads L and C remain unchanged. Repeat (a) and (b).
(d) The frequency of the source is halved to $\frac{1}{2} \omega_{0}$. Repeat (a) and (b).

Section 8-6

27. A rectangular metal waveguide is filled with a plasma with constitutive law

$$
\frac{\partial \mathbf{J}_{f}}{\partial t}=\omega_{p}^{2} \varepsilon \mathbf{E}
$$

(a) Find the TE and TM solutions that satisfy the boundary conditions.
(b) What is the wavenumber k_{z} along the axis? What is the cut-off frequency?
(c) What are the phase and group velocities of the waves?
(d) What is the total electromagnetic power flowing down the waveguide for each of the modes?
(e) If the walls have a large but finite conductivity, what is the spatial decay rate for TE_{10} propagating waves?
28. (a) Find the power dissipated in the walls of a waveguide with large but finite conductivity σ_{w} for the $\mathrm{TM}_{\boldsymbol{m n}}$ modes (Hint: Use Equation (25).)
(b) What is the spatial decay rate for propagating waves?
29. (a) Find the equations of the electric and magnetic field lines in the $x y$ plane for the TE and TM modes.
(b) Find the surface current field lines on each of the
waveguide surfaces for the $\mathrm{TE}_{\text {mn }}$ modes. Hint:

$$
\begin{aligned}
& \int \tan x d x=-\ln \cos x \\
& \int \cot x d x=\ln \sin x
\end{aligned}
$$

(c) For all modes verify the conservation of charge relation on the $\boldsymbol{x}=0$ surface:

$$
\nabla_{\Sigma} \cdot \mathbf{K}+\frac{\partial \sigma_{f}}{\partial t}=0
$$

30. (a) Find the first ten lowest cut-off frequencies if $a=b=$ 1 cm in a free space waveguide.
(b) What are the necessary dimensions for a square free space waveguide to have a lowest cut-off frequency of 10^{10}, $10^{8}, 10^{6}, 10^{4}$, or $10^{2} \mathrm{~Hz}$?
31. A rectangular waveguide of height b and width a is short circuited by perfectly conducting planes at $z=0$ and $z=l$.
(a) Find the general form of the TE and TM electric and magnetic fields. (Hint: Remember to consider waves traveling in the $\pm z$ directions.)
(b) What are the natural frequencies of this resonator?
(c) If the walls have a large conductivity σ_{ν} find the total time-average power $\left\langle P_{d}\right\rangle$ dissipated in the TE_{101} mode.
(d) What is the total time-average electromagnetic energy $<W>$ stored in the resonator?
(e) Find the Q of the resonator, defined as

$$
Q=\frac{\omega_{0}\langle W\rangle}{\left\langle P_{d}\right\rangle}
$$

where ω_{0} is the resonant frequency.
Section 8.7
32. (a) Find the critical frequency where the spatial decay rate α is zero for all the dielectric modes considered.
(b) Find approximate values of α, k_{x}, and $k_{\mathbf{z}}$ for a very thin dielectric, where $k_{x} d \ll 1$.
(c) For each of the solutions find the time-average power per unit length in each region.
(d) If the dielectric has a small Ohmic conductivity σ, what is the approximate attenuation rate of the fields.
33. A dielectric waveguide of thickness d is placed upon a perfect conductor.
(a) Which modes can propagate along the dielectric?
(b) For each of these modes, what are the surface current and charges on the conductor?

(c) Verify the conservation of charge relation:

$$
\nabla_{\Sigma} \cdot \mathbf{K}+\frac{\partial \sigma_{f}}{\partial t}=0
$$

(d) If the conductor has a large but noninfinite Ohmic conductivity σ_{w}, what is the approximate power per unit area dissipated?
(e) What is the approximate attenuation rate of the fields?

chapter

9

radiation

In low-frequency electric circuits and along transmission lines, power is guided from a source to a load along highly conducting wires with the fields predominantly confined to the region around the wires. At very high frequencies these wires become antennas as this power can radiate away into space without the need of any guiding structure.

9-1 THE RETARDED POTENTIALS

9-1-1 Nonhomogeneous Wave Equations

Maxwell's equations in complete generality are

$$
\begin{align*}
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \tag{1}\\
\nabla \times \mathbf{H} & =\mathbf{J}_{f}+\frac{\partial \mathbf{D}}{\partial t} \tag{2}\\
\nabla \cdot \mathbf{B} & =0 \tag{3}\\
\nabla \cdot \mathbf{D} & =\rho_{f} \tag{4}
\end{align*}
$$

In our development we will use the following vector identities

$$
\begin{align*}
\nabla \times(\nabla V) & =0 \tag{5}\\
\nabla \cdot(\nabla \times \mathbf{A}) & =0 \tag{6}\\
\nabla \times(\nabla \times \mathbf{A}) & =\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A} \tag{7}
\end{align*}
$$

where A and V can be any functions but in particular will be the magnetic vector potential and electric scalar potential, respectively.

Because in (3) the magnetic field has no divergence, the identity in (6) allows us to again define the vector potential \mathbf{A} as we had for quasi-statics in Section 5-4:

$$
\begin{equation*}
\mathbf{B}=\nabla \times \mathbf{A} \tag{8}
\end{equation*}
$$

so that Faraday's law in (1) can be rewritten as

$$
\begin{equation*}
\nabla \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial \iota}\right)=0 \tag{9}
\end{equation*}
$$

Then (5) tells us that any curl-free vector can be written as the gradient of a scalar so that (9) becomes

$$
\begin{equation*}
\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}=-\nabla V \tag{10}
\end{equation*}
$$

where we introduce the negative sign on the right-hand side so that V becomes the electric potential in a static situation when \mathbf{A} is independent of time. We solve (10) for the electric field and with (8) rewrite (2) for linear dielectric media ($\mathbf{D}=$ $\boldsymbol{\varepsilon E}, \mathbf{B}=\mu \mathbf{H}$):

$$
\begin{equation*}
\nabla \times(\nabla \times \mathbf{A})=\mu \mathrm{J}_{f}+\frac{1}{c^{2}}\left[-\nabla\left(\frac{\partial V}{\partial t}\right)-\frac{\partial^{2} \mathbf{A}}{\partial t^{2}}\right], \quad c^{2}=\frac{1}{\varepsilon \mu} \tag{1}
\end{equation*}
$$

The vector identity of (7) allows us to reduce (11) to

$$
\begin{equation*}
\nabla^{2} \mathbf{A}-\nabla\left[\nabla \cdot \mathbf{A}+\frac{1}{c^{2}} \frac{\partial V}{\partial t}\right]-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu \mathbf{J}_{f} \tag{12}
\end{equation*}
$$

Thus far, we have only specified the curl of \mathbf{A} in (8). The Helmholtz theorem discussed in Section 5-4-1 told us that to uniquely specify the vector potential we must also specify the divergence of \mathbf{A}. This is called setting the gauge. Examining (12) we see that if we set

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=-\frac{1}{\dot{c}^{2}} \frac{\partial V}{\partial t} \tag{13}
\end{equation*}
$$

the middle term on the left-hand side of (12) becomes zero so that the resulting relation between A and J_{f} is the nonhomogeneous vector wave equation:

$$
\begin{equation*}
\nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu \mathbf{J}_{f} \tag{14}
\end{equation*}
$$

The condition of (13) is called the Lorentz gauge. Note that for static conditions, $\boldsymbol{\nabla} \cdot \mathbf{A}=0$, which is the value also picked in Section 5-4-2 for the magneto-quasi-static field. With (14) we can solve for A when the current distribution J_{f} is given and then use (13) to solve for V. The scalar potential can also be found directly by using (10) in Gauss's law of (4) as

$$
\begin{equation*}
\nabla^{2} V+\frac{\partial}{\partial t}(\nabla \cdot A)=\frac{-\rho_{f}}{\varepsilon} \tag{15}
\end{equation*}
$$

The second term can be put in terms of V by using the Lorentz gauge condition of (13) to yield the scalar wave equation:

$$
\begin{equation*}
\nabla^{2} V-\frac{1}{c^{2}} \frac{\partial^{2} V}{\partial t^{2}}=\frac{-\rho_{f}}{E} \tag{16}
\end{equation*}
$$

Note again that for static situations this relation reduces to Poisson's equation, the governing equation for the quasi-static electric potential.

9-1-2 Solutions to the Wave Equation

We see that the three scalar equations of (14) (one equation for each vector component) and that of (16) are in the same form. If we can thus find the general solution to any one of these equations, we know the general solution to all of them.

As we had earlier proceeded for quasi-static fields, we will find the solution to (16) for a point charge source. Then the solution for any charge distribution is obtained using superposition by integrating the solution for a point charge over all incremental charge elements.

In particular, consider a stationary point charge at $r=0$ that is an arbitrary function of time $Q(t)$. By symmetry, the resulting potential can only be a function of r so that (16) becomes

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)-\frac{1}{c^{2}} \frac{\partial^{2} V}{\partial t^{2}}=0, \quad r>0 \tag{17}
\end{equation*}
$$

where the right-hand side is zero because the charge density is zero everywhere except at $r=0$. By multiplying (17) through by r and realizing that

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)=\frac{\partial^{2}}{\partial r^{2}}(r V) \tag{18}
\end{equation*}
$$

we rewrite (17) as a homogeneous wave equation in the variable ($r V$):

$$
\begin{equation*}
\frac{\partial^{2}}{\partial r^{2}}(r V)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}(r V)=0 \tag{19}
\end{equation*}
$$

which we know from Section 7-3-2 has solutions

$$
\begin{equation*}
r V=f_{+}\left(t-\frac{r}{c}\right)+f_{-}\left(t+\frac{f^{0}}{c}\right) \tag{20}
\end{equation*}
$$

We throw out the negatively traveling wave solution as there are no sources for $r>0$ so that all waves emanate radially outward from the point charge at $r=0$. The arbitrary function f_{+}is evaluated by realizing that as $r \rightarrow 0$ there can be no propagation delay effects so that the potential should approach the quasi-static Coulomb potential of a point charge:

$$
\begin{equation*}
\lim _{r \rightarrow 0} V=\frac{Q(t)}{4 \pi \varepsilon r} \Rightarrow f_{+}(t)=\frac{Q(t)}{4 \pi \varepsilon} \tag{21}
\end{equation*}
$$

The potential due to a point charge is then obtained from (20) and (21) replacing time t with the retarded time $t-r / c$:

$$
\begin{equation*}
V(r, t)=\frac{Q(t-r / c)}{4 \pi \varepsilon r} \tag{22}
\end{equation*}
$$

The potential at time t depends not on the present value of charge but on the charge value a propagation time r / c earlier when the wave now received was launched.

The potential due to an arbitrary volume distribution of charge $\rho_{f}(t)$ is obtained by replacing $Q(t)$ with the differential charge element $\rho_{f}(t) d \mathrm{~V}$ and integrating over the volume of charge:

$$
\begin{equation*}
V(r, t)=\int_{\text {all charge }} \frac{\rho_{f}\left(t-r_{Q P} / c\right)}{4 \pi \varepsilon r_{Q P}} d V \tag{23}
\end{equation*}
$$

where $r_{Q P}$ is the distance between the charge as a source at point Q and the field point at P.

The vector potential in (14) is in the same direction as the current density J_{f}. The solution for \mathbf{A} can be directly obtained from (23) realizing that each component of \mathbf{A} obeys the same equation as (16) if we replace ρ_{f} / ε by $\mu \mathrm{J}_{f}$:

$$
\begin{equation*}
\mathbf{A}(r, t)=\int_{\text {all current }} \frac{\mu \mathrm{J}_{f}\left(t-r_{Q P} / c\right)}{4 \pi r_{Q P}} d V \tag{24}
\end{equation*}
$$

9-2 RADIATION FROM POINT DIPOLES

9-2-1 The Electric Dipole

The simplest building block for a transmitting antenna is that of a uniform current flowing along a conductor of incremental length $d l$ as shown in Figure 9-1. We assume that this current varies sinusoidally with time as

$$
\begin{equation*}
i(t)=\operatorname{Re}\left(\hat{I} e^{j \omega t}\right) \tag{1}
\end{equation*}
$$

Because the current is discontinuous at the ends, charge must be deposited there being of opposite sign at each end $[q(t)=$ $\operatorname{Re}\left(\hat{Q} e^{j u t}\right)$]:

$$
\begin{equation*}
i(t)= \pm \frac{d q}{d t} \Rightarrow \hat{I}= \pm j \omega \hat{Q}, \quad z= \pm \frac{d l}{2} \tag{2}
\end{equation*}
$$

This forms an electric dipole with moment

$$
\begin{equation*}
\mathbf{p}=q d l \mathbf{i}_{x} \tag{3}
\end{equation*}
$$

If we can find the potentials and fields from this simple element, the solution for any current distribution is easily found by superposition.

Figure 9-1 A point dipole antenna is composed of a very short uniformly distributed current-carrying wire. Because the current is discontinuous at the ends, equal magnitude but opposite polarity charges accumulate there forming an electric dipole.

By symmetry, the vector potential cannot depend on the angle ϕ,

$$
\begin{equation*}
A_{z}=\operatorname{Re}\left[\hat{A}_{z}(r, \theta) e^{j \omega t}\right] \tag{4}
\end{equation*}
$$

and must be in the same direction as the current:

$$
\begin{equation*}
A_{2}(r, t)=\operatorname{Re}\left[\int_{-d v 2}^{+d \psi / 2} \frac{\mu \hat{I} e^{j\left(\omega\left(t, t-r_{Q^{\prime}} / c\right)\right]}}{4 \pi r_{Q^{P}}} d z\right] \tag{5}
\end{equation*}
$$

Because the dipole is of infinitesimal length, the distance from the dipole to any field point is just the spherical radial distance r and is constant for all points on the short wire. Then the integral in (5) reduces to a pure multiplication to yield

$$
\begin{equation*}
\hat{A}_{x}=\frac{\mu \hat{I} d l}{4 \pi r} e^{-j k r}, \quad A_{z}(r, t)=\operatorname{Re}\left[\hat{A}_{x}(r) e^{j \omega t}\right] \tag{6}
\end{equation*}
$$

where we again introduce the wavenumber $k=\omega / c$ and neglect writing the sinusoidal time dependence present in all field and source quantities. The spherical components of \hat{A}_{z}
are $\left(i_{\mathbf{x}}=\mathbf{i}_{r} \cos \theta-i_{\theta} \sin \theta\right):$

$$
\begin{equation*}
\hat{A}_{r}=\hat{A}_{z} \cos \theta, \quad \hat{A_{\theta}}=-\hat{A}_{\mathrm{z}} \sin \theta, \quad \hat{A}_{\phi}=0 \tag{7}
\end{equation*}
$$

Once the vector potential is known, the electric and magnetic fields are most easily found from

$$
\begin{array}{ll}
\hat{\mathbf{H}}=\frac{1}{\mu} \nabla \times \hat{\mathbf{A}}, & \mathbf{H}(r, t)=\operatorname{Re}\left[\hat{\mathbf{H}}(r, \theta) e^{j \omega t}\right] \tag{8}\\
\hat{\mathbf{E}}=\frac{1}{j \omega \varepsilon} \nabla \times \hat{\mathbf{H}}, & \mathbf{E}(r, t)=\operatorname{Re}\left[\hat{\mathbf{E}}(r, \theta) e^{j \omega t}\right]
\end{array}
$$

Before we find these fields, let's examine an alternate approach.

9-2-2 Alternate Derivation Using the Scalar Potential

It was easiest to find the vector potential for the point electric dipole because the integration in (5) reduced to a simple multiplication. The scalar potential is due solely to the opposite point charges at each end of the dipole,

$$
\begin{equation*}
\hat{V}=\frac{\hat{Q}}{4 \pi \varepsilon}\left(\frac{e^{-j k r_{+}}}{r_{+}}-\frac{e^{-j k r_{-}}}{r_{-}}\right) \tag{9}
\end{equation*}
$$

where r_{+}and r_{-}are the distances from the respective dipole charges to any field point, as shown in Figure 9-1. Just as we found for the quasi-static electric dipole in Section 3-1-1, we cannot let r_{+}and r_{-}equal r as a zero potential would result. As we showed in Section 3-1-1, a first-order correction must be made, where

$$
\begin{align*}
& r_{+} \approx r-\frac{d l}{2} \cos \theta \\
& r_{-} \approx r+\frac{d l}{2} \cos \theta \tag{10}
\end{align*}
$$

so that (9) becomes

$$
\begin{equation*}
\hat{V} \approx \frac{\hat{Q}}{4 \pi \varepsilon r} e^{-j k r}\left(\frac{e^{j k(d / 2) \cos \theta}}{\left(1-\frac{d l}{2 r} \cos \theta\right)}-\frac{e^{-j k(d / 2) \cos \theta}}{\left(1+\frac{d l}{2 r} \cos \theta\right)}\right) \tag{11}
\end{equation*}
$$

Because the dipole length $d l$ is assumed much smaller than the field distance r and the wavelength, the phase factors in the exponentials are small so they and the l / r dependence in the denominators can be expanded in a first-order Taylor
series to result in:

$$
\begin{align*}
\lim _{\substack{k d d \ll 1 \\
d / r<1}} \hat{V} & \approx \frac{\hat{Q}}{4 \pi \varepsilon r} e^{-j k r}\left[\left(1+j \frac{k d l}{2} \cos \theta\right)\left(1+\frac{d l}{2 r} \cos \theta\right)\right. \\
& \left.-\left(1-j k \frac{d l}{2} \cos \theta\right)\left(1-\frac{d l}{2 r} \cos \theta\right)\right] \\
& =\frac{\hat{Q} d l}{4 \pi \varepsilon r^{2}} e^{-j k r} \cos \theta(1+j k r) \tag{12}
\end{align*}
$$

When the frequency becomes very low so that the wavenumber also becomes small, (12) reduces to the quasi-static electric dipole potential found in Section 3-1-1 with dipole moment $\hat{p}=\hat{\mathbf{Q}} d l$. However, we see that the radiation correction terms in (12) dominate at higher frequencies (large k) far from the dipole ($k r \gg 1$) so that the potential only dies off as $1 / r$ rather than the quasi-static $1 / r^{2}$. Using the relationships $\hat{\boldsymbol{Q}}=\hat{I} / j \omega$ and $c=1 / \sqrt{\varepsilon \mu}$, (12) could have been obtained immediately from (6) and (7) with the Lorentz gauge condition of Eq. (13) in Section 9-1-1:

$$
\begin{align*}
\hat{V}=\frac{-c^{2}}{j \omega} \nabla \cdot \hat{A} & =\frac{-c^{2}}{j \omega}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \hat{A}_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\hat{A}_{\theta} \sin \theta\right)\right) \\
& =\frac{\mu \hat{I} d l c^{2}}{4 \pi j \omega} \frac{(1+j k r)}{r^{2}} e^{-j k r} \cos \theta \\
& =\frac{\hat{Q} d l}{4 \pi \varepsilon r^{2}}(1+j k r) e^{-j k r} \cos \theta \tag{13}
\end{align*}
$$

9-2-3 The Electric and Magnetic Fields

Using (6), the fields are directly found from (8) as

$$
\begin{align*}
\hat{\mathbf{H}} & =\frac{1}{\mu} \nabla \times \hat{\mathbf{A}} \\
& =\mathbf{i}_{\phi} \frac{1}{\mu r}\left(\frac{\partial}{\partial r}\left(r \hat{A}_{\theta}\right)-\frac{\partial \hat{A}_{r}}{\partial \theta}\right) \\
& =-\mathbf{i}_{\phi} \frac{\hat{I} d l}{4 \pi} k^{2} \sin \theta\left(\frac{1}{j k r}+\frac{1}{(j k r)^{2}}\right) e^{-j k r} \tag{14}
\end{align*}
$$

$$
\begin{align*}
\hat{\mathbf{E}}= & \frac{1}{j \omega \varepsilon} \nabla \times \hat{\mathbf{H}} \\
= & \frac{1}{j \omega \varepsilon}\left(\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\hat{H}_{\phi} \sin \theta\right) \mathbf{i}_{r}-\frac{1}{r} \frac{\partial}{\partial r}\left(r \hat{H}_{\phi}\right) \mathbf{i}_{\theta}\right) \\
= & -\frac{\hat{I} d l k^{2}}{4 \pi} \sqrt{\frac{\mu}{\varepsilon}}\left\{\mathbf{i}_{r}\left[2 \cos \theta\left(\frac{1}{(j k r)^{2}}+\frac{1}{(j k r)^{3}}\right)\right]\right. \\
& \left.+\mathbf{i}_{\theta}\left[\sin \theta\left(\frac{1}{j k r}+\frac{1}{(j k r)^{2}}+\frac{1}{(j k r)^{3}}\right)\right]\right\} e^{-j k r} \tag{15}
\end{align*}
$$

Note that even this simple source generates a fairly complicated electromagnetic field. The magnetic field in (14) points purely in the ϕ direction as expected by the right-hand rule for a z-directed current. The term that varies as $1 / r^{2}$ is called the induction field or near field for it predominates at distances close to the dipole and exists even at zero frequency. The new term, which varies as $1 / r$, is called the radiation field since it dominates at distances far from the dipole and will be shown to be responsible for time-average power flow away from the source. The near field term does not contribute to power flow but is due to the stored energy in the magnetic field and thus results in reactive power.

The $1 / r^{3}$ terms in (15) are just the electric dipole field terms present even at zero frequency and so are often called the electrostatic solution. They predominate at distances close to the dipole and thus are the near fields. The electric field also has an intermediate field that varies as $1 / r^{2}$, but more important is the radiation field term in the i_{θ} component, which varies as $1 / r$. At large distances ($k r \gg 1$) this term dominates.

In the far field limit ($k r \gg 1$), the electric and magnetic fields are related to each other in the same way as for plane waves:

$$
\begin{equation*}
\lim _{k r \gg 1} \hat{E}_{\theta}=\sqrt{\frac{\mu}{\varepsilon}} \hat{H}_{\phi}=\frac{\hat{E}_{0}}{j k r} \sin \theta e^{-j k r}, \quad \hat{E}_{0}=-\frac{\hat{I} d l k^{2}}{4 \pi} \sqrt{\frac{\mu}{\varepsilon}} \tag{16}
\end{equation*}
$$

The electric and magnetic fields are perpendicular and their ratio is equal to the wave impedance $\eta=\sqrt{\mu / \varepsilon}$. This is because in the far field limit the spherical wavefronts approximate a plane.

9-2-4 Electric Field Lines

Outside the dipole the volume charge density is zero, which allows us to define an electric vector potential \mathbf{C} :

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=0 \Rightarrow \mathbf{E}=\nabla \times \mathbf{C} \tag{17}
\end{equation*}
$$

Because the electric field in (15) only has r and θ components, C must only have a ϕ component, $C_{\phi}(r, \theta)$:

$$
\begin{equation*}
\mathbf{E}=\nabla \times \mathbf{C}=\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta C_{\phi}\right) \mathbf{i}_{r}-\frac{1}{r} \frac{\partial}{\partial r}\left(r C_{\phi}\right) \mathbf{i}_{\theta} \tag{18}
\end{equation*}
$$

We follow the same procedure developed in Section 4-4-3b, where the electric field lines are given by

$$
\begin{equation*}
\frac{d r}{r d \theta}=\frac{E_{r}}{E_{\theta}}=-\frac{\frac{\partial}{\partial \theta}\left(\sin \theta C_{\phi}\right)}{\sin \theta \frac{\partial}{\partial r}\left(r C_{\phi}\right)} \tag{19}
\end{equation*}
$$

which can be rewritten as an exact differential,

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(r \sin \theta C_{\phi}\right) d r+\frac{\partial}{\partial \theta}\left(r \sin \theta C_{\phi}\right) d \theta=0 \Rightarrow d\left(r \sin \theta C_{\phi}\right)=0 \tag{20}
\end{equation*}
$$

so that the field lines are just lines of constant stream-function $r \sin \theta C_{\phi} . C_{\phi}$ is found by equating each vector component in (18) to the solution in (15):

$$
\begin{align*}
& \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \hat{C}_{\phi}\right) \\
& \quad=\hat{E}_{r}=-\frac{\hat{I} d l k^{2}}{4 \pi} \sqrt{\frac{\mu}{\varepsilon}}\left[2 \cos \theta\left(\frac{1}{(j k r)^{2}}+\frac{1}{(j k r)^{3}}\right)\right] e^{-j k r} \\
& -\frac{1}{r} \frac{\partial}{\partial r}\left(r \hat{C}_{\phi}\right) \\
& \quad=\hat{E}_{\theta}=-\frac{\hat{I} d l k^{2}}{4 \pi} \sqrt{\frac{\mu}{\varepsilon}}\left[\sin \theta\left(\frac{1}{(j k r)}+\frac{1}{(j k r)^{2}}+\frac{1}{(j k r)^{3}}\right)\right] e^{-j k r} \tag{21}
\end{align*}
$$

which integrates to

$$
\begin{equation*}
\hat{C}_{\phi}=\frac{\hat{I} d l}{4 \pi} \sqrt{\frac{\mu}{\varepsilon}} \frac{\sin \theta}{r}\left(1-\frac{j}{(k r)}\right) e^{-j k r} \tag{22}
\end{equation*}
$$

Then assuming \hat{I} is real, the instantaneous value of C_{ϕ} is

$$
\begin{align*}
C_{\phi} & =\operatorname{Re}\left(\hat{C}_{\phi} e^{\dot{k} \omega t}\right) \\
& =\frac{\hat{I} d l}{4 \pi} \sqrt{\frac{\mu}{\varepsilon}} \frac{\sin \theta}{r}\left(\cos (\omega t-k r)+\frac{\sin (\omega t-k r)}{k r}\right) \tag{23}
\end{align*}
$$

so that, omitting the constant amplitude factor in (23), the field lines are

$$
\begin{equation*}
r C_{\phi} \sin \theta=\text { const } \Rightarrow \sin ^{2} \theta\left(\cos (\omega t-k r)+\frac{\sin (\omega t-k r)}{k r}\right)=\text { const } \tag{24}
\end{equation*}
$$

Figure 9-2 The electric field lines for a point electric dipole at $\omega t=0$ and $\omega t=\pi / 2$.

3

These field lines are plotted in Figure 9-2 at two values of time. We can check our result with the static field lines for a dipole given in Section 3-1-1. Remembering that $k=\omega / c$, at low frequencies,

$$
\lim _{\omega \rightarrow 0}\left\{\begin{array}{l}
\cos (\omega t-k r) \approx 1 \tag{25}\\
\frac{\sin (\omega t-k r)}{k r} \approx \frac{(t-r / c)}{r / c} \approx \frac{t}{r / c}-1
\end{array}\right.
$$

so that, in the low-frequency limit at a fixed time, (24) approaches the result of Eq. (6) of Section 3-1-1:

$$
\begin{equation*}
\lim _{\omega \rightarrow 0} \sin ^{2} \theta\left(\frac{c t}{r}\right)=\text { const } \tag{26}
\end{equation*}
$$

Note that the field lines near the dipole are those of a static dipole field, as drawn in Figure 3-2. In the far field limit

$$
\begin{equation*}
\lim _{k r \gg 1} \sin ^{2} \theta \cos (\omega t-k r)=\text { const } \tag{27}
\end{equation*}
$$

the field lines repeat with period $\lambda=2 \pi / k$.

9-2-5 Radiation Resistance

Using the electric and magnetic fields of Section 9-2-3, the time-average power density is

$$
\begin{align*}
<\boldsymbol{S}>= & \frac{1}{2} \operatorname{Re}\left(\hat{\mathbf{E}} \times \hat{\mathbf{H}}^{*}\right) \\
= & \operatorname{Re}\left\{\frac{|\hat{I} d l|^{2} \eta k^{4}}{2(4 \pi)^{2}}\left[-\mathbf{i}_{\theta} \sin 2 \theta\left(-\frac{1}{(j k r)^{3}}+\frac{1}{(j k r)^{5}}\right)\right]\right. \\
& \left.+\mathbf{i}_{r} \sin ^{2} \theta\left(-\frac{1}{(j k r)^{2}}+\frac{1}{(j k r)^{5}}\right)\right\} \\
= & \frac{1}{2}|\hat{I} d l|^{2}\left(\frac{k}{4 \pi}\right)^{2} \frac{\eta}{r^{2}} \sin ^{2} \theta \mathbf{i}_{r} \\
= & \frac{1}{2} \frac{\left|\hat{E}_{0}\right|^{2}}{\eta} \frac{\sin ^{2} \theta}{(k r)^{2}} \mathbf{i}_{r} \tag{28}
\end{align*}
$$

where \hat{E}_{0} is defined in (16).
Only the far fields contributed to the time-average power flow. The near and intermediate fields contributed only imaginary terms in (28) representing reactive power.

The power density varies with the angle θ, being zero along the electric dipole's axis ($\theta=0, \pi$) and maximum at right angles to it ($\theta=\pi / 2$), illustrated by the radiation power pattern in Fig. 9-3. The strength of the power density is proportional to the length of the vector from the origin to the

Figure 9-3 The strength of the electric field and power density due to a z-directed point dipole as a function of angle θ is proportional to the length of the vector from the origin to the radiation pattern.
radiation pattern. These directional properties are useful in beam steering, where the directions of power flow can be controlled.

The total time-average power radiated by the electric dipole is found by integrating the Poynting vector over a spherical surface at any radius r :

$$
\begin{align*}
<P> & =\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi}<S_{r}>r^{2} \sin \theta d \theta d \phi \\
& =\frac{1}{2}|\hat{I} d l|^{2}\left(\frac{k}{4 \pi}\right)^{2} \eta 2 \pi \int_{\theta=0}^{\pi} \sin ^{3} \theta d \theta \\
& =\left.\frac{|\hat{I} d l|^{2}}{16 \pi} \eta k^{2}\left[-\frac{1}{3} \cos \theta\left(\sin ^{2} \theta+2\right)\right]\right|_{0} ^{\pi} \\
& =\frac{|\hat{I} . d l|^{2}}{12 \pi} \eta k^{2} \tag{29}
\end{align*}
$$

As far as the dipole is concerned, this radiated power is lost in the same way as if it were dissipated in a resistance R,

$$
\begin{equation*}
<P>=\frac{1}{2}|\hat{I}|^{2} R \tag{30}
\end{equation*}
$$

where this equivalent resistance is called the radiation resistance:

$$
\begin{equation*}
R=\frac{\eta}{6 \pi}(k d l)^{2}=\frac{2 \pi \eta}{3}\left(\frac{d l}{\lambda}\right)^{2}, \quad k=\frac{2 \pi}{\lambda} \tag{31}
\end{equation*}
$$

In free space $\eta_{0}=\sqrt{\mu_{0} / \varepsilon_{0}} \approx 120 \pi$, the radiation resistance is

$$
\begin{equation*}
R_{0}=80 \pi^{2}\left(\frac{d l}{\lambda}\right)^{2} \quad \text { (free space) } \tag{32}
\end{equation*}
$$

These results are only true for point dipoles, where $d l$ is much less than a wavelength ($d l / \lambda \ll 1$). This verifies the validity of the quasi-static approximation for geometries much smaller than a radiated wavelength, as the radiated power is then negligible.

If the current on a dipole is not constant but rather varies with z over the length, the only term that varies with z for the vector potential in (5) is $\hat{I}(z)$:

$$
\begin{equation*}
\hat{A}_{z}(r)=\operatorname{Re}\left[\int_{-d / / 2}^{+d / / 2} \frac{\mu \hat{I}(z) e^{-j k r_{Q P}}}{4 \pi r_{Q P}} d z\right] \approx \operatorname{Re}\left[\frac{\mu e^{-j k r_{Q P}}}{4 \pi r_{Q P}} \int_{-d / 2}^{+d / L 2} \hat{I}(z) d z\right] \tag{33}
\end{equation*}
$$

where, because the dipole is of infinitesimal length, the distance $r_{Q P}$ from any point on the dipole to any field point far from the dipole is essentially r, independent of z. Then, all further results for the electric and magnetic fields are the same as in Section 9-2-3 if we replace the actual dipole length $d l$ by its effective length,

$$
\begin{equation*}
d l_{\mathrm{eff}}=\frac{1}{\hat{I}_{0}} \int_{-d / / 2}^{+d l / 2} \hat{I}(z) d z \tag{34}
\end{equation*}
$$

where \hat{I}_{0} is the terminal current feeding the center of the dipole.

Generally the current is zero at the open circuited ends, as for the linear distribution shown in Figure 9-4,

$$
\hat{I}(z)= \begin{cases}I_{0}(1-2 z / d l), & 0 \leq z \leq d l / 2 \tag{35}\\ I_{0}(1+2 z / d l), & -d l / 2 \leq z \leq 0\end{cases}
$$

so that the effective length is half the actual length:

$$
\begin{equation*}
d l_{\mathrm{eff}}=\frac{1}{I_{0}} \int_{-d / / 2}^{+d / 42} \hat{I}(z) d z=\frac{d l}{2} \tag{36}
\end{equation*}
$$

(a)

(b)

Figure 9-4 (a) If a point electric dipole has a nonuniform current distribution, the solutions are of the same form if we replace the actual dipole length $d l$ by an effective length $\mathrm{dl}_{\text {eff. }}$ (b) For a triangular current distribution the effective length is half the true length.

Because the fields are reduced by half, the radiation resistance is then reduced by $\frac{1}{4}$:

$$
\begin{equation*}
R=\frac{2 \pi \eta}{3}\left(\frac{d l_{\mathrm{eff}}}{\lambda}\right)^{2}=20 \pi^{2} \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}\left(\frac{d l}{\lambda}\right)^{2} \tag{37}
\end{equation*}
$$

In free space the relative permeability μ_{r} and relative permittivity ε_{r} are unity.

Note also that with a spatially dependent current distribution, a line charge distribution is found over the whole length of the dipole and not just on the ends:

$$
\begin{equation*}
\hat{\lambda}=-\frac{1}{j \omega} \frac{d \hat{I}}{d z} \tag{38}
\end{equation*}
$$

For the linear current distribution described by (35), we see that:

$$
\hat{\lambda}= \pm \frac{2 I_{0}}{j \omega d l}\left\{\begin{array}{l}
0 \leq z \leq d l / 2 \tag{39}\\
-d l / 2 \leq z \leq 0
\end{array}\right.
$$

9-2-6 Rayleigh Scattering (or why is the sky blue?)

If a plane wave electric field $\operatorname{Re}\left[E_{0} e^{j \omega t} \mathbf{i}_{x}\right]$ is incident upon an atom that is much smaller than the wavelength, the induced dipole moment also contributes to the resultant field, as illustrated in Figure 9-5. The scattered power is perpendicular to the induced dipole moment. Using the dipole model developed in Section 3-1-4, where a negative spherical electron cloud of radius R_{0} with total charge $-Q$ surrounds a fixed

(a)

(b)

Figure 9-5 An incident electric field polarizes dipoles that then re-radiate their energy primarily perpendicular to the polarizing electric field. The time-average scattered power increases with the fourth power of frequency so shorter wavelengths of light are scattered more than longer wavelengths. (a) During the daytime an earth observer sees more of the blue scattered light so the sky looks blue (short wavelengths). (b) Near sunset the light reaching the observer lacks blue so the sky appears reddish (long wavelength).
positive point nucleus, Newton's law for the charged cloud with mass m is:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\omega_{0}^{2} x=\operatorname{Re}\left(\frac{Q E_{0}}{m} e^{j \omega t}\right), \quad \omega_{0}^{2}=\frac{Q^{2}}{4 \pi \varepsilon m R_{0}^{3}} \tag{40}
\end{equation*}
$$

The resulting dipole moment is then

$$
\begin{equation*}
\hat{p}=Q \hat{x}=\frac{Q^{2} E_{0} / m}{\omega_{0}^{2}-\omega^{2}} \tag{41}
\end{equation*}
$$

where we neglect damping effects. This dipole then re-radiates with solutions given in Sections 9-2-1-9-2-5 using the dipole moment of (41) ($\hat{I} d l \rightarrow j \omega \hat{p}$). The total time-average power radiated is then found from (29) as

$$
\begin{equation*}
<P>=\frac{\omega^{4}|\beta|^{2} \eta}{12 \pi c^{2}}=\frac{\omega^{4} \eta\left(Q^{2} E_{0} / m\right)^{2}}{12 \pi c^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}} \tag{42}
\end{equation*}
$$

To approximately compute ω_{0}, we use the approximate radius of the electron found in Section 3-8-2 by equating the energy stored in Einstein's relativistic formula relating mass to energy:

$$
\begin{equation*}
m c^{2}=\frac{3 Q^{2}}{20 \pi \varepsilon R_{0}} \Rightarrow R_{0}=\frac{3 Q^{2}}{20 \pi \varepsilon m c^{2}} \approx 1.69 \times 10^{-15} \mathrm{~m} \tag{43}
\end{equation*}
$$

Then from (40)

$$
\begin{equation*}
\omega_{0}=\frac{\sqrt{5 / 3} 20 \pi \varepsilon m c^{3}}{3 Q^{2}} \approx 2.3 \times 10^{23} \mathrm{radian} / \mathrm{sec} \tag{44}
\end{equation*}
$$

is much greater than light frequencies ($\omega \approx 10^{15}$) so that (42) becomes approximately

$$
\begin{equation*}
\lim _{\omega_{0} \gg \omega}\langle P\rangle \approx \frac{\eta}{12 \pi}\left(\frac{Q^{2} E_{0} \omega^{2}}{m c \omega_{0}^{2}}\right)^{2} \tag{45}
\end{equation*}
$$

This result was originally derived by Rayleigh to explain the blueness of the sky. Since the scattered power is proportional to $\boldsymbol{\omega}^{4}$, shorter wavelength light dominates. However, near sunset the light is scattered parallel to the earth rather than towards it. The blue light received by an observer at the earth is diminished so that the longer wavelengths dominate and the sky appears reddish.

9-2-7 Radiation from a Point Magnetic Dipole

A closed sinusoidally varying current loop of very small size flowing in the $z=0$ plane also generates radiating waves. Because the loop is closed, the current has no divergence so
that there is no charge and the scalar potential is zero. The vector potential phasor amplitude is then

$$
\begin{equation*}
\hat{\mathbf{A}}(r)=\int \frac{\mu \hat{\mathbf{I}} e^{-j k r_{Q P}}}{4 \pi r_{Q P}} d l \tag{46}
\end{equation*}
$$

We assume the dipole to be much smaller than a wavelength, $k\left(r_{Q^{P}}-r\right) \ll 1$, so that the exponential factor in (46) can be linearized to

$$
\begin{equation*}
\lim _{k\left(r_{Q P} P^{-r) \times 1}\right.} e^{-j k r_{Q P}}=e^{-j k r} e^{-j k\left(r_{Q P}-r\right)} \approx e^{-j k r}\left[1-j k\left(r_{Q P}-r\right)\right] \tag{47}
\end{equation*}
$$

Then (46) reduces to

$$
\begin{align*}
\hat{\mathbf{A}}(r) & =\int \frac{\mu \hat{\mathbf{I}}}{4 \pi} e^{-j k r}\left(\frac{1+j k r}{r_{Q P}}-j k\right) d l \\
& =e^{-j k r} \int \frac{\mu \hat{\mathbf{I}}}{4 \pi}\left(\frac{1+j k r}{r_{Q P}}-j k\right) d l \\
& =\frac{\mu}{4 \pi} e^{-j k r}\left((1+j k r) \int \frac{\hat{\mathbf{I}} d l}{r_{Q P}}-j k \int \hat{\mathbf{I}} d l\right) \tag{48}
\end{align*}
$$

where all terms that depend on r can be taken outside the integrals because r is independent of $d l$. The second integral is zero because the vector current has constant magnitude and flows in a closed loop so that its average direction integrated over the loop is zero. This is most easily seen with a rectangular loop where opposite sides of the loop contribute equal magnitude but opposite signs to the integral, which thus sums to zero. If the loop is circular with radius a,

$$
\begin{equation*}
\hat{I} d l=\hat{I} \mathbf{i}_{\phi} a d \phi \Rightarrow \int_{0}^{2 \pi} \mathbf{i}_{\phi} d \phi=\int_{0}^{2 \pi}\left(-\sin \phi \mathbf{i}_{x}+\cos \phi \mathbf{i}_{y}\right) d \phi=0 \tag{49}
\end{equation*}
$$

the integral is again zero as the average value of the unit vector \mathbf{i}_{ϕ} around the loop is zero.

The remaining integral is the same as for quasi-statics except that it is multiplied by the factor $(1+j k r) e^{-j k r}$. Using the results of Section 5-5-1, the quasi-static vector potential is also multiplied by this quantity:

$$
\begin{equation*}
\hat{\mathbf{A}}=\frac{\mu \hat{m}}{4 \pi r^{2}} \sin \theta(1+j k r) e^{-j k r} \mathbf{i}_{\boldsymbol{\phi}}, \quad \hat{m}=\hat{I} d S \tag{50}
\end{equation*}
$$

The electric and magnetic fields are then

$$
\begin{align*}
\hat{\mathbf{H}}= & \frac{1}{\mu} \nabla \times \hat{\mathbf{A}}=-\frac{\hat{m}}{4 \pi} j k^{3} e^{-j k r}\left\{\mathbf{i}_{r}\left[2 \cos \theta\left(\frac{1}{(j k r)^{2}}+\frac{1}{(j k r)^{3}}\right)\right]\right. \\
& \left.+\mathbf{i}_{\theta}\left[\sin \theta\left(\frac{1}{j k r}+\frac{1}{(j k r)^{2}}+\frac{1}{(j k r)^{3}}\right)\right]\right\} \tag{5l}\\
\hat{\mathbf{E}} & =\frac{1}{j \omega \varepsilon} \nabla \times \hat{\mathbf{H}}=\frac{\hat{m} j k^{3}}{4 \pi} \eta e^{-j k r} \sin \theta\left(\frac{1}{(j k r)}+\frac{1}{(j k r)^{2}}\right) \mathbf{i}_{\phi}
\end{align*}
$$

The magnetic dipole field solutions are the dual to those of the electric dipole where the electric and magnetic fields reverse roles if we replace the electric dipole moment with the magnetic dipole moment:

$$
\begin{equation*}
\frac{\mathbf{p}}{\varepsilon}=\frac{q \mathbf{d} \mathbf{l}}{\varepsilon}=\frac{\mathbf{I} d l}{j \omega \varepsilon} \rightarrow \mathbf{m} \tag{52}
\end{equation*}
$$

9-3 POINT DIPOLE ARRAYS

The power density for a point electric dipole varies with the broad angular distribution $\sin ^{2} \theta$. Often it is desired that the power pattern be highly directive with certain angles carrying most of the power with negligible power density at other angles. It is also necessary that the directions for maximum power flow be controllable with no mechanical motion of the antenna. These requirements can be met by using more dipoles in a periodic array.

9-3-1 A Simple Two Element Array

To illustrate the basic principles of antenna arrays we consider the two element electric dipole array shown in Figure 9-6. We assume each element carries uniform currents \hat{I}_{1} and \hat{I}_{2} and has lengths $d l_{1}$ and $d l_{2}$, respectively. The elements are a distance $2 a$ apart. The fields at any point P are given by the superposition of fields due to each dipole alone. Since we are only interested in the far field radiation pattern where $\theta_{1} \approx \theta_{2} \approx \theta$, we use the solutions of Eq. (16) in Section 9-2-3 to write:

$$
\begin{equation*}
\hat{E}_{\theta}=\eta \hat{H}_{\phi}=\frac{\hat{E}_{i} \sin \theta e^{-j k r_{1}}}{j k r_{1}}+\frac{\hat{E}_{2} \sin \theta e^{-j k r_{2}}}{j k r_{2}} \tag{1}
\end{equation*}
$$

where

$$
\hat{E}_{1}=-\frac{\hat{I}_{1} d l_{1} k^{2}}{4 \pi} \eta, \quad \hat{E}_{2}=-\frac{\hat{I}_{2} d l_{2} k^{2} \eta}{4 \pi}
$$

Figure 9-6 The field at any point P due to two-point dipoles is just the sum of the fields due to each dipole alone taking into account the difference in distances to each dipole.

Remember, we can superpose the fields but we cannot superpose the power flows.

From the law of cosines the distances r_{1} and r_{2} are related as

$$
\begin{align*}
& r_{2}=\left[r^{2}+a^{2}-2 a r \cos (\pi-\xi)\right]^{1 / 2}=\left[r^{2}+a^{2}+2 a r \cos \xi\right]^{1 / 2} \\
& r_{1}=\left[r^{2}+a^{2}-2 a r \cos \xi\right]^{1 / 2} \tag{2}
\end{align*}
$$

where ξ is the angle between the unit radial vector i_{r} and the x axis:

$$
\cos \xi=\mathbf{i}_{r} \cdot \mathbf{i}_{x}=\sin \theta \cos \phi
$$

Since we are interested in the far field pattern, we linearize (2) to
$\lim _{r \gg a}\left\{\begin{array}{l}r_{2} \approx r\left[1+\frac{1}{2}\left(\frac{a^{2}}{r^{2}}+\frac{2 a}{r} \sin \theta \cos \phi\right)\right] \approx r+a \sin \theta \cos \phi \\ r_{1} \approx r\left[1+\frac{1}{2}\left(\frac{a^{2}}{r^{2}}-\frac{2 a}{r} \sin \theta \cos \phi\right)\right] \approx r-a \sin \theta \cos \phi\end{array}\right.$

In this far field limit, the correction terms have little effect in the denominators of (1) but can have significant effect in the exponential phase factors if a is comparable to a wavelength so that $k a$ is near or greater than unity. In this spirit we include the first-order correction terms of (3) in the phase
factors of (1), but not anywhere else, so that (1) is rewritten as

$$
\begin{align*}
\hat{E}_{\theta} & =\eta \hat{H}_{\phi} \\
& =\underbrace{\frac{j k \eta}{4 \pi r} \sin \theta e^{-j k r}}_{\text {element factor }} \underbrace{\hat{I}_{1} d l_{1} e^{j k a \sin \theta \cos \phi}+\hat{I}_{2} d l_{2} e^{-j k a \sin \theta \cos \phi}}_{\text {array factor }}) \tag{4}
\end{align*}
$$

The first factor is called the element factor because it is the radiation field per unit current element ($\hat{I} d l$) due to a single dipole at the origin. The second factor is called the array factor because it only depends on the geometry and excitations (magnitude and phase) of each dipole element in the array.

To examine (4) in greater detail, we assume the two dipoles are identical in length and that the currents have the same magnitude but can differ in phase χ :

$$
\begin{gather*}
d l_{1}=d l_{2} \equiv d l \\
\hat{I}_{1}=\hat{I}, \quad \hat{I}_{2}=\hat{I} e^{j x} \Rightarrow \hat{E}_{1}=\hat{E}_{0}, \quad \hat{E}_{2}=\hat{E}_{0} e^{j x} \tag{5}
\end{gather*}
$$

so that (4) can be written as

$$
\begin{equation*}
\hat{E}_{\theta}=\eta \hat{H}_{\phi}=\frac{2 \hat{E}_{0}^{\hat{k}}}{j k r} e^{-j k r} \sin \theta e^{i \chi / 2} \cos \left(k a \sin \theta \cos \phi-\frac{\chi}{2}\right) \tag{6}
\end{equation*}
$$

Now the far fields also depend on ϕ. In particular, we focus attention on the $\theta=\pi / 2$ plane. Then the power flow,

$$
\begin{equation*}
\lim _{\theta=\pi / 2}<S_{r}>=\frac{1}{2 \eta}\left|\hat{E}_{\theta}\right|^{2}=\frac{2\left|\hat{E}_{\theta}\right|^{2}}{\eta(k r)^{2}} \cos ^{2}\left(k a \cos \phi-\frac{\chi}{2}\right) \tag{7}
\end{equation*}
$$

depends strongly on the dipole spacing $2 a$ and current phase difference χ.

(a) Broadside Array

Consider the case where the currents are in phase ($\chi=0$) but the dipole spacing is a half wavelength $(2 a=\lambda / 2)$. Then, as illustrated by the radiation pattern in Figure 9-7a, the field strengths cancel along the x axis while they add along the y axis. This is because along the y axis $r_{1}=r_{2}$, so the fields due to each dipole add, while along the x axis the distances differ by a half wavelength so that the dipole fields cancel. Wherever the array factor phase ($k a \cos \phi-\chi / 2$) is an integer multiple of π, the power density is maximum, while wherever it is an odd integer multiple of $\pi / 2$, the power density is zero. Because this radiation pattern is maximum in the direction perpendicular to the array, it is called a broadside pattern.

Figure 9-7 The power radiation pattern due to two-point dipoles depends strongly on the dipole spacing and current phases. With a half wavelength dipole spacing ($2 a=\lambda / 2$), the radiation pattern is drawn for various values of current phase difference in the $\theta=\pi / 2$ plane. The broadside array in (a) with the currents in phase $(\chi=0)$ has the power lobe in the direction perpendicular to the array while the end-fire array in (e) has out-of-phase currents ($\chi=\pi$) with the power lobe in the direction along the array.

(b) End-fire Array

If, however, for the same half wavelength spacing the currents are out of phase ($\chi=\pi$), the fields add along the x axis but cancel along the y axis. Here, even though the path lengths along the y axis are the same for each dipole, because the currents are out of phase the fields cancel. Along the x axis the extra π phase because of the half wavelength path difference is just canceled by the current phase difference of π so that the fields due to each dipole add. The radiation pattern is called end-fire because the power is maximum in the direction along the array, as shown in Figure 9-7e.

(c) Arbitrary Current Phase

For arbitrary current phase angles and dipole spacings, a great variety of radiation patterns can be obtained, as illustrated by the sequences in Figures 9-7 and 9-8. More power lobes appear as the dipole spacing is increased.

9-3-2 An N Dipole Array

If we have $(2 N+1)$ equally spaced dipoles, as shown in Figure $9-9$, the nth dipole's distance to the far field point is approximately,

$$
\begin{equation*}
\lim _{r>0|n a|} r_{n} \approx r-n a \sin \theta \cos \phi \tag{8}
\end{equation*}
$$

so that the array factor of (4) generalizes to

$$
\begin{equation*}
A F=\sum_{-N}^{+N} \hat{I}_{n} d l_{n} e^{j k n a \sin \theta \cos \phi} \tag{9}
\end{equation*}
$$

where for symmetry we assume that there are as many dipoles to the left (negative n) as to the right (positive n) of the z axis, including one at the origin ($n=0$). In the event that a dipole is not present at a given location, we simply let its current be zero. The array factor can be varied by changing the current magnitude or phase in the dipoles. For simplicity here, we assume that all dipoles have the same length $d l$, the same current magnitude I_{0}, and differ in phase from its neighbors by a constant angle χ_{0} so that

$$
\begin{equation*}
\hat{I}_{n}=I_{0} e^{-j n x_{0}}, \quad-N \leq n \leq N \tag{10}
\end{equation*}
$$

and (9) becomes

$$
\begin{equation*}
A F=I_{0} d l \sum_{-N}^{+N} e^{j\left(h\left(h a \sin \theta \cos \phi-x_{0}\right)\right.} \tag{11}
\end{equation*}
$$

$<S_{r}>\alpha \cos ^{2}\left(\pi \cos \phi-\frac{\pi}{4}\right), x=\frac{\pi}{2}$
(c)

$<S_{r}>\alpha \cos ^{2}\left(\pi \cos \phi-\frac{3 \pi}{8}\right), \quad x=\frac{3}{4} \pi$
(d)

$<S_{r}>\alpha \cos ^{2}\left(\pi \cos \varphi=\frac{\pi}{2}\right), \chi=\pi$
(e)

Figure 9-8 With a full wavelength dipole spacing (2a= $\boldsymbol{\text { a }}$) there are four main power lobes.

Defining the parameter

$$
\begin{equation*}
\beta=e^{j\left(k a \sin \theta \cos \phi-x_{0}\right)} \tag{12}
\end{equation*}
$$

the geometric series in (11) can be written as

$$
\begin{align*}
S=\sum_{-N}^{+N} \beta^{n}=\beta^{-N}+\beta^{-N+1}+\cdots+\beta^{-2}+\beta^{-1} & +1+\beta+\beta^{2}+\cdots \\
& +\beta^{N-1}+\beta^{N} \tag{13}
\end{align*}
$$

If we multiply this series by β and subtract from (13), we have

$$
\begin{equation*}
S(1-\beta)=\beta^{-N}-\beta^{N+1} \tag{14}
\end{equation*}
$$

which allows us to write the series sum in closed form as

$$
\begin{align*}
& S=\frac{\beta^{-N}-\beta^{N+1}}{1-\beta}=\frac{\beta^{-(N+1 / 2)}-\beta^{(N+1 / 2)}}{\beta^{-1 / 2}-\beta^{1 / 2}} \\
&=\frac{\sin \left[\left(N+\frac{1}{2}\right)\left(k a \sin \theta \cos \phi-\chi_{0}\right)\right]}{\sin \left[\frac{1}{2}\left(k a \sin \theta \cos \phi-\chi_{0}\right)\right]} \tag{15}
\end{align*}
$$

In particular, we again focus on the solution in the $\theta=\pi / 2$ plane so that the array factor is

$$
\begin{equation*}
A F=I_{0} d l \frac{\sin \left[\left(N+\frac{1}{2}\right)\left(k a \cos \phi-\chi_{0}\right)\right]}{\sin \left[\frac{1}{2}\left(k a \cos \phi-\chi_{0}\right)\right]} \tag{16}
\end{equation*}
$$

The radiation pattern is proportional to the square of the array factor. Maxima occur where

$$
\begin{equation*}
k a \cos \phi-\chi_{0}=2 n \pi \quad n=0,1,2, \ldots \tag{17}
\end{equation*}
$$

The principal maximum is for $n=0$ as illustrated in Figure $9-10$ for various values of $k a$ and χ_{0}. The larger the number of dipoles N, the narrower the principal maximum with smaller amplitude side lobes. This allows for a highly directive beam at angle ϕ controlled by the incremental current phase angle χ_{0}, so that $\cos \phi=\chi_{0} / k a$, which allows for electronic beam steering by simply changing χ_{0}.

9-4 LONG DIPOLE ANTENNAS

The radiated power, proportional to $(d / / \lambda)^{2}$, is small for point dipole antennas where the dipole's length $d l$ is. much less than the wavelength λ. More power can be radiated if the length of the antenna is increased. Then however, the fields due to each section of the antenna may not add constructively.

Figure 9-9 A linear point dipole array with $2 N+1$ equally spaced dipoles.

9-4-1 Far Field Solution

Consider the long dipole antenna in Figure 9-11 carrying a current $\hat{I}(z)$. For simplicity we restrict ourselves to the far field pattern where $r \gg L$. Then, as we found for dipole arrays, the differences in radial distance for each incremental current element of length $d z$ are only important in the exponential phase factors and not in the $1 / r$ dependences.

From Section 9-2-3, the incremental current element at position z generates a far electric field:

$$
\begin{equation*}
d \hat{E}_{\theta}=\eta d \hat{H}_{\phi}=\frac{j k \eta}{4 \pi} \frac{\hat{I}(z) d z}{r} \sin \theta e^{-j k(r-z \cos \theta)} \tag{1}
\end{equation*}
$$

where we again assume that in the far field the angle θ is the same for all incremental current elements.

The total far electric field due to the entire current distribution is obtained by integration over all current elements:

$$
\begin{equation*}
\hat{E}_{\theta}=\eta \hat{H}_{\phi}=\frac{j k \eta}{4 \pi r} \sin \theta e^{-j k r} \int_{-L / 2}^{+L / 2} \hat{I}(z) e^{j k z \cos \theta} d z \tag{2}
\end{equation*}
$$

If the current distribution is known, the integral in (2) can be directly evaluated. The practical problem is difficult because the current distribution along the antenna is determined by the near fields through the boundary conditions.

Figure 9-10 The radiation pattern for an N dipole linear array for various values of N, dipole spacing $2 a$, and relative current phase χ_{0} in the $\theta=\pi / 2$ plane.

Since the fields and currents are coupled, an exact solution is impossible no matter how simple the antenna geometry. In practice, one guesses a current distribution and calculates the resultant (near and far) fields. If all boundary conditions along the antenna are satisfied, then the solution has been found. Unfortunately, this never happens with the first guess. Thus based on the field solution obtained from the originally guessed current, a corrected current distribution is used and

Figure 9-10
the resulting fields are again calculated. This procedure is numerically iterated until convergence is obtained with selfconsistent fields and currents.

9-4-2 Uniform Current

A particularly simple case is when $\hat{I}(z)=\hat{I}_{0}$ is a constant. Then (2) becomes:

$$
\begin{align*}
\hat{E}_{\theta}=\eta \hat{H}_{\phi} & =\frac{j k \eta}{4 \pi r} \sin \theta e^{-j k r} \hat{I}_{0} \int_{-L / 2}^{+L / 2} e^{j k z \cos \theta} d z \\
& =\left.\frac{j k \eta}{4 \pi r} \sin \theta e^{-j k r} \hat{I}_{0} \frac{e^{j k z \cos \theta}}{j k \cos \theta}\right|_{-L / 2} ^{+L / 2} \\
& =\frac{\hat{I}_{0} \eta}{4 \pi r} \tan \theta e^{-j k r}\left[2 j \sin \left(\frac{k L}{2} \cos \theta\right)\right] \tag{3}
\end{align*}
$$

The time-average power density is then

$$
\begin{equation*}
<S_{r}>=\frac{1}{2 \eta}\left|\hat{E}_{\theta}\right|^{2}=\frac{\left|\hat{E}_{0}\right|^{2} \tan ^{2} \theta \sin ^{2}[(k L / 2) \cos \theta]}{2 \eta(k r)^{2}(k L / 2)^{2}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{E}_{0}=\frac{\hat{I}_{0} L \eta k^{2}}{4 \pi} \tag{5}
\end{equation*}
$$

This power density is plotted versus angle $\boldsymbol{\theta}$ in Figure 9-12 for various lengths L. The principal maximum always appears at $\theta=\pi / 2$, becoming sharper as L increases. For $L>\lambda$, zero power density occurs at angles

$$
\begin{equation*}
\cos \theta=\frac{2 n \pi}{k L}=\frac{n \lambda}{L}, \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

Secondary maxima then occur at nearby angles but at much smaller amplitudes compared to the main lobe at $\theta=\pi / 2$.

9-4-3 Radiation Resistance

The total time-average radiated power is obtained by integrating (4) over all angles:

$$
\begin{align*}
<P> & =\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi}<S_{r}>r^{2} \sin \theta d \theta d \phi \\
& =\frac{\left|\hat{E}_{0}\right|^{2} \pi}{k^{2} \eta(k L / 2)^{2}} \int_{\theta=0}^{\pi} \frac{\sin ^{3} \theta}{\cos ^{2} \theta} \sin ^{2}\left(\frac{k L}{2} \cos \theta\right) d \theta \tag{7}
\end{align*}
$$

If we introduce the change of variable,

$$
\begin{equation*}
v=\frac{k L}{2} \cos \theta, \quad d v=-\frac{k L}{2} \sin \theta d \theta \tag{8}
\end{equation*}
$$

the integral of (7) becomes

$$
\begin{equation*}
\left\langle P>=\frac{\left|\hat{E}_{0}\right|^{2} \pi}{k^{2} \eta(k L / 2)^{2}} \int_{+k L / 2}^{-k L / 2}\left(\frac{2}{k L} \sin ^{2} v d v-\frac{k L}{2} \frac{\sin ^{2} v}{v^{2}}\right) d v\right. \tag{9}
\end{equation*}
$$

The first term is easily integrable as

$$
\begin{equation*}
\int \sin ^{2} z d v=\frac{1}{2} v-\frac{1}{4} \sin 2 v \tag{10}
\end{equation*}
$$

The second integral results in a new tabulated function $\operatorname{Si}(x)$ called the sine integral, defined as:

$$
\begin{equation*}
S i(x)=\int_{0}^{x} \frac{\sin t}{t} d t \tag{11}
\end{equation*}
$$

Figure 9-11 (a) For a long dipole antenna, each incremental current element at coordinate z is at a slightly different distance to any field point P. (b) The simplest case study has the current uniformly distributed over the length of the dipole.
which is plotted in Figure 9-13. Then the second integral in (9) can be expanded and integrated by parts:

$$
\begin{align*}
\int \frac{\sin ^{2} v}{v^{2}} d v & =\int \frac{(1-\cos 2 v)}{2 v^{2}} d v \\
& =-\frac{1}{2 v}-\int \cos 2 v \frac{d v}{2 v^{2}} \\
& =-\frac{1}{2 v}+\frac{\cos 2 v}{2 v}+\int \frac{\sin 2 v d(2 v)}{2 v} \\
& =-\frac{1}{2 v}+\frac{\cos 2 v}{2 v}+\operatorname{Si}(2 v) \tag{12}
\end{align*}
$$

Then evaluating the integrals of (10) and (12) in (9) at the upper and lower limits yields the time-average power as:

$$
\begin{equation*}
<P>=\frac{\left|\hat{E}_{0}\right|^{2} \pi}{k^{2} \eta(k L / 2)^{2}}\left(\frac{\sin k L}{k L}+\cos k L-2+k L \operatorname{Si}(k L)\right) \tag{13}
\end{equation*}
$$

where we used the fact that the sine integral is an odd function $\operatorname{Si}(x)=-\operatorname{Si}(x)$.

Using (5), the radiation resistance is then

$$
\begin{equation*}
R=\frac{2\langle P\rangle}{\left|\hat{I}_{0}\right|^{2}}=\frac{\eta}{2 \pi}\left(\frac{\sin k L}{k L}+\cos k L-2+k L S i(k L)\right) \tag{14}
\end{equation*}
$$

Figure 9-12 The radiation pattern for a long dipole for various values of its length.

Figure 9-13 The sine integral $S i(x)$ increases linearly for small arguments and approaches $\pi / 2$ for large arguments oscillating about this value for intermediate arguments.

Figure 9-14 The radiation resistance for a dipole antenna carrying a uniformly distributed current increases with the square of its length when it is short ($L / \lambda \ll 1$) and only linearly with its length when it is long ($L / \lambda \gg 1$). For short lengths, the radiation resistance approximates that of a point dipole.
which is plotted versus $k L$ in Fig. 9-14. This result can be checked in the limit as L becomes very small ($k L \ll 1$) since the radiation resistance should approach that of a point dipole given in Section 9-2-5. In this short dipole limit the bracketed terms in (14) are

$$
\lim _{k L \ll 1}\left\{\begin{align*}
\frac{\sin k L}{k L} & \approx 1-\frac{(k L)^{2}}{6} \tag{15}\\
\cos k L & \approx 1-\frac{(k L)^{2}}{2} \\
k L \operatorname{Si}(k L) & \approx(k L)^{2}
\end{align*}\right.
$$

so that (14) reduces to

$$
\begin{equation*}
\lim _{k L \ll 1} R \approx \frac{\eta}{2 \pi} \frac{(k L)^{2}}{3}=\frac{2 \pi \eta}{3}\left(\frac{L}{\lambda}\right)^{2}=80 \pi^{2}\left(\frac{L}{\lambda}\right)^{2} \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}} \tag{16}
\end{equation*}
$$

which agrees with the results in Section 9-2-5. Note that for large dipoles ($k L \gg 1$), the sine integral term dominates with Si(kL) approaching a constant value of $\pi / 2$ so that

$$
\begin{equation*}
\lim _{k L \gg 1} R \approx \frac{\eta k L}{4}=60 \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}} \pi^{2} \frac{L}{\lambda} \tag{17}
\end{equation*}
$$

PROBLEMS

Section 9-1

1. We wish to find the properties of waves propagating within a linear dielectric medium that also has an Ohmic conductivity σ.
(a) What are Maxwell's equations in this medium?
(b) Defining vector and scalar potentials, what gauge condition decouples these potentials?
(c) A point charge at $r=0$ varies sinusoidally with time as $Q(t)=\operatorname{Re}\left(\hat{Q} e^{j \omega t}\right)$. What is the scalar potential?
(d) Repeat (a)-(c) for waves in a plasma medium with constitutive law

$$
\frac{\partial \mathbf{J}_{f}}{\partial \epsilon}=\omega_{p}^{2} \varepsilon \mathbf{E}
$$

2. An infinite current sheet at $z=0$ varies as $\operatorname{Re}\left[K_{0} e^{j\left(\omega t-k_{x} x\right)} \mathbf{i}_{x}\right]$.
(a) Find the vector and scalar potentials.
(b) What are the electric and magnetic fields?
(c) Repeat (a) and (b) if the current is uniformly distributed over a planar slab of thickness $2 a$:

$$
\mathbf{J}_{f}= \begin{cases}J_{0} e^{j\left(\omega t-k_{k} x\right.} \mathbf{i}_{x}, & -a<z<a \\ 0, & |z|>a\end{cases}
$$

3. A sphere of radius R has a uniform surface charge distribution $\sigma_{f}=\operatorname{Re}\left(\hat{\sigma}_{0} e^{j \omega t}\right)$ where the time varying surface charge is due to a purely radial conduction current.
(a) Find the scalar and vector potentials, inside and outside the sphere. (Hint: $r_{Q P}^{2}=r^{2}+R^{2}-2 r R \cos \theta ; \quad r_{Q P} d r_{Q P}=$ $r R \sin \theta d \theta$.)
(b) What are the electric and magnetic fields everywhere?

Section 9.2

4. Find the effective lengths, radiation resistances and line charge distributions for each of the following current distributions valid for $|z|<d l / 2$ on a point electric dipole with short length dl:
(a) $\hat{I}(z)=I_{0} \cos \alpha z$
(b) $\hat{\Gamma}(z)=I_{0} e^{-a|z|}$
(c) $\hat{I}(z)=I_{0} \cosh \alpha z$
5. What is the time-average power density, total time-average power, and radiation resistance of a point magnetic dipole?
6. A plane wave electric field $\operatorname{Re}\left(\mathbf{E}_{0} e^{j \omega t}\right)$ is incident upon a perfectly conducting spherical particle of radius R that is much smaller than the wavelength.
(a) What is the induced dipole moment? (Hint: See Section 4-4-3.)
(b) If the small particle is, instead, a pure lossless dielectric with permittivity ε, what is the induced dipole moment?
(c) For both of these cases, what is the time-average scattered power?
7. A plane wave magnetic field $\operatorname{Re}\left(\mathrm{H}_{0} e^{j \omega t}\right)$ is incident upon a perfectly conducting particle that is much smaller than the wavelength.
(a) What is the induced magnetic dipole moment? (Hint: See Section 5-7-2ii and 5-5-1.)
(b) What are the re-radiated electric and magnetic fields?
(c) What is the time-average scattered power? How does it vary with frequency?
8. (a) For the magnetic dipole, how are the magnetic field lines related to the vector potential A ?
(b) What is the equation of these field lines?

Section 9.3

9. Two aligned dipoles $\hat{I}_{1} d l$ and $\hat{I}_{2} d l$ are placed along the z axis a distance $2 a$ apart. The dipoles have the same length

while the currents have equal magnitudes but phase difference χ.
(a) What are the far electric and magnetic fields?
(b) What is the time-average power density?
(c) At what angles is the power density zero or maximum?
(d) For $2 a=\lambda / 2$, what values of χ give a broadside or end-fire array?
(e) Repeat (a)-(c) for $2 N+1$ equally spaced aligned dipoles along the z axis with incremental phase difference χ_{0}.
10. Three dipoles of equal length $d l$ are placed along the z axis.

(a) Find the far electric and magnetic fields.
(b) What is the time average power density?
(c) For each of the following cases find the angles where the power density is zero or maximum.
(i) $\hat{I}_{1}=\hat{I}_{3}=I_{0}, \hat{I}_{2}=2 I_{0}$
(ii) $\hat{I}_{1}=\hat{I}_{3}=I_{0}, \hat{I}_{2}=-2 I_{0}$
(iii) $\hat{I}_{1}=-\hat{I}_{3}=I_{0}, \hat{I}_{2}=2 j I_{0}$
11. Many closely spaced point dipoles of length $d l$ placed along the x axis driven in phase approximate a z-directed current sheet $\operatorname{Re}\left(K_{0} e^{j \omega t} \mathbf{i}_{z}\right)$ of length L.

(a) Find the far fields from this current sheet.
(b) At what angles is the power density minimum or maximum?

Section 9.4
12. Find the far fields and time-average power density for each of the following current distributions on a long dipole:
(a) $\hat{I}(z)= \begin{cases}I_{0}(1-2 z / L), & 0<z<L / 2 \\ I_{0}(1+2 z / L), & -L / 2<z<0\end{cases}$

Hint:

$$
\int z e^{a z} d z=\frac{e^{a z}}{a^{2}}(a z-1)
$$

(b) $\hat{I}(z)=I_{0} \cos \pi z / L, \quad-L / 2<z<L / 2$

Hint:

$$
\int e^{a z} \cos p z d z=e^{a z} \frac{(a \cos p z+p \sin p z)}{\left(a^{2}+p^{2}\right)}
$$

(c) For these cases find the radiation resistance when $k L \ll 1$.

SOLUTIONS TO SELECTED PROBLEMS

Chapter 1

1. Area $=\pi a^{2}$
2. (a) $A+B=6 i_{x}-2 i_{y}-6 i_{z}$
(b) $A \cdot B=6$
(c) $A \times B=-14 i_{x}+12 i_{y}-18 i_{z}$
3. (b) $B_{\|}=2\left(-i_{x}+2 i_{y}-i_{z}\right), B_{\perp}=5 i_{x}+i_{y}-3 i_{z}$
4. (a) $\mathbf{A} \cdot \mathbf{B}=-75$
(b) $\mathbf{A} \times \mathbf{B}=-100 \mathrm{i}_{2}$
(c) $\theta=126.87^{\circ}$
5. (a) $\nabla f=\left(a z+3 b x^{2} y\right) \mathbf{i}_{x}+b x^{3} \mathbf{i}_{y}+a x \mathbf{i}_{z}$
6. (a) $\nabla \cdot A=3$
7. (b) $\Phi=\frac{1}{2} a b c$
8. (a) $\nabla \times \mathbf{A}=\left(x-y^{2}\right) i_{x}-y i_{y}-x^{2} i_{x}$
9. (b) $\nabla f=\frac{1}{h_{u}} \frac{\partial f}{\partial u} \mathbf{i}_{u}+\frac{1}{h_{v}} \frac{\partial f}{\partial v} \mathbf{i}_{v}+\frac{1}{h_{w}} \frac{\partial f}{\partial w} \mathbf{i}_{w}$
(c) $d V=h_{u} h_{v} h_{w} d u d v d w$
(d) $\nabla \cdot \mathbf{A}=\frac{1}{h_{u} h_{v} h_{w}}\left[\frac{\partial}{\partial u}\left(h_{v} h_{w} A_{u}\right)+\frac{\partial}{\partial v}\left(h_{u} h_{w} A_{v}\right)+\frac{\partial}{\partial w}\left(h_{u} h_{v} A_{w}\right)\right]$

$$
(\nabla \times \mathbf{A})_{u}=\frac{1}{h_{v} h_{w}}\left[\frac{\partial\left(h_{w} A_{w}\right)}{\partial v}-\frac{\partial\left(h_{v} A_{v}\right)}{\partial w}\right]
$$

25. (a) $r_{Q P}=\sqrt{30}$,
(b) $i_{Q P}=\frac{r_{Q P}}{r_{Q P}}=\frac{i_{x}-5 i_{y}+2 i_{z}}{\sqrt{30}}$,
(c) $n=\frac{5 i_{x}+i_{y}}{\sqrt{26}}$

Chapter 2

3. $E_{0}=\frac{4}{3} \frac{\pi R^{3} \rho_{m g}}{q}$
4. $Q_{2}=\frac{2 \pi \varepsilon_{0} d^{3} M g}{Q_{1} \sqrt{l^{2}-\left(\frac{d}{2}\right)^{2}}}$
5. (a) $\omega=\left[\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} R^{3} m}\right]^{1 / 2}$
6. (a) $m=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$,
(b) $v= \pm \sqrt{\frac{-q_{1} q_{2}}{2 \pi \varepsilon_{0} m}\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{0}}\right)}$,
(d) $t=\frac{\pi}{2} \mathrm{r}_{0}^{3 / 2}\left[\frac{2 \pi m \varepsilon_{0}}{-q_{1} q_{2}}\right]^{1 / 2}$
7. $h=\frac{q E_{0} L^{2}}{2 m v_{0}^{2}}$
8. (b) $q=\frac{6 \sqrt{3}}{7^{3 / 2}} Q$
9. (a) $q=2 \lambda_{0} a$,
(b) $q=\frac{4}{3} \pi \rho_{0} a^{3}$,
(c) $q=2 \sigma_{0} a b \pi$
10. $\theta=\tan ^{-1}\left[\frac{Q \sigma_{0}}{2 \varepsilon_{0} M g}\right]$
11. (a) $E_{\mathrm{r}}=\frac{\lambda L}{2 \pi \varepsilon_{0} \mathrm{r} \sqrt{L^{2}+\mathrm{r}^{2}}}$,
(b) $E_{x}=\frac{\sigma_{0}}{2 \pi \varepsilon_{0}}\left[\sin ^{-1}\left(\frac{L^{2}-x^{2}}{L^{2}+x^{2}}\right)+\frac{\pi}{2}\right] ; \quad x>0$
12. (a) $E_{y}=\frac{-\lambda_{0} a^{2}}{\pi \epsilon_{0}\left[z^{2}+a^{2}\right]^{3 / 2}}$
(b) $E_{y}=\frac{-\sigma_{0}}{\pi \epsilon_{0}}\left\{\frac{-a}{\sqrt{z^{2}+a^{2}}}+\ln \left[\frac{a+\sqrt{z^{2}+a^{2}}}{1 z 1}\right]\right\}$
13. (a) $E_{y}=-\frac{\lambda_{0} a^{2}}{\pi \varepsilon_{0}\left(a^{2}+z^{2}\right)^{3 / 2}}$
14. $E_{y}=\frac{\lambda_{0} z^{2}}{2 \pi \varepsilon_{0}\left(a^{2}+z^{2}\right)^{3 / 2}}$
15. (a) $Q_{r}=4 \pi \varepsilon_{0} A R^{4}$
16. (c)

$$
E_{x}= \begin{cases}\frac{\rho_{0}}{2 \varepsilon_{0} d}\left(x^{2}-d^{2}\right) & |x|<d \\ 0 & |x|>d\end{cases}
$$

25. (c)

$$
E_{r}= \begin{cases}\frac{\rho_{0} r^{2}}{3 \varepsilon_{0} a} & \mathrm{r}<a \\ \frac{\rho_{0} a^{2}}{3 \varepsilon_{0} r} & \mathrm{r}>a\end{cases}
$$

26. $\mathbf{E}=\frac{\rho_{0} d}{2 \varepsilon_{0}} \mathbf{i}_{x}$
27. $W=-\frac{\lambda \sigma_{0} l^{2}}{4 \varepsilon_{0}}$
28. (a) $v_{0} \geq \sqrt{\frac{q Q}{2 \pi \varepsilon_{0} R m}}, \quad$ (b) $r=4 R$
29. (a) $E=-2 A x i_{x}, \rho_{f}=-2 A \varepsilon_{0}$
30. (a) $\Delta v=\frac{\sigma_{0} a}{\varepsilon_{0}}$
31. (a) $d q=-\frac{Q}{R} d z^{\prime}$
32. (c) $V \approx \frac{q_{0} a}{4 \pi \varepsilon_{0} r^{2}} \cos \theta, \quad$ (d) $r=r_{0} \sin ^{2} \theta$
33. (d) $q_{c}=-\frac{q V_{p}}{V_{c}}$
34. (a) $E_{y}=-\frac{\sigma_{0}}{2 \pi \varepsilon_{0}} \ln \left(1-\frac{d}{y}\right)$
35. (a) $x_{0}=\sqrt{\frac{q}{16 \pi \varepsilon_{0} E_{0}}}, \quad$ (b) $\nu_{0}>\frac{1}{2} \sqrt{\frac{q}{m}}\left[\frac{q E_{0}}{\pi \varepsilon_{0}}\right]^{1 / 4}$,
(c) $W=\frac{q^{2}}{16 \pi \varepsilon_{0} d}$
36. (e) $\lambda= \pm \sqrt{\frac{R_{1}}{R_{2}}}, \alpha= \pm \frac{R_{1}}{R_{2}}$
37. (g) $q_{T}=-4 \pi \varepsilon_{0} R^{2} \frac{\pi^{2}}{6}$

Chapter 3

2. (a) $p_{2}=\lambda_{0} L^{2}$,
(e) $p_{2}=Q R$
3. (a) $\rho_{0}=\frac{3 Q}{\pi R_{0}^{9}}$
4. (a) $\mathrm{d}=\frac{4 \pi \varepsilon_{0} R_{0}^{3} \mathrm{E}_{0}}{Q}$
5. (b) $\frac{Q}{L^{2}}=2 \pi \varepsilon_{0} E_{0}$
6. (a) $\mathbf{p}_{\text {ind }}=\mathbf{p}_{D^{3}}^{D^{9}}$
7. (a) $V(x)=\frac{V_{0}}{2} \frac{\sinh x / l_{d}}{\sinh / / l_{d}}$
8. (b) $Q=\frac{m \omega R A \sigma}{q}$
9. (a) $D_{\mathrm{r}}=\frac{\lambda}{2 \pi \mathrm{r}}$
10. (a) $\lambda^{\prime}=-\lambda^{\prime \prime}=\frac{\lambda\left(\varepsilon_{2}-\varepsilon_{1}\right)}{\varepsilon_{1}+\varepsilon_{2}}, \lambda^{\prime \prime \prime}=\frac{2 \varepsilon_{2} \lambda}{\varepsilon_{1}+\varepsilon_{2}}$
11. (a)

$$
E_{r}=\left\{\begin{array}{cc}
-\frac{P_{0} r}{\varepsilon_{0} R} & r<R \\
0 & r>R
\end{array}\right.
$$

26. (a) $R=\frac{s \ln \frac{\sigma_{2}}{\sigma_{1}}}{l D\left(\sigma_{2}-\sigma_{1}\right)}$
27. $C=\frac{2 \pi l\left(\varepsilon_{2} a-\varepsilon_{1} b\right)}{(b-a) \ln \frac{\varepsilon_{2} a}{\varepsilon_{1} b}}$
28. $\sigma_{f}\left(\mathrm{r}=a_{1}\right)=\frac{\rho_{0} a_{0}^{2}}{3 a_{1}}\left(1-e^{-t / \tau}\right) ; \tau=\varepsilon / \sigma$
29. $\rho_{f}=\rho_{0} e^{-\sigma r^{3} /\left(3_{e A}\right)}$
30. (a) $v(z)=-\frac{V_{0} \sinh \sqrt{2 R G}(z-l)}{\sinh \sqrt{2 R G} l}$
31. (b) $\frac{\varepsilon \mu}{2}\left[E^{2}(l)-E^{2}(0)\right]+\varepsilon \frac{d v}{d t}=J(t) l$
(c) $E(l)=\frac{V_{0} / l}{1-\frac{\mu t V_{0}}{2 l^{2}}}$,
(f) $\tau=\frac{2 l^{2}}{\mu V_{0}}\left(1-e^{-1 / 2}\right)$
32. (c) $E_{i}^{2}=\left(\frac{V_{0}}{R_{0}-R_{i}}\right)^{2}=\frac{I}{2 \pi \varepsilon \mu l}$
33. (a) $W=-\frac{1}{2} \mathbf{p} \cdot \mathbf{E}$
34. $W=\frac{p^{2}}{12 \pi \varepsilon_{0} R^{3}}$
35. (a) $W=\frac{-Q^{2}}{8 \pi \varepsilon_{0} R}$
36. (a) $W_{\text {init }}=\frac{1}{2} C V_{0}^{2}, \quad$ (b) $W_{\text {final }}=\frac{1}{4} C V_{0}^{2}$
37. (b) $W=-p E(\cos \theta-1)$
38. $h=\frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \frac{V_{0}^{2}}{\rho_{m} g s^{2}}$
39. (b) $f_{y}=\frac{1}{2} \frac{\varepsilon_{0} A}{(s+d)^{2}}\left[V_{0}+\frac{P_{0} d}{\varepsilon_{0}}\right]^{2}$
40. (b) $f_{2}=\frac{\pi V_{0}^{2}}{\ln \frac{b}{a}}\left(\varepsilon-\varepsilon_{0}\right)$
41. $f_{x}=-\frac{1}{2} \frac{\varepsilon_{0} d}{s} V_{0}^{2}$
42. (c) $T=\frac{1}{2} v^{2} \frac{d C}{d \theta}=\frac{-N V_{0}^{2} R^{2} \varepsilon_{0}}{s}$
43. (a) $v(t)=\frac{\sigma_{f} U w t}{4 \pi \varepsilon_{0} R}$
44. (a) $\rho_{f}=\rho_{0} e^{-\sigma z / \varepsilon U}$
45. (a) $n C_{i}>\frac{1}{R}+\frac{2}{R_{L}}, \quad$ (c) $\frac{n C_{i}}{2}>\frac{1}{R}, \omega_{0}=\frac{\sqrt{3}}{2} \frac{n C_{i}}{C}$

Chapter 4

2. (a)

$$
V= \begin{cases}\frac{\sigma_{0}}{2 \varepsilon a} \cos a y e^{-a x} & x>0 \\ \frac{\sigma_{0}}{2 \varepsilon a} \cos a y e^{a x} & x<0\end{cases}
$$

4. (a) $V=\frac{4 V_{1}}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{\sin \frac{n \pi y}{d} \sinh \frac{n \pi(l-x)}{d}}{n \sinh \frac{n \pi l}{d}}$
5. (a) $V_{p}=\frac{\rho_{0}}{\varepsilon_{0} a^{2}} \sin a x$
6.

$$
V(\mathrm{r}, \phi)=\left\{\begin{array}{l}
{\left[\frac{P_{2}-P_{1}}{2 \varepsilon_{0}}-E_{0}\right] \mathrm{r} \cos \phi \quad 0 \leq \mathrm{r} \leq a} \\
{\left[-E_{0} \mathrm{r}+\frac{\left(P_{2}-P_{1}\right) a^{2}}{2 \varepsilon_{0} \mathrm{r}}\right] \cos \phi \quad \mathrm{r}>a}
\end{array}\right.
$$

13. (a) $\mathbf{E}=\left[E_{0}\left(1+\frac{a^{2}}{\mathrm{r}^{2}}\right) \cos \phi+\frac{\lambda(t)}{2 \pi \varepsilon r}\right] \mathrm{i}_{\mathrm{r}}-E_{0}\left(1-\frac{a^{2}}{\mathrm{r}^{2}}\right) \sin \phi \mathrm{i}_{\phi}$
(b) $\cos \phi<-\frac{\lambda(t)}{4 \pi \varepsilon a E_{0}}$,
(c) $\lambda_{\max }=4 \pi \varepsilon a E_{0}$
14. (a) $V(r, z)= \begin{cases}\frac{V_{0} z}{l \ln \frac{b}{a}} \ln \frac{r}{a} & a \leq r \leq b \\ \frac{V_{0} z}{l} & b \leq r \leq c\end{cases}$
15. (b) $E_{0} \geq \sqrt{\frac{8 \rho_{m} g R}{27 \epsilon}}$
16. $V(2,2)=V(3,2)=V(2,3)=V(3,3)=-4$.
17. (a) $V(2,2)=-1.0000, V(3,2)=-.5000, V(2,3)$

$$
=-.5000, V(3,3)=.0000
$$

(b) $V(2,2)=1.2500, V(3,2)=-.2500, V(2,3)$

$$
=.2500, V(3,3)=-1.2500
$$

Chapter 5

2. (b) $B_{0}^{2}>\frac{2 m V_{0}}{e s^{2}}$,
(e) $B_{0}^{2}>\frac{8 b^{2} m V_{0}}{e\left(b^{2}-a^{2}\right)^{2}}$
3. $B_{0}=\frac{-m g}{q v_{0}}$
4. (d) $\frac{e}{m}=\frac{E_{y}}{R B_{0}^{2}}$
5. (c) $\dot{\mathbf{J}}=\boldsymbol{\sigma}(\mathbf{E}+\mathbf{v} \times \mathrm{B})$
6. (a) $B_{z}=\frac{2 \mu_{0} I\left(a^{2}+b^{2}\right)^{1 / 2}}{\pi a b}$,
(c) $B_{z}=\frac{n \mu_{0} I}{2 \pi a} \tan \frac{\pi}{n}$
7. (a) $B_{\mathrm{x}}=\frac{\mu_{0} K_{0} \pi}{4}$
8. (a) $B_{\phi}=\frac{\mu_{0} I L}{2 \pi \mathrm{r} \sqrt{L^{2}+\mathrm{r}^{2}}}$
9. (b) $B,=\frac{\mu_{0} J_{0} d}{2}$
10. (b) $B_{x}=\left\{\begin{array}{cc}-\frac{\mu_{0} J_{0}}{2 a}\left(y^{2}-a^{2}\right) & |y|<a \\ 0 & |y|>a\end{array}\right.$
11. (d) $y=\frac{y_{0}}{2}$ at $x=-\infty$
12. (a) $m_{z}=\frac{1}{2} q \omega a^{2}$
13. $\omega_{0}=\sqrt{\gamma B_{0}}$
14. (a) $I^{\prime}=\frac{\left(\mu_{2}-\mu_{1}\right)}{\left(\mu_{1}+\mu_{2}\right)} I, I^{\prime \prime}=\frac{2 \mu_{1} I}{\mu_{1}+\mu_{2}}$
15. (a)

$$
\mathbf{H}=\left\{\begin{array}{l}
\frac{-M_{0}}{2} \mathbf{i}_{x} \\
\frac{M_{0} a^{2}}{2 \mathrm{r}^{2}}\left[\cos \phi \mathrm{i}_{\mathrm{r}}+\sin \phi i_{\phi}\right]
\end{array}\right.
$$

35. (a) $H_{z}(x)=-\frac{I}{D d}(x-d)$,
(b) $f_{x}=\frac{1}{2} \mu_{0} \frac{I^{2} s}{D}$
36. (a) $f_{x}=\frac{1}{2}\left(\mu-\mu_{0}\right) H_{0}^{2} D s$,
(b) $f_{x}=\mu_{0} M_{0} D s\left[H_{0}+M_{0}\right]$

Chapter 6

1. (a) $M=\mu_{0}\left[D-\sqrt{D^{2}-a^{2}}\right]$,
(e) $f_{\mathrm{r}}=\mu_{0} I i\left[\frac{D}{\sqrt{D^{2}-a^{2}}}-1\right]$
2. (d) $v(t)=v_{0}\left[\frac{\alpha}{2 \beta} \sin \beta t+\cos \beta t\right] e^{-\alpha t / 2} ; \beta=\sqrt{\omega_{0}^{2}-\left(\frac{\alpha}{2}\right)^{2}}$

$$
i(t)=\frac{m v_{0} \omega_{0}^{2}}{B_{0} b \beta} \sin \beta t e^{-\alpha t / 2}
$$

(e) $v_{0}>\frac{B_{0} b s}{\sqrt{m L}}$
4. (a) $M=\frac{\mu_{0} N s}{2 \pi} \ln \frac{a}{b}, M=\mu_{0} N\left[R-\sqrt{R^{2}-a^{2}}\right]$
7. (c) $f_{2}=\frac{3 \mu_{0}(I d S)^{2}}{32 \pi d^{4}}$
8. (a) $H_{z}=K(t)$,
(b) $K(t)=K_{0}\left(\frac{x_{0}}{x_{0}-V t}\right)^{\left(1-1 / R_{m}\right)}$
9. (a) $i=\frac{\mathrm{r} \sigma d}{2} \frac{d B}{d t} d \mathrm{r}$,
(c) $P=\frac{\pi \sigma d a^{4}}{8}\left(\frac{d B}{d t}\right)^{2}$
10. $L=\mu_{0} N^{2}\left[b-\sqrt{b^{2}-a^{2}}\right]$
14. (a) $\frac{v_{2}}{v_{1}}=\frac{N_{2}}{2 N_{1}}, \frac{i_{2}}{i_{1}}=\frac{2 N_{1}}{N_{2}}$
16. (a) $V_{o c}=J_{x} B_{2} d \frac{\left(\mu_{+}^{2} n_{+}-\mu_{-}^{2} n_{-}\right)}{q\left(\mu_{+} n_{+}+\mu_{-} n_{-}\right)^{2}}$
17. (b), (c) $E M F=-\frac{\mu_{0} V_{0} I}{2 \pi} \ln \frac{R_{2}}{R_{1}}$,
(d) $E M F=-\frac{\left(\mu-\mu_{0}\right) I V_{0}}{2 \pi} \ln \frac{R_{2}}{R_{1}}$
18. (a) $\mathbf{H}=0, \mathbf{B}=\mu_{0} M_{0} \mathbf{i}_{2}$,
(b) $v_{\mathrm{oc}}=\frac{\omega B_{2}}{2}\left(b^{2}-a^{2}\right)$
20. (b) $V>\frac{1}{\mu_{0} \sigma N D}$
21. (a) $\omega>\frac{\left(R_{r}+R_{f}\right)}{G}$
(b) $C_{\text {crit }}=\frac{4 L_{f}}{\left[R_{r}+R_{f}-G \omega\right]^{2}} ; \quad C>C_{\text {crit }}(d c), \quad C<C_{\text {crit }}(a c)$
(c) $\omega_{0}\left[\frac{1}{L_{f} C}-\left[\frac{R_{r}+R_{f}-G \omega}{2 L_{f}}\right]^{2}\right]^{1 / 2}$
22. (b) $H_{z}(x, t)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{2 I_{0}}{n \pi D} \sin \frac{n \pi x}{d} e^{-\alpha_{n} t}$
23. (c) $H_{y}(x, t)=H_{0}-\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4 H_{0}}{n \pi} \sin \frac{n \pi x}{d} e^{-\alpha_{n} t}$
25. (b) $H_{z}(y, t)=-K_{0}+\sum_{n=0}^{\infty} \frac{(-1)^{n} 4 K_{0}}{\pi(2 n+1)} \cos \left[\frac{(2 n+1) \pi y}{2 D}\right]-e^{-\alpha_{n} t}$
(d) $\hat{H}_{z}(y)=K_{0}\left[\frac{\left[e^{(1+j) y / \delta}+e^{-(1+j) y / \delta}\right]}{\left[e^{(1+i) D / \delta}+e^{-(1+i) D / \delta}\right]}\right.$
26. (a) $H_{z}(x)=\frac{K_{0}}{1-e^{R_{m}}}\left[2 e^{R_{m}{ }^{x} / l}-\left(1+e^{R_{m}}\right)\right]$
27. (a) $\hat{H}_{z}(x)=K_{0} e^{-\beta x} e^{R_{m} x / 2 l} ; \beta=\frac{R_{m}}{2 l} \sqrt{1+\frac{2 j l^{2}}{R_{m}^{2} \delta^{2}}}$
28. (a)

29. (a) $H_{y}=H_{0} \frac{\cosh k(x-d / 2)}{\cosh k d / 2}$
32. (b) $\hat{H}_{\phi}(r)=\frac{I_{0}}{2 \pi a} \frac{J_{1}[(\mathrm{r} / \delta)(1-j)]}{J_{1}[(a / \delta)(1-j)]}$
33. (a) $T=-L_{1} I_{0}^{2} \cos ^{2} \omega_{0} t \sin 2 \theta$
34. (c) $T=M_{0} I_{1} I_{2} \cos \theta$,
(f) $\theta(t)=\theta_{0}\left[\cos \beta t+\frac{\alpha}{2 \beta} \sin \beta t\right] e^{-\alpha t / 2}$
35.
(a) $L(x)=\frac{\mu_{0} x}{2 \pi} \ln \frac{b}{a}$,
(b) $f_{x}=\frac{\mu_{0} i^{2}}{4 \pi} \ln \frac{b}{a}$
37. $h=\frac{I^{2}\left(\mu-\mu_{0}\right) \ln \frac{b}{a}}{4 \pi^{2} \rho_{m} g\left(b^{2}-a^{2}\right)}$

Chapter 7

4. (b) $W=4\left[P_{s} E_{c}+\mu_{0} M_{s} H_{c}\right]$
5. (b) $\hat{E}_{x}(z)= \begin{cases}\frac{j \eta_{0} J_{0} \sin k d e^{\mp i k_{0}(z \not z d)}}{\omega \varepsilon\left[\eta_{0} \sin k d-j \eta \cos k d\right]} & z>d \\ -\frac{J_{0} \eta \cos k z}{\omega \varepsilon\left[\eta_{0} \sin k d-j \eta \cos k d\right]} & |z|<d\end{cases}$
6. (b) $E_{x}=E_{0} e^{j\left(\omega t \neq \beta_{z}\right)} e^{\mp\left(\alpha \alpha^{2} / 2\right)}$

$$
\begin{aligned}
& z>0 \\
& z<0
\end{aligned} ; \beta=\sqrt{\omega^{2} \varepsilon \mu-\frac{\alpha^{2}}{4}}
$$

11. (a) $t_{1}^{\prime}-t_{2}^{\prime}=\frac{\gamma v}{c_{0}^{2}}\left(z_{2}-z_{1}\right)$,

$$
\text { (b) } t_{1}^{\prime}-t_{2}^{\prime}=\gamma\left(t_{1}-t_{2}\right), \quad \text { (c) } z_{2}^{\prime}-z_{1}^{\prime}=\gamma L
$$

12. (a) $u_{z}^{\prime}=\frac{\dot{u}_{z}-v}{1-v u_{z} / c_{o}^{2}}, u_{x, y}^{\prime}=\frac{u_{x, y}, \sqrt{1-\left(v / c_{0}\right)^{2}}}{1-v u_{z} / c_{o}^{2}}$
13. (b) $\varepsilon(\omega)=\varepsilon_{0}\left[1+\frac{\omega_{p}^{2}}{\omega_{0}^{2}-\omega^{2}}\right]$
14. (c) $k^{2}=\frac{\omega^{2}}{c^{2}}\left[1-\frac{\omega_{p}^{2}}{\omega\left(\omega \mp \omega_{0}\right)}\right]$
15. (a) $\mathrm{E}=E_{0}\left[\cos \omega\left(t-\frac{z}{c}\right)-\cos \omega\left[\left(1-\frac{2 v}{c}\right)\left(t-\frac{z}{c}\right)\right]\right] \mathrm{i}_{\mathrm{y}}$
16. $\alpha^{2}-k^{2}=-\omega^{2} \varepsilon \mu, \boldsymbol{\alpha} \cdot \mathbf{k}=\frac{1}{\delta^{2}}$
17. (a) $L_{1}+L_{2}=s_{i} \sin \theta_{i}+s_{r} \sin \theta_{r}=h_{1} \tan \theta_{i}+h_{2} \tan \theta_{r}$
18. $\theta_{1} \approx 41.7^{\circ}$
19. (a) $\left(\frac{x}{R}\right)^{2}>1-\frac{\left(n^{2}-2\right)^{2}}{4} ; \sqrt{2} \leq n \leq 2$
(b) $R^{\prime}=\frac{\alpha R}{\left[\sqrt{n^{2}\left(1-\alpha^{2}\right)} \sqrt{\left.n^{2}-\alpha^{2}+\alpha^{2}\right]}\right.}$

Chapter 8

2. (c) $\hat{v}(z)=-\frac{V_{0} \sin \beta(z-l) e^{\alpha z / 2}}{\sin \beta l} \quad$ (Short circuited end)
3. (c) $\omega^{2}=\omega_{p}^{2}+k^{2} c^{2}$,
(d) $v(z, t)=-\frac{V_{0} \sin k z \cos \omega t}{\sin k l}$
4. (b) $k=\frac{1}{\omega \sqrt{L C}}$
5. (a) $V_{+}=-V_{-}=\frac{V_{0} Z_{0}}{2 R_{s}}$
6. (b) $\tan k l=-X Y_{0}$
7. (c) $V S W R=\frac{1+\sqrt{2}}{\sqrt{2}-1} \approx 5.83$
8. (b) $V S W R=2$
9. $Z_{L}=170.08-133.29 j$
10. (a) $l_{1}=.137 \lambda+\frac{n \lambda}{2}, l_{2}=.089 \lambda+\frac{m \lambda}{2}$

$$
l_{1}=.279 \lambda+\frac{n \lambda}{2}, l_{2}=.411 \lambda+\frac{m \lambda}{2}
$$

25. (a) $l_{1}=.166 \lambda+\frac{n \lambda}{2}, l_{2}=.411 \lambda+\frac{m \lambda}{2}$

$$
l_{1}=.077 \lambda+\frac{n \lambda}{2}, l_{2}=.043 \lambda+\frac{m \lambda}{2}
$$

27. (e) $\alpha=\frac{2(\pi / a)^{2}\left[b+(a / 2)\left(\omega^{2} a^{2} / \pi^{2} c^{2}\right)\right]}{\omega \mu a b k_{z} \sigma_{w} \delta}$
28. (b) $=\frac{2 \omega \varepsilon\left(b k_{x}^{2}+a k_{y}^{2}\right)}{\sigma_{w} \delta k_{z} a b\left(k_{x}^{2}+k_{y}^{2}\right)}$
29. (a) TE mode:
electric field: $\cos k_{x} x \cos k_{y} y=$ const magnetic field: $\frac{\sin \left(k_{x} x\right)^{\left(k / k_{x}\right)^{2}}}{\sin k_{y} y}=$ const
30. (b) $\frac{\omega^{2}}{c^{2}}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{p \pi}{l}\right)^{2}$,
31. (a) $\omega^{2}=\frac{k_{x}^{2}}{\varepsilon \mu-\varepsilon_{0} \mu_{0}}$

Chapter 9

1. (c) $\hat{V}=\frac{\hat{Q}}{4 \pi \varepsilon r} e^{-j r \sqrt{\omega 2 / c 2-j \omega \mu \sigma}}$
2. (a) $d l_{\mathrm{eff}}=\frac{2 \sin (\alpha d l / 2)}{\alpha}, \hat{\lambda}(z)=\frac{I_{0} \alpha}{j \omega} \sin \alpha z$
3. (a) $\hat{f}_{z}=4 \pi \varepsilon_{0} R^{3} \hat{E}_{0}$
(c) $\langle P\rangle=\frac{\omega^{4}\left|\hat{p}_{x}\right|^{2} \eta}{12 \pi c^{2}}$
4. (a) $m_{\text {ind }}=2 \pi H_{0} R^{3}$
5. (b) $\sin ^{2} \theta\left[\frac{\cos (\omega t-k r)}{k r}-\sin (\omega t-k r)\right]=$ const
6. (a) $\hat{E}_{\theta} \approx \frac{2 \hat{E}_{0}}{j k r} \sin \theta e^{-j(k r-x / 2)}\left[\cos \left(k a \cos \theta-\frac{\chi}{2}\right)\right]$
7. $\hat{E}_{\theta}=\frac{2 j K_{0} d l \eta e^{-j k r}}{4 \pi r \cos \phi} \sin \left(\frac{k L}{2} \sin \theta \cos \phi\right)$
8. (a) $\hat{E}_{\theta}=\frac{\eta I_{0} \sin \theta e^{-j k r}}{j \pi k r L \cos ^{2} \theta} \cos \left[\left(\frac{k L}{2} \cos \theta\right)-1\right]$

INDEX

Addition, vector, 9-10
Admittance, characteristic, 579
A field, 336. See also Vector potential
Amber, 50
Ampere, unit, 55
Ampere's circuital law, 334
displacement current correction to, 488
Ampere's experiments, 322
Amperian currents, 348
Analyzer, 518
Angular momentum, 350
Anisotropic media, 516-520
Antennas:
long dipole, 687-695
N element array, 685-687
point electric dipole, 667-677
point magnetic dipole, 679-681
two element array, 681-685
Array:
broadside, 683
endfire, 685
factor, 683, 685, 687
N element, 685-687
two element, 681-685
Atmosphere, as leaky spherical capacitor, 195-197
Atom, binding energy of, 211-212
Attenuation constant:
dielectric waveguide, 646-648
lossy transmission line, 602-606
lossy rectangular waveguide, 644
non-uniform plane waves, 531-532
Autotransformer, 474
Avogadro's number, 136
Axisymmetric solutions to Laplace's equation, 286-288

Backward wave distributed system, 651
Barium titanate, 150
Base units, 55
Batteries due to lightning, 197
Bessel's equation, 280, 482
functions, 281
Betatron, 402-404
oscillations, 404
Bewley, L. V., 433, 475
B field, see Magnetic field
Binding energy, of atom, 211-212
of crystal, 205-206
Biot-Savart law, 322-323
Birefringence, 518-520
Bohr atomic model, 111-112

Bohr magneton, 350
Bohr radius, 63
Boltzmann constant, 155
Boltzmann distribution, 156
Boundary conditions:
normal component of: current density J, 168-169
displacement field $D, 163-164$
magnetic field $B, 366$
polarization P, 165-1 66
$\epsilon_{0} E, 165-166$
tangential component of:
electric field E, 162-163
magnetic field $H, 359-360$
magnetization M, 360
Breakdown, electric strength, 93, 223
‘electromechanical, 252
Brewster's angle, 540-543
and polarization by reflection, 547
Broadside array, 683

Capacitance:
as approximation to short transmission line, 589-592, 601
coaxial cylindrical electrodes, 176-177
concentric spherical electrodes, 176 . 177
energy stored in, 212-213
force on, 219-223
any geometry, 172
isolated sphere, 178,213
parallel plate electrodes, 173-177
per unit length on transmission line, 570, 572
power flow in, 491-493
reflections from at end of transmission line, 593-594
and resistance, 177
in series or parallel, 242-243
slanted conducting planes, 273
two contacting spheres, 178-181
two wire line, 101-103
Cartesian coordinates, 29-30
Cauchy's equation, 563
Cauchy-Riemann equations, 305
Chalmers, J. A., 293
Characteristic admittance, 579
Characteristic impedance, 579
Charge:
by contact, 50
differential elements, 60
distributions, 59-63
and electric field, 56-57
force between two electrons, 56
forces on, 51-52
and Gauss's law, 74-76
polarization, 140-142, 149
Charge relaxation, series lossy capacitor, 184-189
time, 182-184
transient, 182
uniformly charged sphere, 183-184
Child-Langmuir law, 200
Circuit theory as quasi-static approximation, 490
Circular polarization, 515-516
Circulation, 29
differential sized contour, 30
and Stokes' theorem, 35
Coaxial cable, capacitance, 176-177
inductance, 456-458
resistance, 172
Coefficient of coupling, 415
Coercive electric field, 151
Coercive magnetic field, 356-357
Cole-Cole plot, 234
Collision frequency, 154
Commutator, 429
Complex permittivity, 509, 524
Complex Poynting's theorem, 494-496
Complex propagation constant, 530-532
Conductance per unit length, 190
Conduction, 51
drift-diffusion, 156-159
Ohmic, 159-160
superconductors, 160-161
Conductivity, 159-160
of earth's atmosphere, 195
and resistance, 170
Conjugate functions, 305
Conservation of charge, 152-154
boundary condition, 168-169
inconsistency with Ampere's law, 488489
on perfect conductor with time varying surface charge, 537
Conservation of energy, 199
Constitutive laws:
linear dielectrics, 143-146
linear magnetic materials, 352, 356
Ohm's law, 159-160
superconductors, 160-161
Convection currents, 182, 194-195
Coordinate systems, 2-7
Cartesian (rectangular), 2-4
circular cylindrical, 4-7
inertial, 417
spherical, 4-7
Coulomb's force law, 54-55
Critical angle, 541-544
Cross (Vector) product, 13-16
and curl operation, 30
Crystal binding energy, 205-206
Curl:
Cartesian (rectangular) coordinates, 29-30
circulation, 29-31
curvilinear coordinates, 31
cylindrical coordinates, 31-33
of electric field, 86
of gradient, 38-39
of magnetic field, 333
spherical coordinates, 33-35
and Stokes' theorem, 35-38
Current, 152-154
boundary condition, 168-169
density, 153-154
over earth, 196
between electrodes, 169-170
through lossless capacitor, 178
through series lossy capacitor, 187-189
sheet, as source of non-uniform plane waves, 532-534
as source of uniform plane waves, 500-503
Curvilinear coordinates, general, 46
Cut-off in rectangular waveguides, 638 641
Cyclotron, 319-321
frequency, 316
Cylinder:
magnetically permeable, 357-359
and method of images, 97-103
permanently polarized, 166-168
surface charged, 80-82
with surface current, 335-336
in uniform electric field, 273-277
perfectly conducting, 278
perfectly insulating, 279
volume charged, 72,82
with volume current, 336
Cylindrical coordinates, curl, 31
divergence, 24-26
gradient, 17
Debye length, 157-159
Debye unit, 139
Dees, 319
Del operator, 16
and complex propagation vector, 531
and curl, 30
and divergence, 24
and gradient, 16
Delta function, 187
Diamagnetism, 349-352
Dichroism, 517
Dielectric, 143
coating, 525-528
constant, 146-147
linear, 146-147
modeled as dilute suspension of conducting spheres, 293
and point charge, 164-165
waveguide, 644-648
Difference equations:
capacitance of two contacting spheres, 179-181
distributed circuits, 47-48
self-excited electrostatic induction machines, 227-230
transient transmission line waves, 586587
Differential:
charge elements, 60
current elements, 323
cylindrical charge element, 81-82
lengths and del operator, 16-17
line, surface, and volume elements, 4
planar charge element, 68
spherical charge element, 79-80
Diffusion, coefficient, 156
equation, 191
Diode, vacuum tube, 198-201
Dipole electric field:
far from permanently polarized cylinder, 168
far from two oppositely charged electrodes, 169, 172
along symmetry axis, 58-59
two dimensional, 231, 274
Dipole moment, electric, 137
magnetic, 345
Directional cosines, 41
Dispersion, complex waves, 531
light, 563
Displacement current, 154, 178
as correction to Ampere's law, 488-489
Displacement field, 143
boundary condition, 163-164
parallel plate capacitor, 175
permanently polarized cylinder, 166168
in series capacitor, 185
Distortionless transmission line, 603
Distributed circuits:
backward wave, 650
inductive-capacitive, 47-48
resistive-capacitive, 189-194
transmission line model, 575-576
Divergence:
Cartesian (rectangular) coordinates, 2324
of curl, 39
curvilinear coordinates, 24
cylindrical coordinates, 24-26
of electric field, 83
of magnetic field, 333
spherical coordinates, 26
theorem, 26-28
and Gauss's law, 82-83
relating curl over volume to surface integral, 44
relating gradient over volume to surface integral, 43
Domains, ferroelectric, 50
ferromagnetic, 356-357
Dominant waveguide mode, 640
Doppler frequency shifts, 507-508
Dot (scalar) product, 11-13
and divergence operation, 24
and gradient operation, 16
Double refraction, 518-520
Double stub matching, 625-629
Drift-diffusion conduction, 156-159
Earth, fair weather electric field, 195
magnetic field, 424-425
Eddy currents, 401
Effective length of radiating electric dipole, 676-677
Einstein's relation, 156
Einstein's theory of relativity, 207
Electrets, 151
force on, 218
measurement of polarization, 239-240
Electric breakdown, 93, 223-224
mechanical, 252
Electric dipole, 136
electric field, 139
moment, 137-140, 231
potential, 136-137
radiating, 667-671
units, 139
Electric field, 56-57
boundary conditions, normal component, 83, 165-166
tangential component, 162-163
of charge distribution, 63-64
of charged particle precipitation onto sphere, 293
of cylinder with, surface charge, 71, 80-82
volume charge, 72, 82
in conducting box, 269
discontinuity across surface charge, 83
of disk with surface charge, 69-71
due to lossy charged sphere, 183
due to spatially periodic potential sheet, 266
due to superposition of point charges, 57-58
energy density, 208-209
and Faraday's law, 395
of finite length line charge, 89
and gradient of potential, 86
around high voltage insulator bushing, 284
of hoop with line charge, 69
between hyperbolic electrodes, 262
of infinitely long line charge, 64-65
of infinite sheets of surface charge, 6569
line integral, 85-86
local field around electric dipole, 145146
around lossy cylinder, 276
around lossy sphere, 289
numerical method, 298
around permanently polarized cylinder, 166-168
of permanently polarized cylinder, 166168
of point charge above dielectric boundary, 165
of point charge near grounded plane, 107
of point charge near grounded sphere, 106
of radiating electric dipole, 671
in resistive box, 263
in resistor, coaxial cylinder, 172
concentric sphere, 173
parallel plate, 171
of sphere with, surface charge, 76-79
volume charge, 79-80
transformation, 417
between two cones, 286
of two infinitely long opposite polarity line charges, 94
of two point charges, 58-59
of uniformly charged volume, 68-69
Electric field lines:
around charged sphere in uniform field, 297
around cylinder in uniform field, 276277
due to spatially periodic potential
sheet, 267
of electric dipole, 139
around high voltage insulator bushing, 284
between hyperbolic electrodes, 262
of radiating electric dipole, 671-673
within rectangular waveguide, 636,639
around two infinitely long opposite polarity line charges, 95-96
around uncharged sphere in uniform field, 290-291
Electric potential, 86-87
of charge distribution, 87
within closed conducting box, 268, 300
due to spatially periodic potential sheet, 266
and electric field, 86-87
of finite length line charge, 88-89
around high voltage insulator bushing, 282-284
between hyperbolic electrodes, 262
of infinitely long line charge, 94
inside square conducting box, 299-301
of isolated sphere with charge, 109
around lossy cylinder in uniform electric field, 274
around lossy sphere in uniform electric field, 288
within open resistive box, 263
of point charge, 87
of point charge above dielectric boundary, 165
of point charge and grounded plane, 107
of point charge and grounded sphere, 103
of sphere with, surface charge, 90-91
volume charge, 90-91
between two cones, 286
of two infinitely long line charges, 94
between upper atmosphere and earth's surface, 196-197
and zero potential reference, ground, 87
Electric susceptibility, 146
Electromechanical breakdown, 252
Electromotive force (EMF), 395
due to switching, 433
due to time varying number of coil turns, 433-435
in magnetic circuits, 406
Electron, beam injection into dielectrics, 201
charge and mass of, 56
radius of, 207

Electronic polarization, 136
Electron volts, 206
Electroscope, 53-54
Electrostatic generators, and Faraday's
ice pail experiment, 53-54
induction machines, 224-230
Van de Graaff, 223-224
Electrostatic induction, 51-53
Faraday's ice pail experiment, 53-54
machines, 224-230
Electrostatic precipitation, 293, 307
Electrostatic radiating field, 671
Electrostriction, 151
Elliptical polarization, 515
Element factor, 683
Endfire array, 685
Energy:
binding, of atom, 211-212
of crystal, 205-206
and capacitance, 212-213, 220
and charge distributions, 204-208
conservation theorem, 199
and current distributions, 454
density, electric field, 208-209
magnetic field, 441-455
and inductance, 454
stored in charged spheres, 210
Equipotential, 84-85
Euerle, W. C., 227
Exponential transmission line, 649
External inductance, 456-457
Fair weather electric field, 195
Farad, 175
Faraday, M., 394
cage, 78
disk, 420-422
ice pail experiment, 53-54
Faraday's law of induction, 394-397, 489
and betatron, 403
for moving media, 417
and paradoxes, 430-435
and resistive loop, 412
and Stokes' theorem, 404
Far field radiation, 671
Fermat's principle, 562
Ferroelectrics, 149-151
Ferromagnetism, 357
Fiber optics, 550-552
Field emission, 109
Field lines, see Electric field lines; Magnetic field lines
Flux, 22
and divergence, 2I-26
and divergence theorem, 26-28
and Gauss's law, 74-75
and magnetic field, 338
magnetic through square loop, 342-343
and sources, 21-22
and vector potential, 338
Force:
on capacitor, 219-223
Coulomb's law, 54-56
on current carrying slab, 441, 444
between current sheets, 329
due to pressure gradient, 155
on electric dipole, 216
gravitational, 56
on inductor, 461
interfacial, 264
on linear induction machine, 449-450
between line charge and cylinder, 99
between line charge and plane, 97
between line current and perfect conductor or infinitely permeable medium, 363
between line currents, 314-315
on magnetically permeable medium, 363
on magnetic block, 465
on magnetic dipole, 352, 368-370
on magnetizable current loop, 370-375
on MHD machine, 430
on moving charge, 314-315
on one turn loop, 464
between point charge and dielectric boundary, 165
between point charge and grounded plane, 108
between point charge and grounded sphere, 105
between point charges, 51-56
between point charge and sphere of constant charge, 109
between point charge and sphere of constant potential, 110
on polarizable medium, 215-219
on relay, 463
on surface charge, 213-215
between two contacting spheres, 181
between two cylinders, 100
Fourier series, 267
Frequency, 505-506
Fringing fields, 173-175
Fundamental waveguide mode, 640
Galilean coordinate transformation, 505
Galilean electric field transformation, 417
Garton, C. G., 252

Gas conduction model, 154-155
Gauge, setting, 665
Gauss's law, 75, 489
and boundary conditions:
normal component of current density, 168
normal component of displacement field, 163-164
normal component of polarization, 165-166
normal component of $\epsilon_{0} \mathrm{E}, 83,165$ 166
and charge distributions, 75
and charge injection into dielectrics, 201-202
and conservation of charge, 154
and cylinders of charge, 80-82
and displacement field, 143
and divergence theorem, 82-83
and lossy charged spheres, 183-184
for magnetic field, 333
and point charge inside or outside volume, 74-7.5
and polarization field, 142
and resistors, coaxial cylinder, 172
parallel plate, 171
spherical, 173
and spheres of charge, 76-80
Generalized reflection coefficient, 607608
Generators, 427-429
Geometric relations between coordinate systems, 7
Gibbs phenomenon, 269
Gradient:
in Cartesian (rectangular) coordinates, 16-17
in cylindrical coordinates, 17
and del operator, 16
and electric potential, 86
and line integral, 18-21
of reciprocal distance, 73
in spherical coordinates, 17-18
theorem, 43-44, 334, 370
Gravitational force, 56
Green's reciprocity theorem, 124
Green's theorem, 44
Ground, 87
Group velocity, 513
on distortionless transmission line, 603
in waveguide, 641
Guard ring, 173-174
Gyromagnetic ratio, 385
Half wave plate, 519

Hall effect, 321-322
Hall voltage, 322
Harmonics, 267-269
Helix, 317
Helmholtz coil, 331
Helmholtz equation, 631
Helmholtz theorem, 337-338, 665
H field, see Magnetic field
High voltage bushing, 282-284
Holes, 154, 321
Homopolar generator, 420-422
periodic speed reversals, 426-427
self-excited, 422-424
self-excited ac operation, 424-425
Horenstein, M. N., 282
Hyperbolic electrodes, 261-262
Hyperbolic functions, 264-265
Hysteresis, ferroelectric, 150-151
magnetic, 356-357
and Poynting's theorem, 553
Identities, vector, 38-39, 46-47
Images, see Method of Images
Impedance, characteristic, 579
of free space, 498
wave, 498
Impulse current, 187
Index of refraction, 540
Inductance:
of coaxial cable, 456-458, 575
external, 456-457
and ideal transformer, 414-415
internal, 457-458
and magnetic circuits, 407-411
mutual, 398
as quasi-static approximations to transmission lines, 589-592, 601
reflections from at end of transmission line, 594-595
and resistance and capacitance, 458459
self, 407
of solenoid, 408
of square loop, 343
of toroid, 409
per unit length on transmission line, 570, 572
Induction, electromagnetic, 394-395
electrostatic, 51-54, 224-230
machine, 446-450
Inertial coordinate system, 417
Internal inductance, 457-458
International system of units, 55
Ionic crystal energy, 205-206
Ionic polarization, 136-137

Ionosphere plane wave propagation, 511512,557
Isotopes, 318-319
Kelvin's dynamo, 227
Kerr effect, 520, 558
Kinetic energy, 199
Kirchoff's current law, 154, 490
Kirchoff's laws on transmission lines, 569-570
Kirchoff's voltage law, 86, 490
Laminations, 401-402, 470-471
Lange's Handbook of Chemistry, 147
Langevin equation, 251
for magnetic dipoles, 355
Langmuir- Child law, 200
Laplace's equation, 93, 258
Cartesian (rectangular) coordinates, 260
cylindrical coordinates, 271
and magnetic scalar potential, 365
spherical coordinates, 284
Laplacian of reciprocal distance, 73-74
Larmor angular velocity, 316
Laser, 517
Law of sines and cosines, 41
Leakage flux, 415
Left circular polarization, 516
Legendre's equation, 287
Legendre's polynomials, 287-288
Lenz's law, 395-397
and betatron, 403
Leyden jar, 227
L'Hôpital's rule, 589
Lightning producing atmospheric charge, 197
Light pipe, 550-552, 565
Light velocity, 56, 497
Linear dielectrics, 143-147
Linear induction machine, 446-450
Linear magnetic material, 352, 356
Linear polarization, 515
Line charge:
distributions, 60
finite length, 88-89
hoop, 69
infinitely long, 64-65
method of images, 96-103
near conducting plane, 96-97
near cylinder, 97-99
two parallel, 93-96
two wire line, 99-103
Line current, 324
Line integral, 18-21
of electric field, 85
of gradient, 19-20
and Stokes' theorem, 36
and work, 18-19
Local electric field, 145-146
Lord Kelvin's dynamo, 227
Lorentz field, 238
Lorentz force law, 314-316
Lorentz gauge, 665
Lorentz transformation, 417,505
Lossy capacitor, 184-189
Madelung, electrostatic energy, 205
Magnesium isotopes, 319
Magnetic charge, 489
Magnetic circuits, 405-407
Magnetic diffusion, 435
with convection, 444-446
equation, 437
Reynold's number, 446
skin depth, 442-443
transient, 438-441
Magnetic dipole, 344
field of, 346
radiation from, 679-681
vector potential, 345, 680
Magnetic energy:
density, 455
and electrical work, 452
and forces, 460-461
and inductance, 454
and mechanical work, 453, 460-461
stored in current distribution, 454
Magnetic field, 314, 322-323
and Ampere's circuital law, 333-334
boundary conditions, 359-360
due to cylinder of volume current, 336
due to finite length line current, 341
due to finite width surface current, 342
due to hollow cylinder of surface current, 332, 336
due to hoop of line current, 330
due to infinitely long line current, 324325
due to magnetization, 348-349
due to single current sheet, 327
due to slab of volume current, 327
due to two hoops of line current (Helmholtz coil), 331
due to two parallel current sheets, 328
in Helmholtz coil, 331
and Gauss's law, 332-333
of line current above perfect conductor or infinitely permeable medium, 363
of line current in permeable cylinder, 358
in magnetic circuits, 405-407, 411
of magnetic dipole, 346
in magnetic slab within uniform field, 361
of radiating electric dipole, 670
of radiating magnetic dipole, 681
in solenoid, 408
of sphere in uniform field, 364-367
in toroid, 409
and vector potential, 336-338
Magnetic field lines, 342, 366-367
Magnetic flux, 333, 343
in magnetic circuits, 406-411
Magnetic flux density, 349
Magnetic scalar potential, 365
Magnetic susceptibility, 350,352
Magnetite, 343
Magnetization, 343
currents, 346-348
Magnetohydrodynamics (MHD), 430
Magnetomotive force (mmf), 409
Magnetron, 375-376
Mahajan, S., 206
Malus, law of, 518
Mass spectrogr oh, 318-319
Matched transiuission line, 582, 584
Maxwell's equations, 489, 664
Meissner effect, 451
Melcher, J. R., 227, 264, 420, 435
Method of images, 96
line charge near conducting plane, 9697
line charge near cylinder, 97-99
line charge near dielectric cylinder, 238-239
line current above perfect conductor or infinitely permeable material, 361363
point charge near grounded plane, 106-107
point charge near grounded sphere, 103-106
point charge near sphere of constant charge, 109
point charge near sphere of constant potential, 110
two contacting spheres, 178-181
two parallel line charges, 93-96
two wire line, 99-103
M field, 343
MHD, 430
Michelson-Morley experiment, 503
Millikan oil drop experiment, 110-111

Mirror, 547
MKSA System of units, 55
Mobility, 156, 201, 293
Modulus of elasticity, 252
Momentum, angular, 350
Motors, 427-429
Mutual inductance, 398
Near radiation field, 671
Newton's force law, 155
Nondispersive waves, 503
Nonuniform plane waves, 529, 532-533 and critical angle, 542
Normal component boundary conditions:
current density, 168
displacement field, 163-164
magnetic field, $\mathbf{3 6 0}$
polarization and $\epsilon_{0} E, 165-166$
Normal vector:
and boundary condition on displacement field, 163-164
and contour (line) integral, 29
and divergence theorem, 27
and flux, 22
integrated over closed surface, 44
and surface integral, 22
Numerical method of solution to Poisson's equation, 297-301

Oblique incidence of plane waves, onto dielectric, 538-543
onto perfect conductor, 534-537
Oersted, 314
Ohmic losses, of plane waves, 508-511
in transmission lines, 602-606
in waveguides, 643-644
Ohm's law, 159-160
with convection currents, 182
in moving conductors, 418
Open circuited transmission lines, 585, 589-590, 599-600
Optical fibers, 550-552
Orientational polarization, 136-137
Orthogonal vectors and cross product, 14
Orthogonal vectors and dot product, 1112

Paddle wheel model for circulation, 30-31
Parallelogram, and cross(vector) product, 13
rule for vector addition and subtraction, 9-10
Parallelpiped volume and scalar triple product, 42
Paramagnetism, 352-356

Perfect conductor, 159-160
Period, 506
Permeability, of free space, 322
magnetic, 352, 356
Permeance, 411
Permittivity:
complex, 509, 524
dielectric, 146-147
of free space, 56
frequency dependent, 511
P field, 140, 165-166. See also Polarization
Phase velocity, 513
on distortionless transmission line, 603
in waveguide, 641
Photoelastic stress, 520
Piezoelectricity, 151
Planck's constant, 350
Plane waves, 496-497
losses, 508-511
non-uniform, 530-533
normal incidence onto lossless dielectric, 522-523
normal incidence onto lossy dielectric, 524-525
normal incidence onto perfect conductor, 520-522
oblique incidence onto dielectrics, 538544
oblique incidence onto perfect conductors, 534-537
power flow, 498, 532
uniform, 529-530
Plasma, conduction model, 154-155
frequency, 161,511
wave propagation, 511-512
Pleines, J., 206
Point charge:
above dielectric boundary, 164-165
within dielectric sphere, 147-149
force on, 55-58
near plane, 106-108
in plasma, 158-159
radiation from, 666-667
near sphere, 103-110
Poisson equation, 93, 258
and Helmholtz theorem, 338
and radiating waves, 665-666
within vacuum tube diode, 199
Poisson-Boltzmann equation, 157
Polariscope, 518-520
Polarizability, 143-144
and dielectric constant, 147
Polarization:
boundary conditions, 165-166
charge, 140-142, 149
cylinder, 166-168
and displacement field, 146-147
electronic, 136
force density, 215-219
ionic, 136
orientational, 136
in parallel plate capacitor, 176-177
by reflection, 546-547
spontaneous, 149-151
of waves, 514-516
Polarizers, 517-520
Polarizing angle, 547
Polar molecule, 136-137
Polar solutions to Laplace's equation, 271-272
Potential:
energy, 199
retarded, 664-667
scalar electric, 86-93, 664-667
scalar magnetic, 365-367
vector, 336, 664-667
see also Electric potential; Vector potential
Power:
in capacitor, 220
on distributed transmission line, 576578
in electric circuits, 493-494
electromagnetic, 491
flow into dielectric by plane waves, 524
in ideal transformer, 415
in inductor, 461
from long dipole antenna, 692
in lossy capacitor, 492
from radiating electric dipole, 675-676
time average, 495
in waveguide, 641
Poynting's theorem, 490-491
complex, 494-496
for high frequency wave propagation, 512
and hysteresis, 553
Poynting's vector, 491
complex, 495
and complex propagation constant, 532
through dielectric coating, 528
due to current sheet, 503
of long dipole antenna, 691
for oblique incidence onto perfect conductor, 536-537
through polarizer, 518
and radiation resistance, 674
in rectangular waveguide, 641642
reflected and transmitted through lossless dielectric, 524
time average, 495
of two element array, 683
and vector wavenumber, 530
Precipitator, electrostatic, 293-297, 307
Pressure, 154
force due to, 155
radiation, 522
Primary transformer winding, 415
Prisms, 549-550
Product, cross, 13-16
dot, 11-13
vector, 13-16
Product solutions:
to Helmholtz equation, 632
to Laplace's equation:
Cartesian (rectangular) coordinates, 260
cylindrical coordinates, 271-272
spherical coordinates, 284-288
Pyroelectricity, 151
Q of resonator, 660
Quadrapole, 233
Quarter wave long dielectric coating, 528
Quarter wave long transmission line, 608-610
Quarter wave plate, 520
Quasi-static circuit theory approximation, 490
Quasi-static inductors and capacitors as approximation to transmission lines, 589-592
Quasi-static power, 493-494
Radiation:
from electric dipole, 667-677
field, 671
from magnetic dipole, 679-681
pressure, 522
resistance, 674-677, 691-694
Radius of electron, 207
Rationalized units, 55
Rayleigh scattéring, 677-679
Reactive circuit elements as short transmission line approximation, 601602
Reciprocal distance, 72
and Gauss's law, 74-75
gradient of, 73
laplacian of, 73-74
Reciprocity theorem, 124
Rectangular (Cartesian) coordinate system, 2-4
curl, 29-30
divergence, 23-24
gradient, 16-17
Rectangular waveguide, 629-644. See also Waveguide
Reference potential, 86-87
Reflected wave, plane waves, 520,522 , 535-536, 538, 542
transmission line, 581-582, 586-587, 592-595
Reflection, from mirror, 545
polarization by, 546-548
Reflection coefficient:
arbitrary terminations, 592-593
generalized, 607-608
of plane waves, 523
of resistive transmission line terminations, 581-582
Refractive index, 540
Relative dielectric constant, 146
Relative magnetic permeability, 356
Relativity, 503-505
Relaxation, numerical method, 297-301
Relaxation time, 182
of lossy cylinder in uniform electric field, 275
of two series lossy dielectrics, 186-187
Reluctance, 409
motor, 482-483
in parallel, 411
in series, 410
Resistance:
between electrodes, 169-170
between coaxial cylindrical electrodes, 172
in open box, 262-264
between parallel plate electrodes, 170 171
in series and parallel, 186-187
between spherical electrodes, 173
Resistivity, 159
Remanent magnetization, 356-357
Remanent polarization, 151
Resonator, 660
Retarded potentials, 664-667
Reynold's number, magnetic, 446
Right circular polarization, 516
Right handed coordinates, 3-5
Right hand rule:
and circulation, 29-30
and cross products, 13-14
and Faraday's law, 395
and induced current on perfectly conducting sphere, 367
and line integral, 29
and magnetic dipole moment, 344-345
and magnetic field, 324
Saturation, magnetic, 356-357
polarization, 150-151
Saturation charge, 295
Scalar electric potential, 86-87
Scalar magnetic potential, 365
Scalar potential and radiating waves, 664667, 669-670
Scalar (dot) product, 11-13
Scalars, 7-8
Scalar triple product, 42
Schneider, J. M., 201
Seawater skin depth, 443
Secondary transformer winding, 415
Self-excited machines, electrostatic, 224-230
homopolar generator, 422-427
Self-inductance, see Inductance
Separation constants, to Helmholtz equation, 632
to Laplace's equation, 260-261, 271, 278-280, 286-287
Separation of variables:
in Helmholtz equation, 632
in Laplace's equation:
Cartesian, 260-261, 264-265, 270
cylindrical, 271, 277-282
spherical, 284-288
Short circuited transmission line, 585, 590, 596-599
Sidelobes, 688
Sine integral, 691, 694
SI units, 55-56, 322
capacitance, 175
resistance, 171
Skin depth, 442-443
with plane waves, 511,525
and surface resistivity, 604-606, 643
Slip, 448
Single stub tuning, 623-625
Sinusoidal steady state:
and complex Poynting's theorem, 494495
and linear induction machine, 446-450
and magnetic diffusion, 442-444
and Maxwell's equations, 530-532
and radiating waves, 667-671
and series lossy capacitor, 188-189
and TEM waves, 505-507
Slot in waveguide, 635
Smith chart, 611-615
admittance calculations, 620-621
stub tuning, 623-629

Snell's law, 540
Sohon, H., 431
Solenoid self-inductance, 407-408
Space charge limited conduction, in dielectrics, 201-203
in vacuum tube diode, 198-201
Speed coefficient, 421
Sphere:
capacitance of isolated, 178
of charge, 61-63, 76-80, 91
charge relaxation in, 183-184
earth as leaky capacitor, 195-197
as electrostatic precipitator, 293-297
lossy in uniform electric field, 288-293
method of images with point charge, 103-110
point charge within dielectric, 147-149
two charged, 92
two contacting, 178-181
in uniform magnetic field, 363-368
Spherical coordinates, 4-6
curl, 33-37
divergence, 26
gradient, 17
Spherical waves, 671
Spin, electron and nucleus, 344
Standing wave, 521-522
Standing wave parameters, 61 6-620
Stark, K. H., 252
Stewart, T. D., 237
Stokes' theorem, 35-38
and Ampere's law, 349
and electric field, 85-86
and identity of curl of gradient, 38-39
and magnetic flux, 338
Stream function:
of charged particle precipitation onto sphere, 297
cylindrical coordinates, 276-277
of radiating electric dipole, 672
spherical coordinates, 290-291
Stub tuning, 620-629
Successive relaxation numerical method, 297-301
Superconductors, 160-161
and magnetic fields, 450-451
Surface charge distribution, 60
and boundary condition on current density, 168
and boundary condition on displacement field, 163-164
and boundary condition on $\epsilon_{0} \mathrm{E}, 83$, 166
on cylinder in uniform electric field, 273-275
of differential sheets, 68-69
disk, 69-71
electric field due to, 65-67
force on, 213-215
hollow cylinder, 71
induced by line charge near plane, 97
induced by point charge near plane, 107-108
induced by point charge near sphere, 106
and parallel plate capacitor, 175
on slanted conducting planes, 273
on spatially periodic potential sheet, 266
on sphere in uniform electric field, 289
between two lossy dielectrics, 186-187
two parallel opposite polarity sheets, 67-68
Surface conductivity, 435, 601
Susceptibility, electric, 146
magnetic, 350, 352
Tangential component boundary conditions, electric field, 162-163
magnetic field, 359-360
Taylor, G. I., 264
Taylor series expansion, 298
of logarithm, 205
Temperature, ideal gas law, 154-155
TEM waves, see Transverse electromagnetic waves
TE waves, see Transverse electric waves
Tesla, 314
Test charge, 57
Thermal voltage, 156, 158
Thermionic emission, 108-109
in vacuum tube diode, 198
Thomson, J. J., 377
Till, H. R., 201
Time constant:
charged particle precipitation onto sphere, 296
charging of lossy cylinder, 273
discharge of earth's atmosphere, 197
distributed lossy cable, 192-194
magnetic diffusion, 440
ohmic charge relaxation, 182-184
resistor-inductor, 436
for self-excited electrostatic induction machine, 226
series lossy capacitor, 186-188
Time dilation, 505
TM waves, see Transverse magnetic waves
Tolman, R. C., 237
Torque, on electric dipole, 215
on homopolar machine, 422
on magnetic dipole, 353
Toroid, 408-409
Tourmaline, 517
Transformer:
action, 411
autotransformer, 474
ideal, 413-416
impedance, 415-416
real, 416-417
twisted, 473-474
Transient charge relaxation, see Charge relaxation
Transmission coefficient, 523
Transmission line:
approach to dc steady state, $585-589$
equations, 568-576
losses, 602-603
sinusoidal steady state, 595-596
transient waves, 579-595
Transverse electric (TE) waves, in dielectric waveguide, 647-648
in rectangular waveguide, 635-638
power flow, 642-643
Transverse electromagnetic (TEM) waves, 496-497
power flow, 532
transmission lines, 569-574
Transverse magnetic (TM) waves: in dielectric waveguide, 644-647
power flow, 641-642
in rectangular waveguide, 631-635
Traveling waves, 497-500
Triple product, scalar, 42
vector, 42
Two wire line, 99-103
Uman, M. A., 195
Uniform plane waves, 529-530
Uniqueness, theorem, 258-259
of vector potential, 336-338
Unit:
capacitance, 175
rationalized MKSA, 55-56
resistance, 171
SI, 55-56
Unit vectors, 3-5
divergence and curl of, 45
Unpolarized waves, 546-547
Vacuum tube diode, 198-201
Van de Graaff generator, 223-224
Vector, 8-16
addition and subtraction, 9-11
cross(vector) product, 13-16
distance between two points, 72
dot(scalar) product, 11-13
identities, 46-47
curl of gradient, 38-39
divergence of curl, 39
triple product, 42
magnitude, 8
multiplication by scalar, 8-9
product, 11-16
scalar (dot) product, 11-13
Vector potential, 336
of current distribution, 338
of finite length line current, 339
of finite width surface current, 341
of line current above perfect conductor or infinitely permeable medium, 363
of magnetic dipole, 345
and magnetic field lines, 342
and magnetic flux, 338
of radiating electric dipole, 668-669
of radiating waves, 667
uniqueness, 336-338
Velocity:
conduction charge, 156
electromagnetic waves, 500
group, 513
light, 56, 500
phase, 513
Virtual work, 460-461
VSWR, 616-620
Voltage, 86
nonuniqueness, 412
standing wave ratio, 616-620
Volume charge distributions, 60
cylinder, 72-82
slab, 68-69
sphere, 79-80
Von Hippel, A. R., 147
Water, light propagation in, 548-549
Watson, P. K., 201

Wave:
backward, 651
dispersive, 512-514
equation, 496-497
high frequency, 511-512
nondispersive, 503
plane, 496-497
properties, 499-500
radiating, 666-667
solutions, 497-499
sources, 500-503
standing, 521-522
transmission line, 578-579
traveling, 499-500
Waveguide:
dielectric, 644-648
equations, 630
power flow, 641-644
rectangular, 629-644
TE modes, 635-638
TM modes, 631-635
wall losses, 643-644
Wave impedance, 498
Wavelength, 506
Wavenumber, 505-506
on lossy transmission line, 604
as vector, 530
Wheelon, A. D., 181
Whipple, F. J. W., 293
White, H. J., 293
White light, 563
Wimshurst machine, 227
Woodson, H. H., 420, 435
Work:
to assemble charge distribution, 204-208
and dot product, 11
mechanical, 453
to move point charge, 84-85
to overcome electromagnetic forces, 452
Zeeman effect, 378
Zero potential reference, 87

VECTOR IDENTITIES
$(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=(\mathbf{C} \times \mathbf{A}) \cdot \mathbf{B}$
$\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$
$\nabla \cdot(\nabla \times \mathbf{A})=0$
$\nabla \times(\nabla f)=0$
$\nabla(f g)=f \nabla g+g \nabla f$
$\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B})=(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}$
$+\mathbf{A} \times(\nabla \times \mathbf{B})+\mathbf{B} \times(\nabla \times \mathbf{A})$
$\boldsymbol{\nabla} \cdot(f \mathbf{A})=f \boldsymbol{\nabla} \cdot \mathbf{A}+(\mathbf{A} \cdot \boldsymbol{\nabla}) f$
$\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot(\boldsymbol{\nabla} \times \mathbf{A})-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})$
$\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})$ $+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}$
$\nabla \times(f \mathbf{A})=\nabla f \times \mathbf{A}+f \nabla \times \mathbf{A}$
$(\nabla \times \mathbf{A}) \times \mathbf{A}=(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A}-\frac{1}{2} \nabla(\mathbf{A} \cdot \mathbf{A})$
$\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$
INTEGRAL THEOREMS
Line Integral of a Gradient

$$
\int_{a}^{b} \nabla f \cdot \mathrm{dl}=f(b)-f(a)
$$

Divergence Theorem:

$$
\int_{V} \nabla \cdot \mathbf{A} d V=\oint_{S} \mathbf{A} \cdot \mathbf{d S}
$$

Corollaries

$$
\begin{aligned}
& \int_{V} \nabla f d V=\oint_{S} f \mathrm{dS} \\
& \int_{V} \nabla \times \mathbf{A d V}=-\oint_{S} A \times \mathrm{dS}
\end{aligned}
$$

Stokes' Theorem:

$$
\oint_{L} A \cdot d \mathbf{l}=\int_{S}(\nabla \times A) \cdot d S
$$

Corollary

$$
\oint_{L} f \mathrm{dl}=-\int_{S} \nabla f \times \mathrm{dS}
$$

0 DUWKV=DKQ

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

