Image Processing Girls Who Build

fathom.info

processing.org

Image by the Processing Foundation. Published under the <u>GNU General Public License</u>.

What do you think of when you hear image processing?

Image processing is analyzing and manipulating an image through code.

Using math + computer science, we can analyze, enhance and distort images for all kinds of uses.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>http://ocw.mit.edu/help/faq-fair-use/</u>

© Precision Care of New Jersey. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/

© IP4AI Image Processing for Art Investigation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>http://ocw.mit.edu/help/faq-fair-use/</u>

Surface

Reconstructed

Image via NASA (X-ray: NASA/CXC/SAO/J.DePasquale; IR: NASA/JPL-Caltech; Optical: NASA/STScI). CC BY-NC.

© Sachin Farfade/Mohammad Saberlan/Li-ia Li. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/

© Instagram, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/

Color on the computer

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>http://ocw.mit.edu/help/faq-fair-use/</u>

A color image can be represented as a percentage of the red, green and blue "intensities" combined.

30% red

60% green

10% blue

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/

A color image can also be represented as a set of hue, value, and saturation (HSB) values.

Shift across hue, but not saturation or value

© <u>Mark Ransom on Stack Exchange</u>. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>http://ocw.mit.edu/help/faq-fair-use/</u>

Let's make filters of our own!

For more information, see http://ocw.mi

Blend mode	Formula	Blend mode	Formula
Darken	min(Target,Blend)	Soft Light	(Blend > 0.5) * (1 - (1-Target) * (1-(Blend-0.5))) + (Blend <= 0.5) * (Target * (Blend+0.5))
Multiply	Target * Blend		(Blend > 0.5) * (1 - (1-Target) * (1-2*(Blend-0.5))) + (Blend <= 0.5) * (Target * (2*Blend))
Color Burn	1 - (1-Target) / Blend	Hard Light	
Linear Burn	Target + Blend - 1	Vivid Light	(Blend > 0.5) * (1 - (1-Target) / (2*(Blend-0.5))) + (Blend <= 0.5) * (Target / (1-2*Blend))
Lighten	max(Target,Blend)		
Screen	1 - (1-Target) * (1-Blend)	Linear Light	(Blend > 0.5) * (Target + 2*(Blend-0.5)) + (Blend <= 0.5) * (Target + 2*Blend - 1)
Color Dodge	Target / (1-Blend)	Pin Light	(Blend > 0.5) * (max(Target,2*(Blend-0.5))) + (Blend <= 0.5) * (min(Target,2*Blend)))
Linear Dodge	Target + Blend	Difference	Target - Blend
Overlay	(Target > 0.5) * (1 - (1-2*(Target-0.5)) * (1-Blend)) + (Target <= 0.5) * ((2*Target) * Blend)	Exclusion	0.5 - 2*(Target-0.5)*(Blend-0.5)

Resource: Girls Who Build Cameras

Kristen Railey, Bob Schulein, Olivia Glennon, Leslie Watkins, Alex Lorman, Carol Carveth, Sara James

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.