Calculus Revisited Part 1

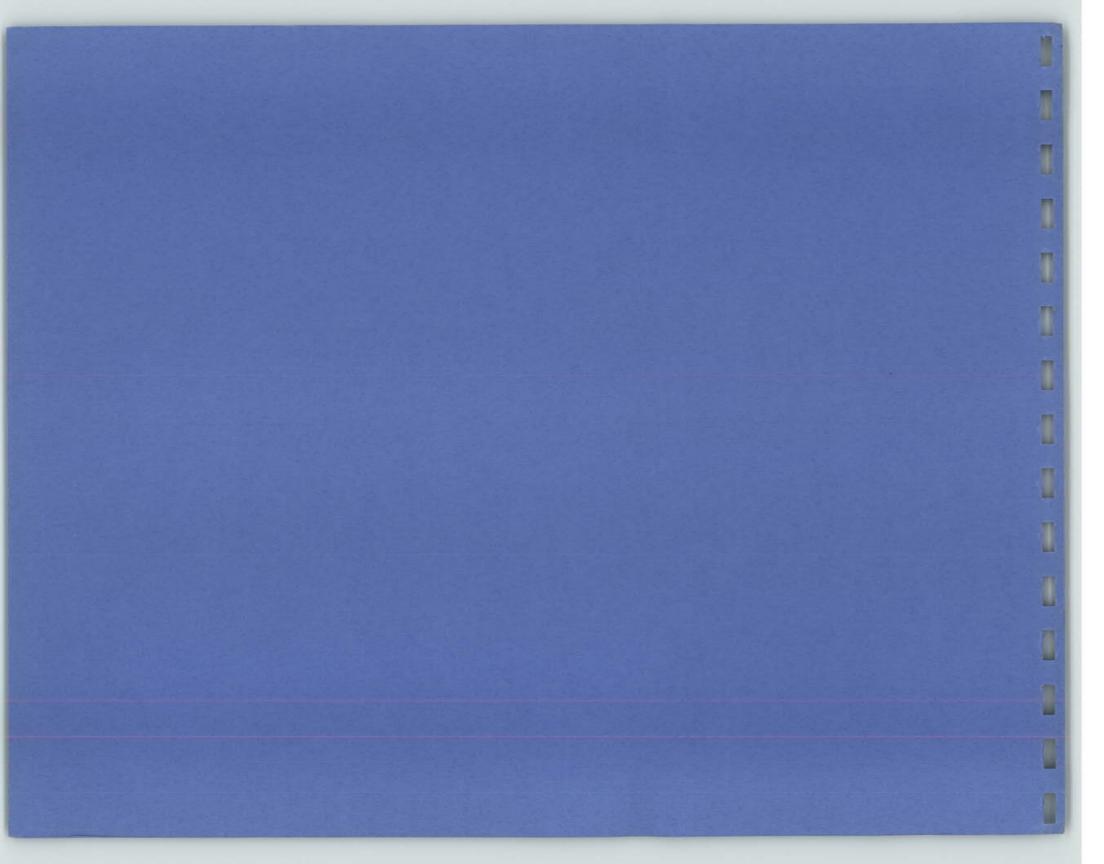
A Self-Study Course

Lecture Notes

Center for Advanced Engineering Study

Herbert I. Gross

Massachusetts Institute of Technology



CALCULUS REVISITED
PART 1
A Self-Study Course

LECTURE NOTES

Herbert I. Gross

Center for Advanced Engineering Study Massachusetts Institute of Technology



Table of Contents

Sets, Functions, and Limits
Preface
Analytic Geometry
Functions
Inverse Functions
Derivatives and Limits
Limits: A More Rigorous Approach
Mathematical Induction
Differentiation
Derivatives of Some Simple Functions
Approximations and Infinitesimals
Composite Functions and the Chain Rule
Differentiation of Inverse Functions
Implicit Differentiation
Continuity
Curve Plotting
Maxima-Minima
Rolle's Theorem and its Consequences
Inverse Differentiation
The "Definite" Indefinite Integral

Block III	: The Circular Functions
3.010	Circular Functions
3.020	Inverse Circular Functions
Block IV:	The Definite Integral
4.010	2-dimensional Area
4.020	Marriage of Differential & Integral Calculus
4.030	3-dimensional Area (Volume)
4.040	1-dimensional Area (Arc Length)
Block V:	Transcendental Functions
5.010	Logarithms without Exponents
5.020	Inverse Logarithms
5.030	What a Difference a Sign Makes
5.040	Inverse Hyperbolic Functions
Block VI:	More Integration Techniques
6.010	Some Basic Recipes
6.020	Partial Fractions
6.030	Integration by Parts
6.040	Improper Integrals

Block VII: <u>Infinite Series</u>

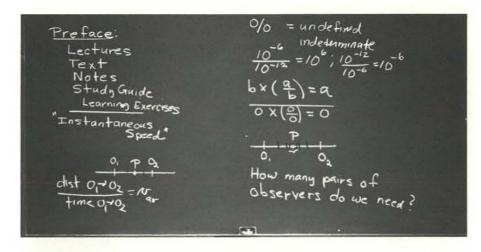
7.010 Many Vers	sus Infinite
-----------------	--------------

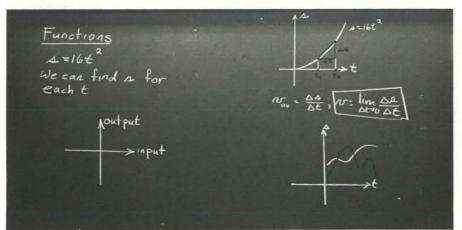
7.020 FOSILIVE SELLE	7.020	Positive	Series
----------------------	-------	----------	--------

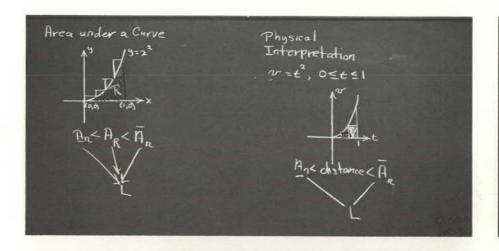
- 7.030 Absolute Convergence
- 7.040 Polynomial Approximations
- 7.050 Uniform Convergence
- 7.060 Uniform Convergence of Series

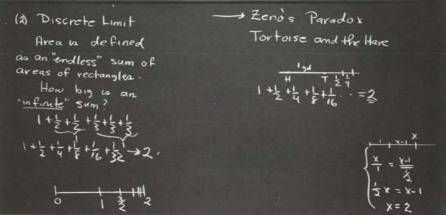
Block I: Sets, Functions, and Limits

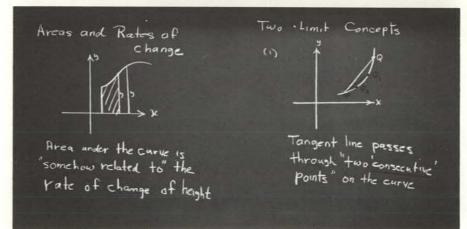
0.000 Preface

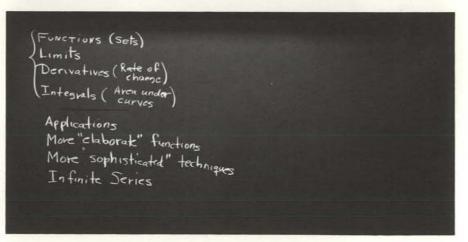




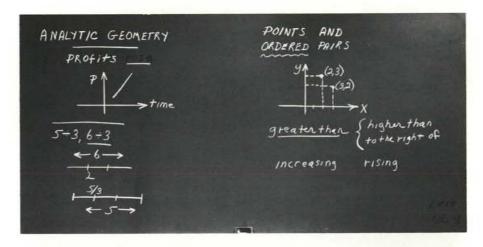


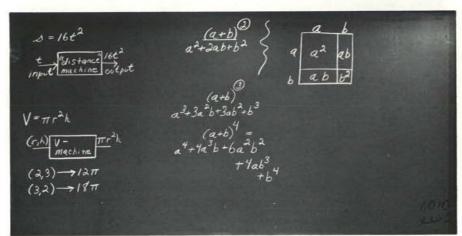


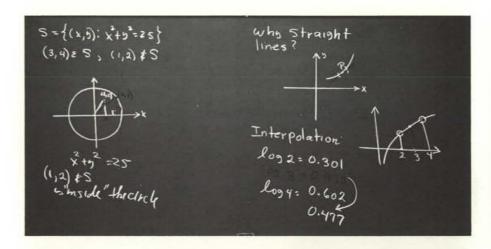


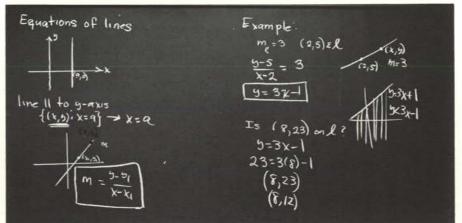


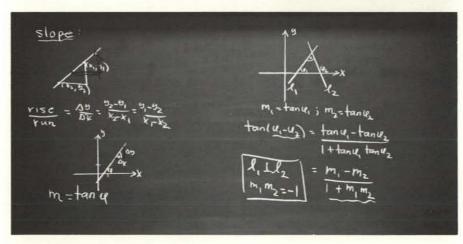
1.010 Analytic Geometry

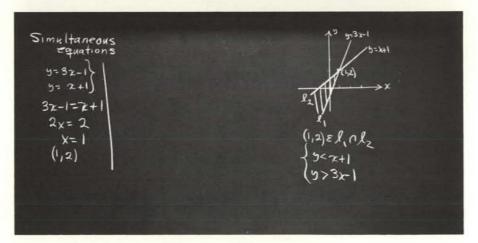




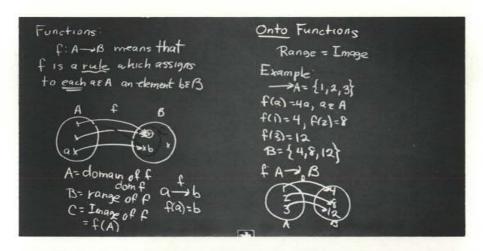


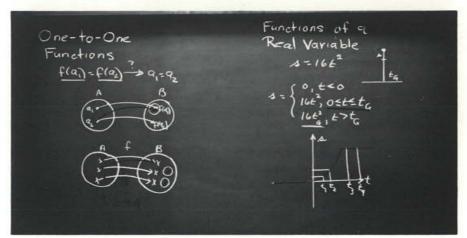


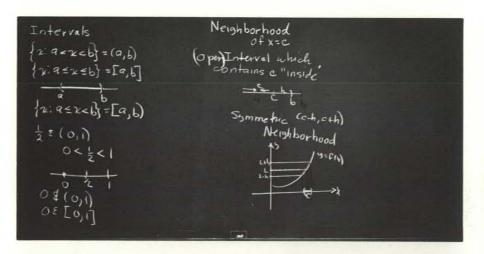


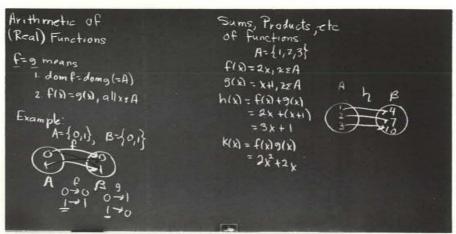


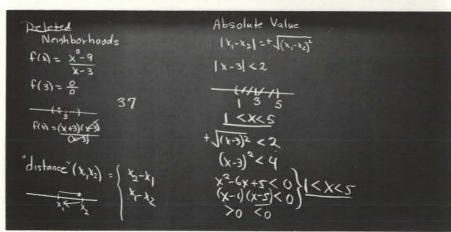
1.020 Functions

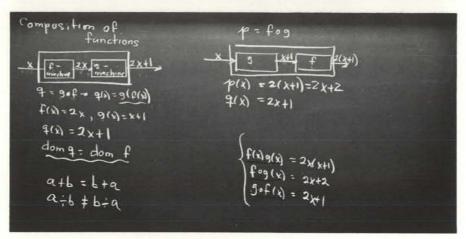




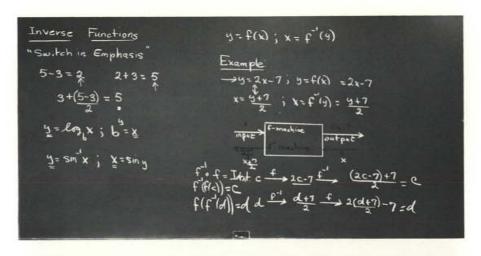


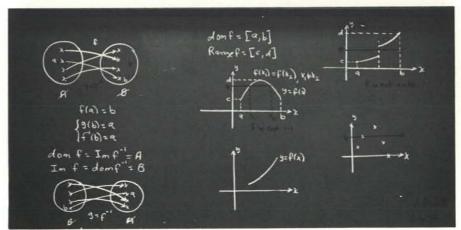


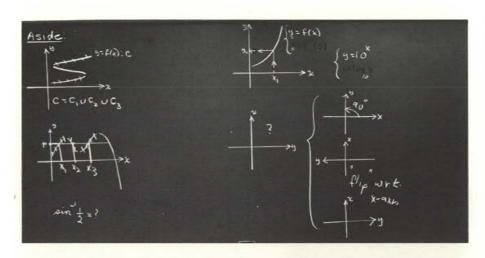


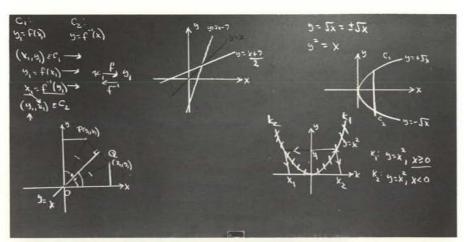


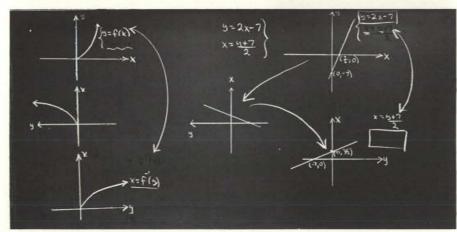
1.025 Inverse Functions

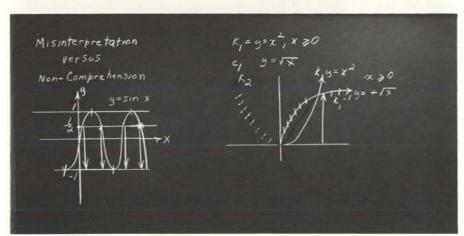


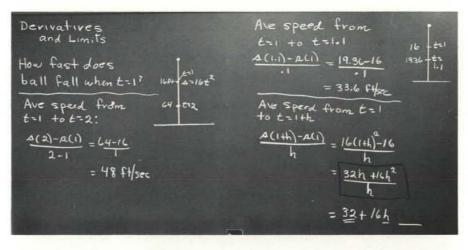


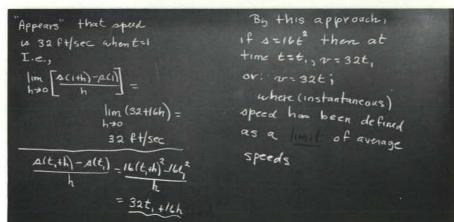


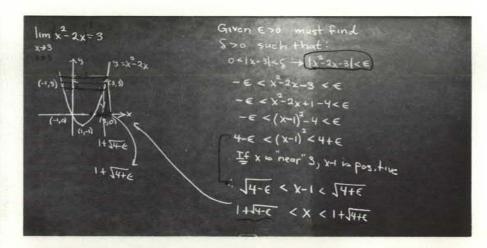


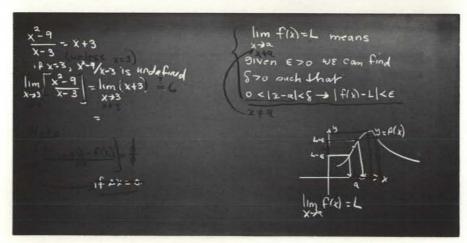


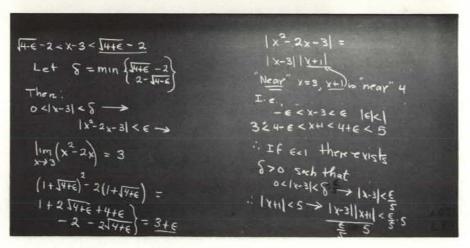




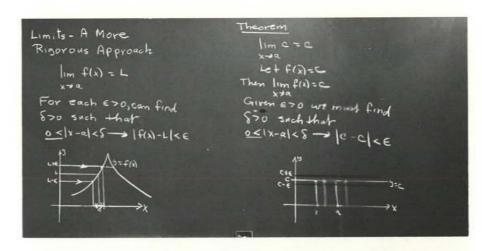


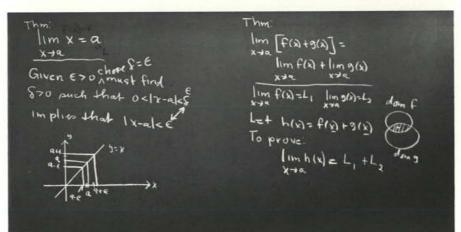


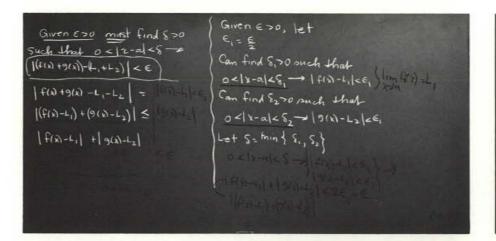


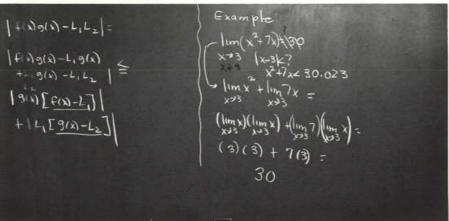


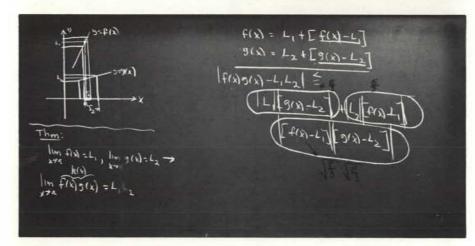
1.040 Limits: A More Rigorous Approach

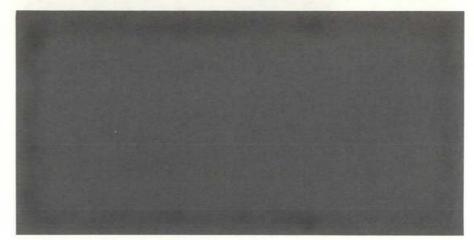






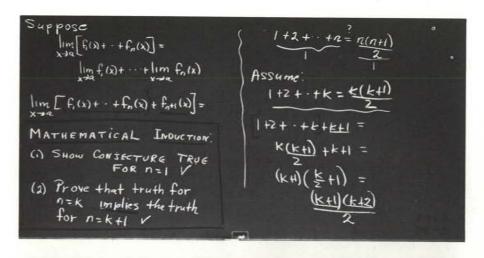


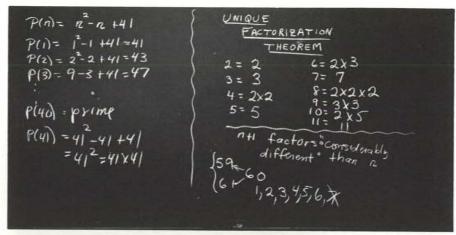


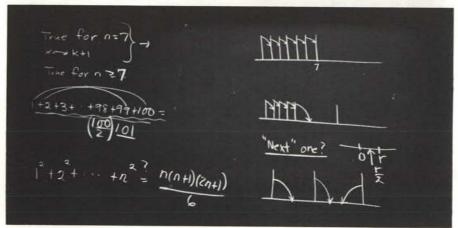


Mathematical Induction $\lim_{x\to a} f_i(x) + f_2(x) = \lim_{x\to a} f_i(x) + \lim_{x\to a} f_i(x)$ $\lim_{x\to a} f_i(x) + \lim_{x\to a} f_i(x)$ $\lim_{x\to a} f_i(x) + f_2(x) + f_3(x)$ $\lim_{x\to a} f_i(x) + f_2(x) + f_3(x)$ $\lim_{x\to a} f_i(x) + f_2(x) + \lim_{x\to a} f_i(x)$ $\lim_{x\to a} f_i(x) + \lim_{x\to a} f_i(x)$

$$1+2+3+4=10$$
 $12\div 6\div 2=1$
 $12\div$







Block II: Differentiation

2.010 Derivatives of Some Simple Functions

Derivatives of Some Simple

Functions

$$f'(x_i) = \lim_{\Delta x \to 0} \left[\frac{f(x_i + \Delta x) - f(x_i)}{\Delta x} \right]$$

Example 1:
$$f(x_i + \Delta x) = f(x_i) = (x_i + \Delta x)^2 + (x_i)^3$$

$$= 3x_i^2 \Delta x + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = 3x_i^2 + 3x_i \Delta x + \Delta x^2$$

$$= f'(x_i) = f'(x_i) = f'(x_i) = f'(x_i) = f'(x_i)$$

Example 2

Froof

$$f, g \text{ differentiable of } x$$

(I.e., $f'(x_i)$ and $g'(x_i)$ exist)

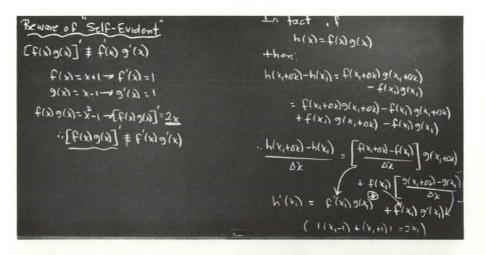
Define h by
$$h(x_i + bx) - h(x_i)$$

$$= [f(x_i + bx) + g(x_i + bx)]$$

$$= [f(x_i + bx) - h(x_i)]$$

$$= h'(x_i) = f'(x_i) + g'(x_i)$$

$$h'(x_i) = f'(x_i) + g'(x_i)$$



Summary

The basic

definition:

f'(xi)=lim f(xi+ox)-f(xi)

ox+o

ox

never changes But it

can be manipulated to

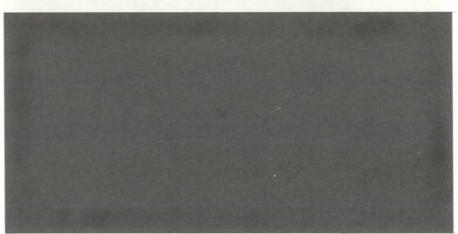
yield "convenient" "recipes"

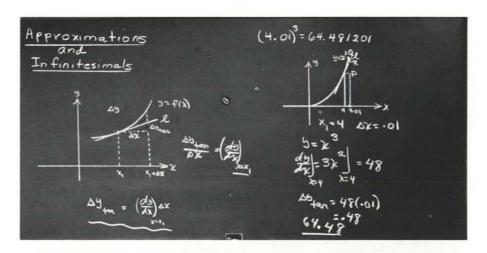
For a quotient

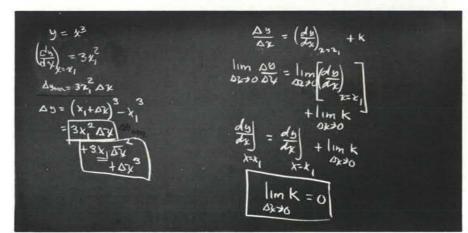
that $\lim_{x \to \infty} g(x) = g(x)$ we can show that

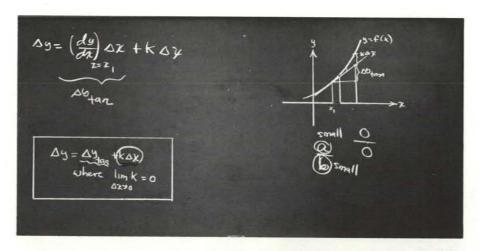
if $h(x) = \frac{f(x)}{f(x)}$ then

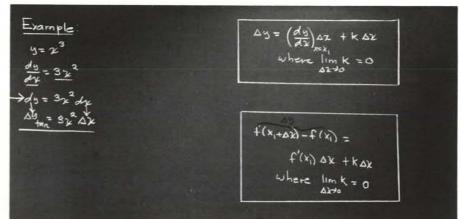
For example, $|d| g(x) = \frac{e^{-1}}{t-1}$ $\lim_{x \to \infty} g(x) = 2$, $g(x) = \frac{e^{-1}}{t-1}$ $\lim_{x \to \infty} g(x) = 2$, $g(x) = \frac{e^{-1}}{t-1}$ $\lim_{x \to \infty} g(x) = 2$, $g(x) = \frac{e^{-1}}{t-1}$ $\lim_{x \to \infty} g(x) = 2$, $g(x) = \frac{e^{-1}}{t-1}$ $\lim_{x \to \infty} g(x) = \frac{e^{-1}}{t-1}$ $\lim_{$

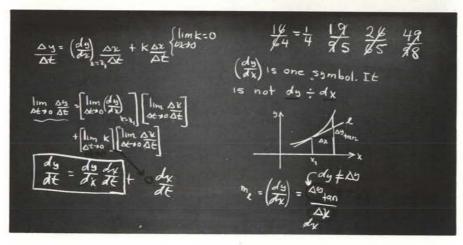




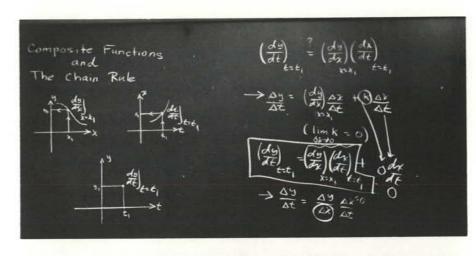


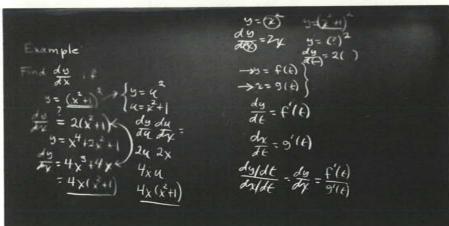


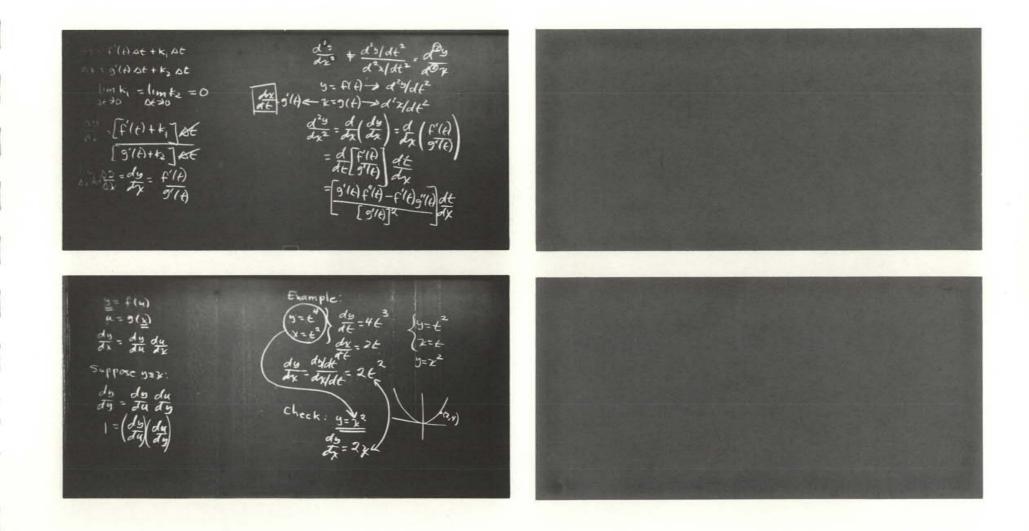


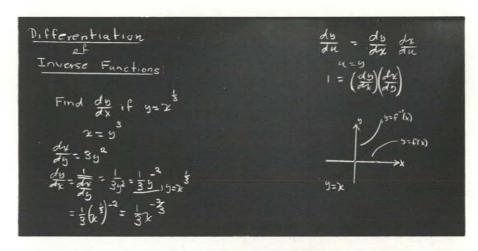


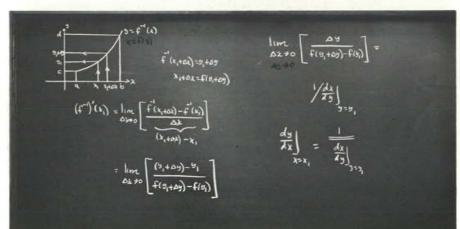
Composite Functions and the Chain Rule 2.030

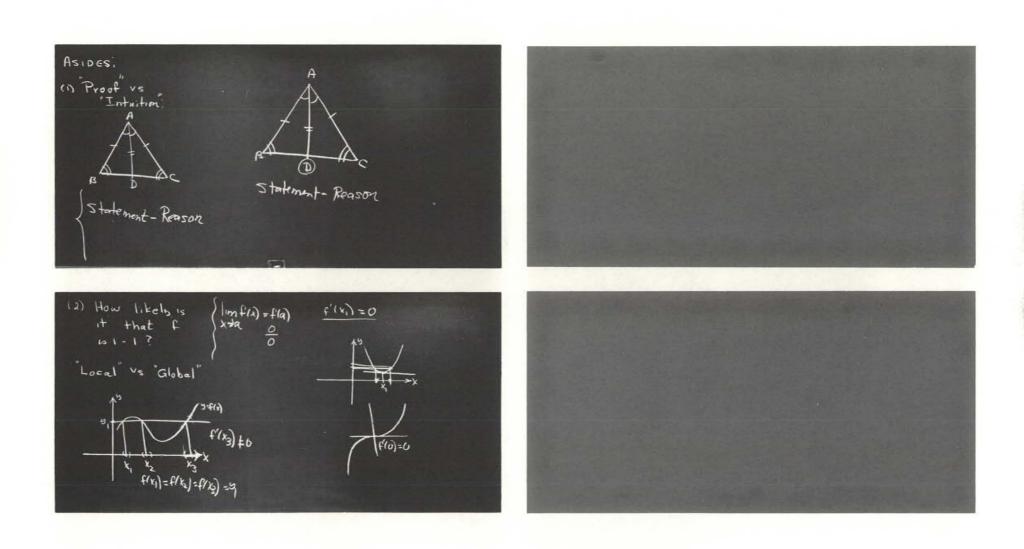


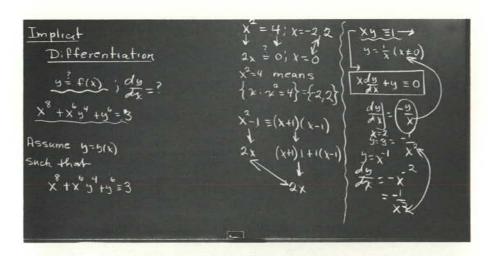


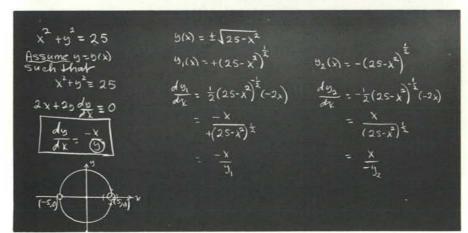


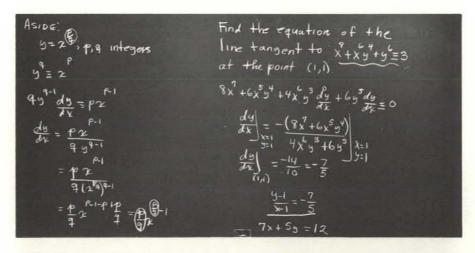


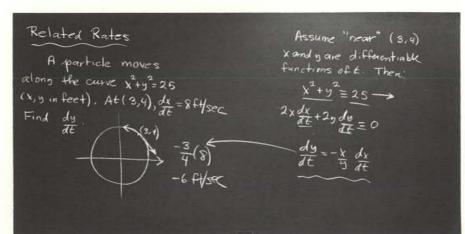


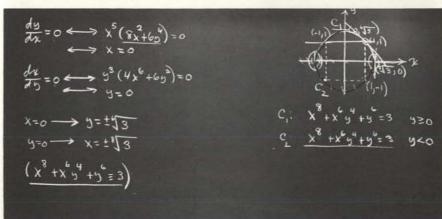


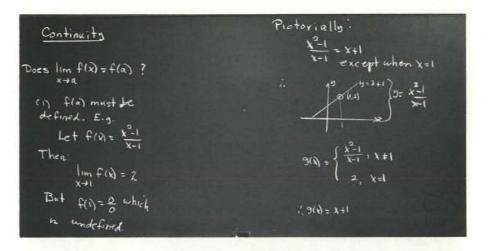


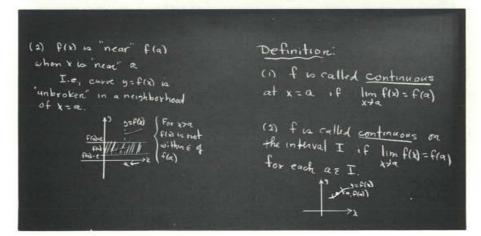


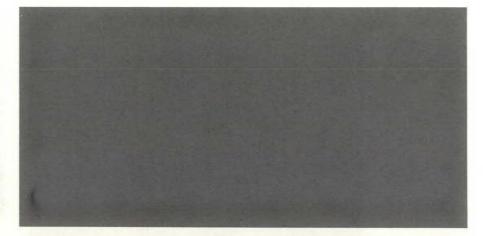






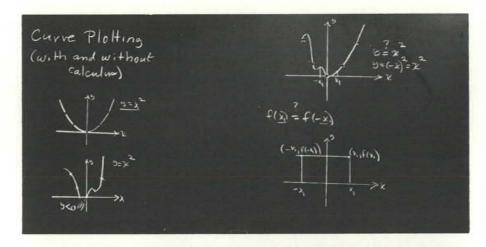




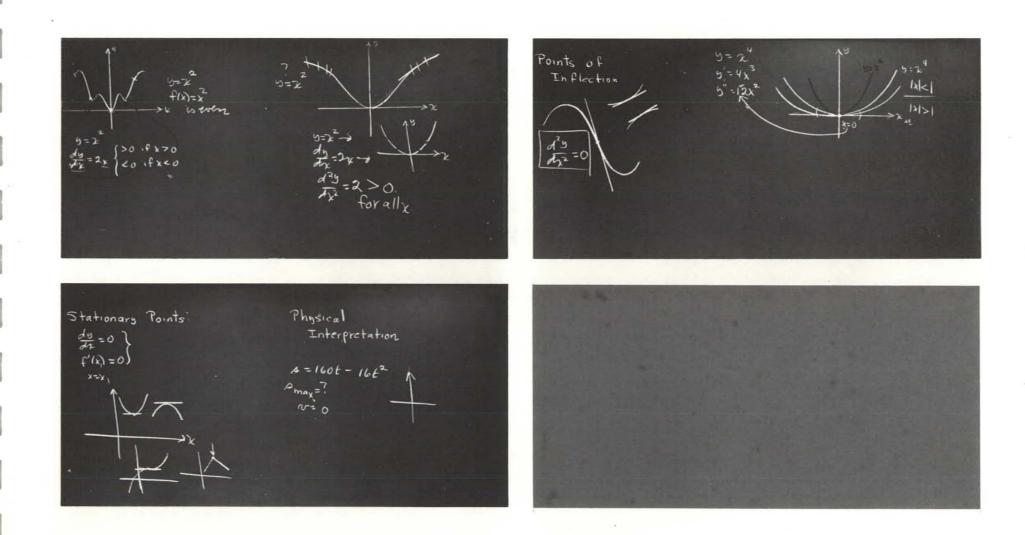


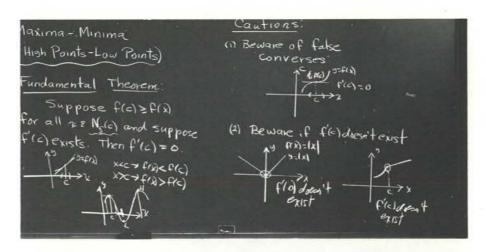
Analytic Ideas (2) Differentiable - Continuous (i) f, g cont of x=R. h(x) = f(x) +9(x) $f(x)-f(y) = \left[\frac{x-a}{f(x)-f(a)}\right](x-a)$ limb(x) = lim[f(x)+g(x)] $\lim_{x \to a} \left[f(x) - f(a) \right] = \lim_{x \to a} \left[\frac{f(x) - f(a)}{x - a} \right] \lim_{x \to a} (x - a)$ = limf(x) + limg(x) = f'(a).0 = 0 = f(a) + g(a) : lim f(x) = f(a) 1 m h (x) = h (x) Pictorially : Sum of two continuous Smooth - Unbroken functions is a continuous Unbrokent Smooth function.

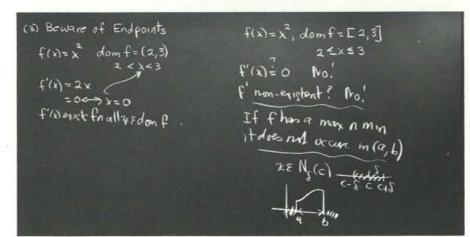
2.060 Curve Plotting

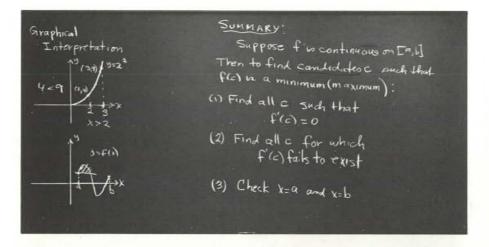


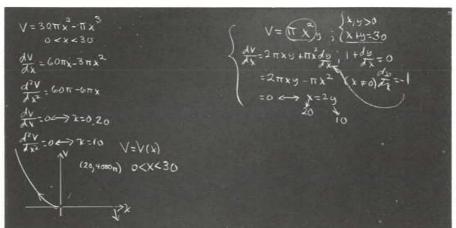


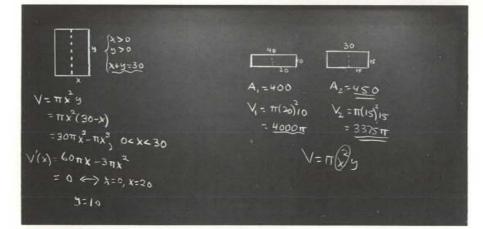






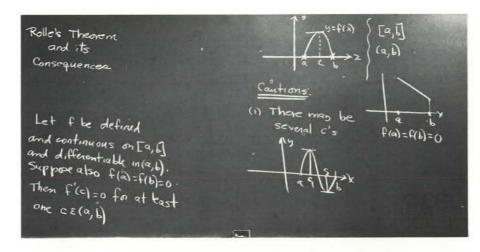


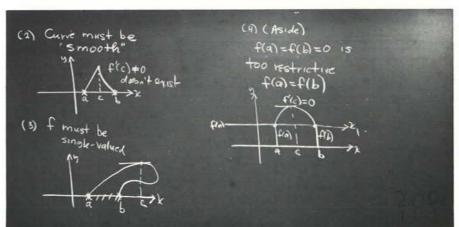


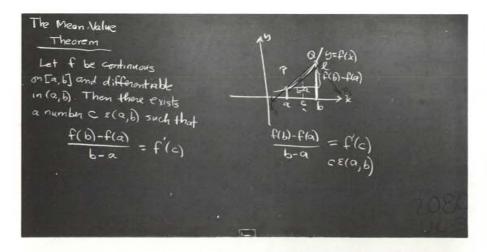


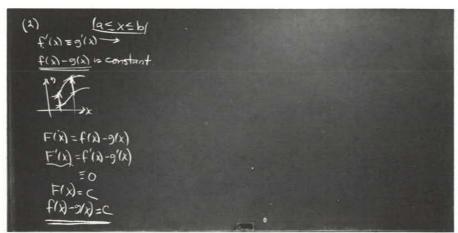


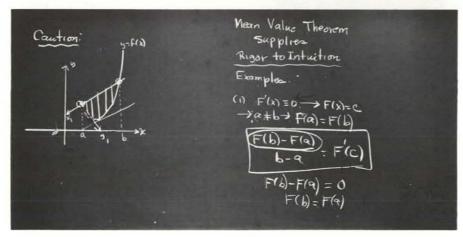
2.080 Rolle's Theorem and its Consequences



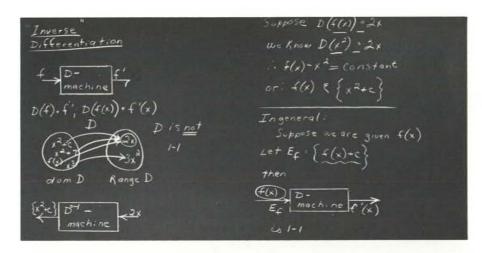






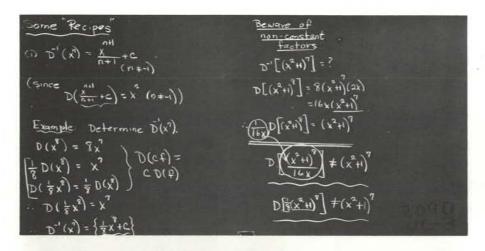


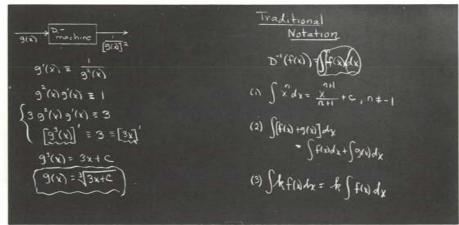


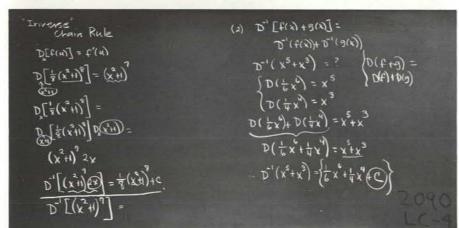


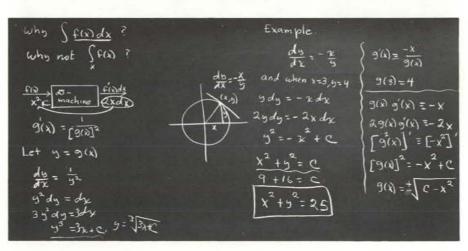
$$D^{-1}(f(x)) \cdot \{G(x) \cdot G'(x) = f(x)\}$$

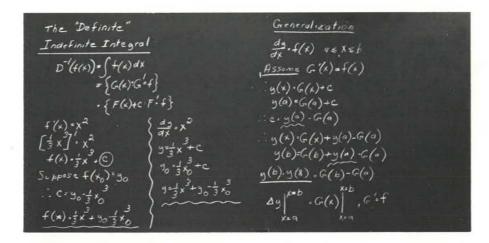
$$= \{F(x) + C : F'(x) \cdot f(x$$

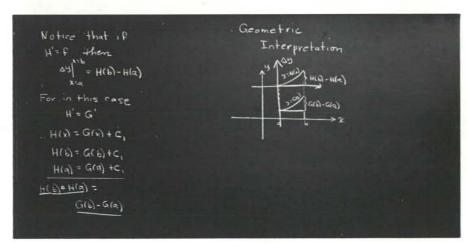


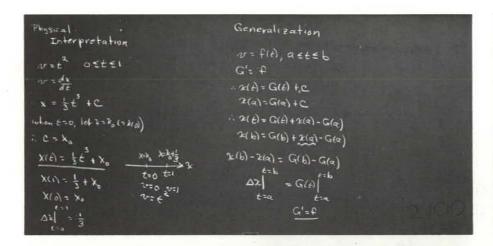


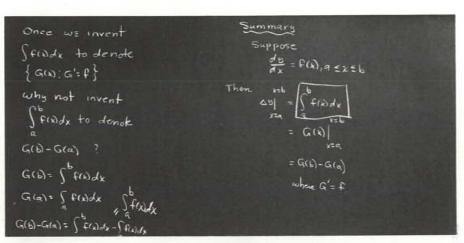


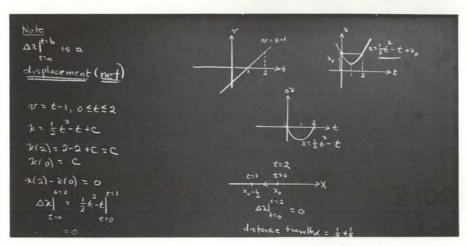






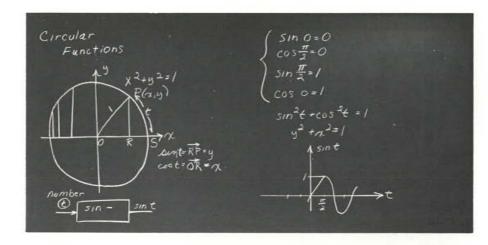


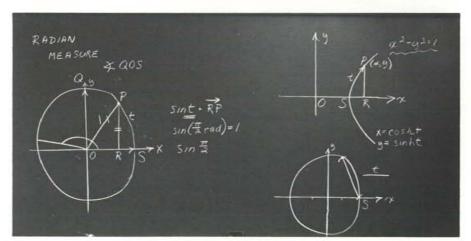


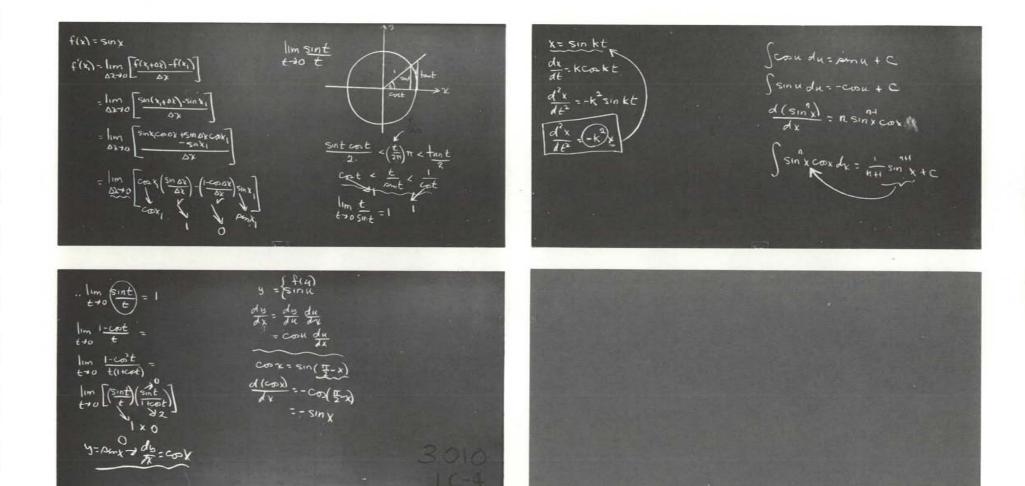


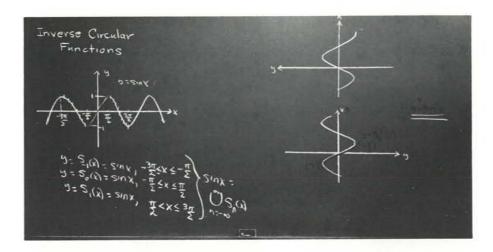
Block III: The Circular Functions

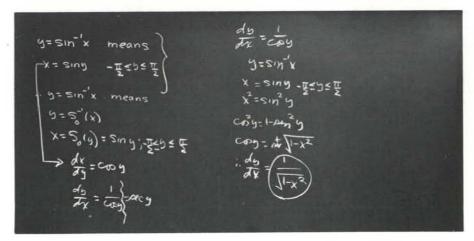
3.010 Circular Functions

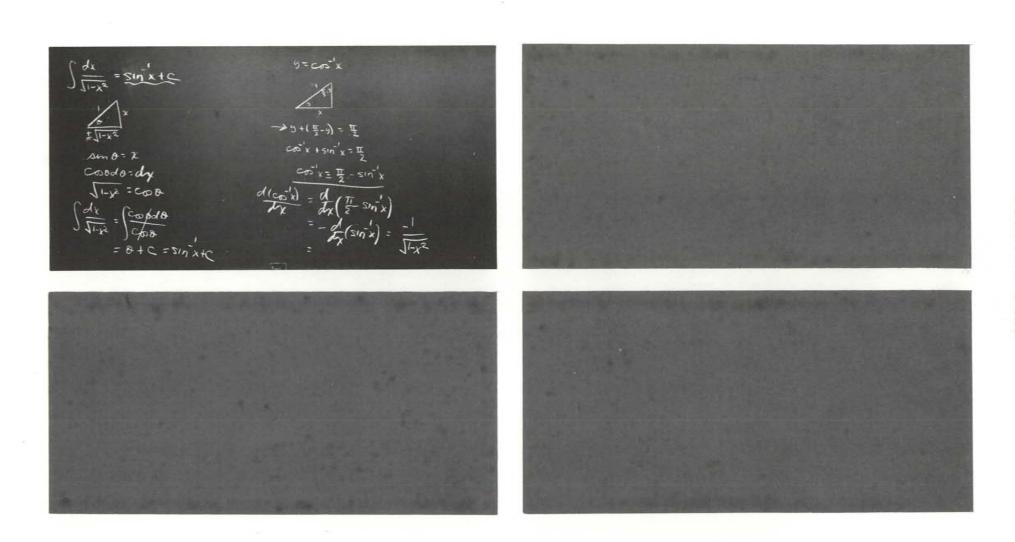






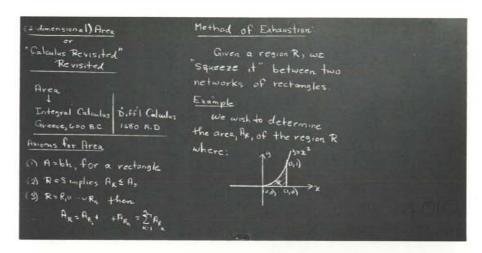


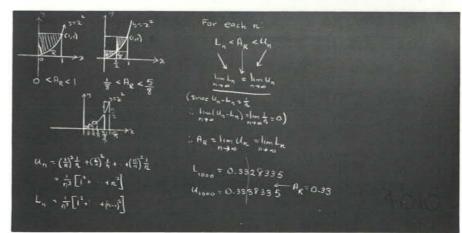


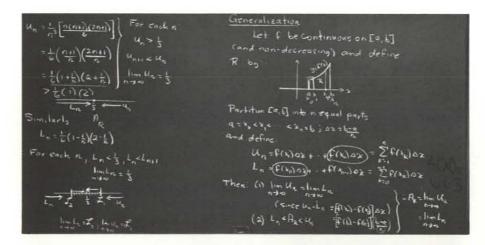


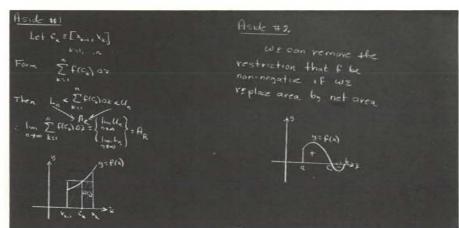
Block IV: The Definite Integral

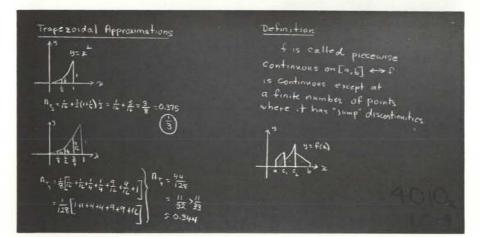
4.010 2-dimensional Area

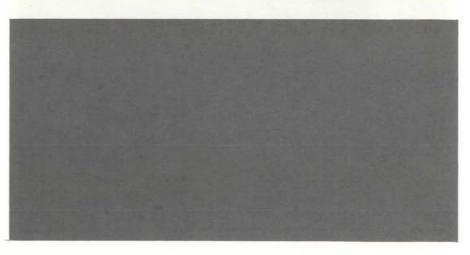




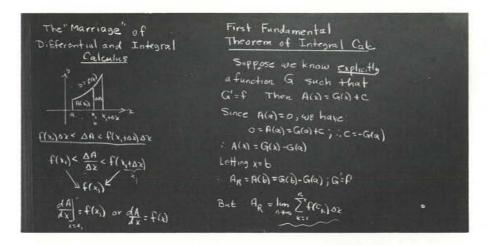


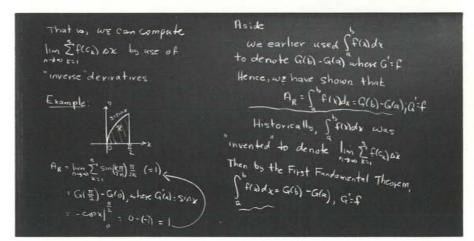




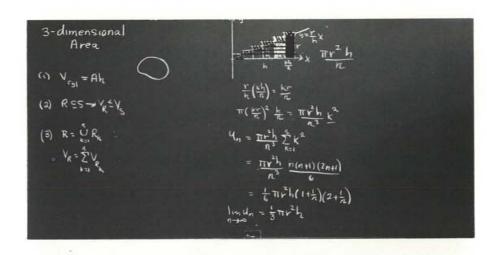


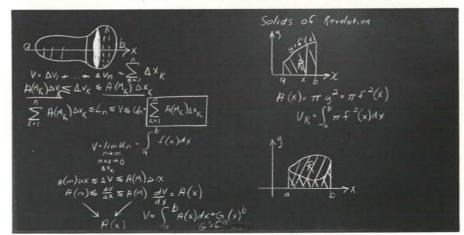
4.020 Marriage of Differential & Integral Calculus 30 min.

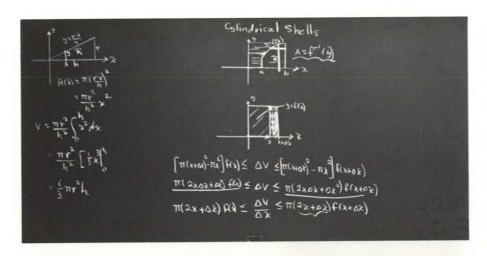


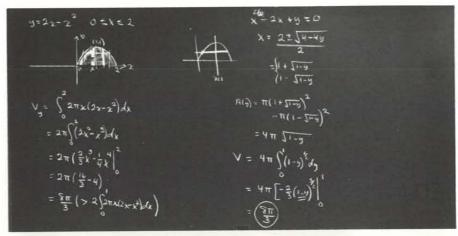


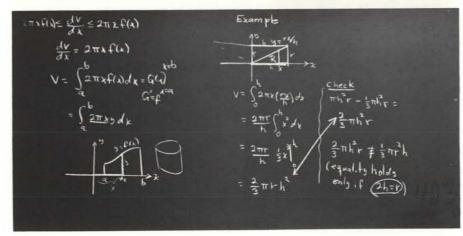
In general Let f be continuous (1) First Fund Thm allows us on [a, b]. Define G by to compute In & fictor G(x): Stinds, x, E[9,6] provided we can find G such that G'=f. In this case: = |im \ \sum_{\superpressure 1 \sum_{\superpressure 1 \superpressure 1 \supere 1 \superpressure 1 \superpressure 1 \superpressure 1 \superpres I'm I f(c) as = G(b) - G(a) (2) Second Fund. Thin allows us, Then given f, to construct a such that G': f. Namely. $C_{\epsilon}(x) = f(x)$ G(x) = 5 th/dx (= 1 im 2 th/2) 0x) 4.030 3-dimensional Area (Volume)

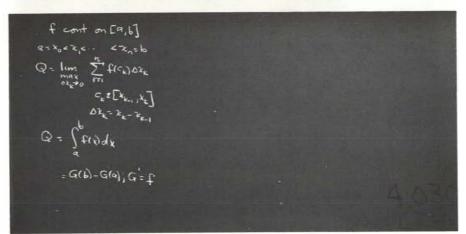




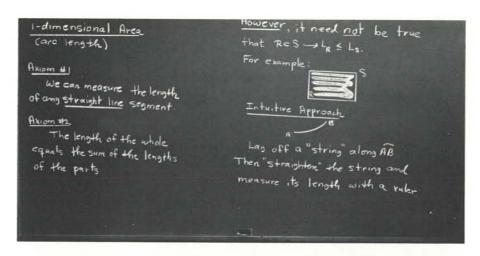


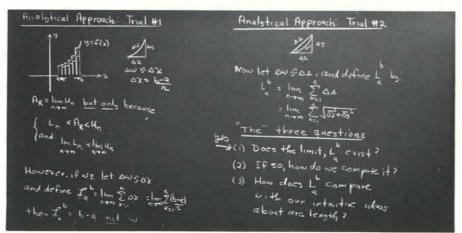


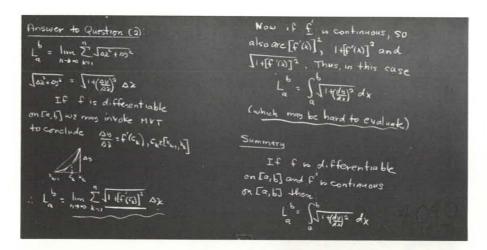


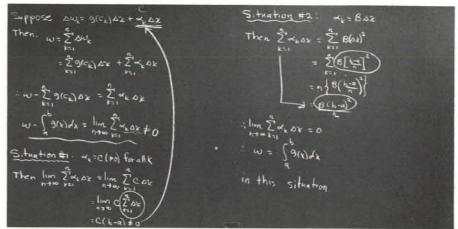


4.040 1-dimensional Area (Arc Length)









In other words, we have let $\Delta ws \Delta e$ and assumed that $w \in \sum_{k=1}^{n} \Delta w$ what we have shown as that $\lim_{n \to \infty} \sum_{k=1}^{n} \Delta e = \sum_{k=1}^{n} \sum_{k=1}^{$

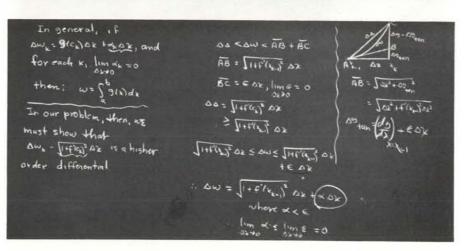
In essence how do we know if all the error has been squeezed out? This is precisely what Question(a) in all about Generalization of Quotion (3)

Suppose W is any function defined on [e, b] and we assume that DW 5.9(c) DX where 3 is some "intuitive" function defined on [a, b].

Then: w = 2 AN 5 29(c) DX and if g is continuous on [a, b], im 2 g(c) DX exists and is denoted by 59(x) dX.

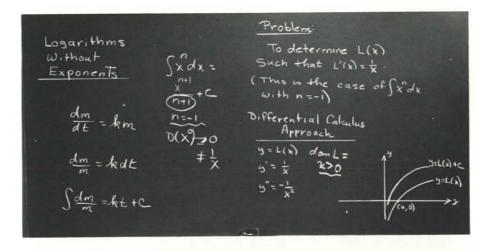
The question is:

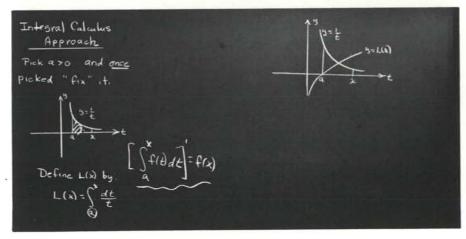
Does w = 59(x) dx?

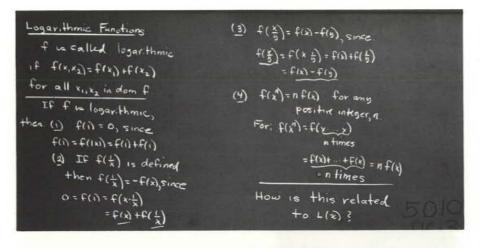


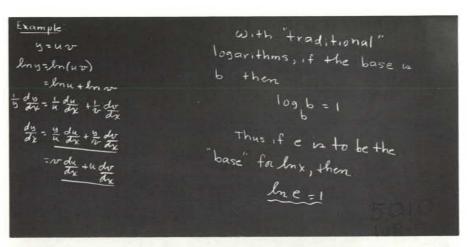
Block V: Transcendental Functions

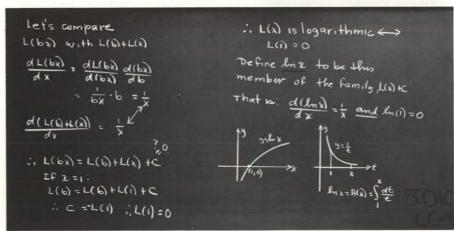
5.010 Logarithms without Exponents

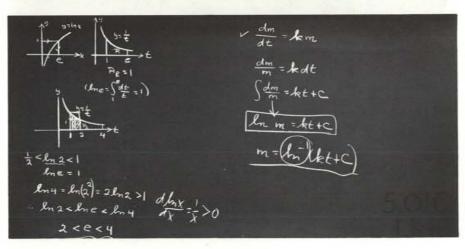


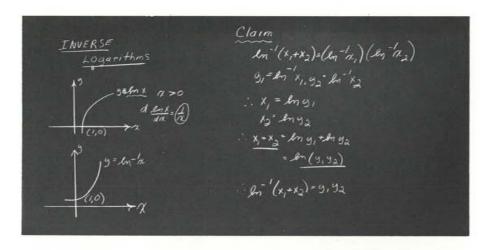












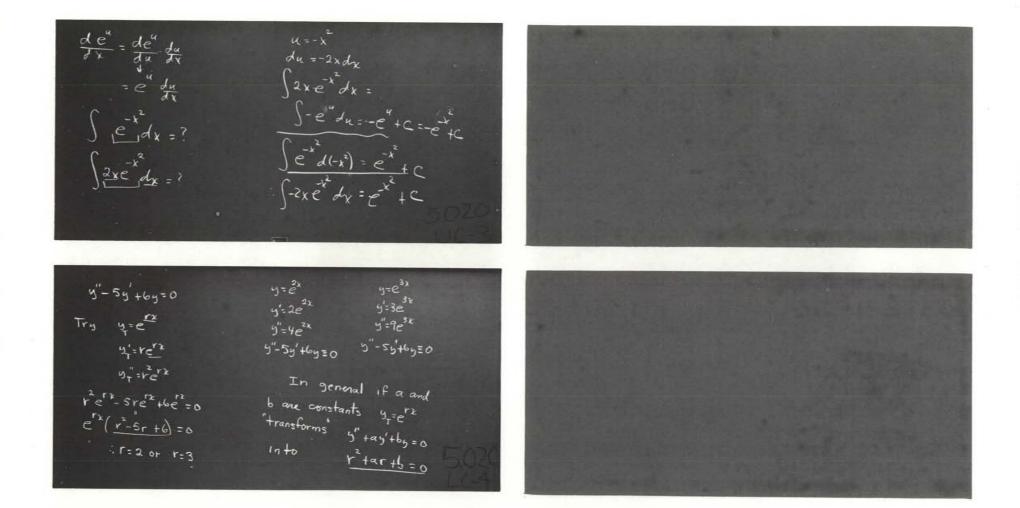
Find
$$\frac{dy}{dx}$$
 if $y \cdot \ln^{-1}x$

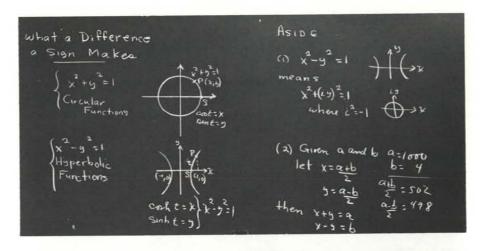
Notation

 $y \cdot \ln^{-1}x \rightarrow x \cdot \ln y$
 $\frac{dx}{dy} = \frac{1}{2} \cdot \frac{dy}{dx} \cdot y$

This metches the identification of

 $\frac{d(\ln^{-1}x)}{dx} = \ln^{-1}x$
 $\frac{d(x)}{dx} \cdot \int dx$
 $\frac{d(x)}{dx} \cdot \int dx$
 $\frac{d(x)}{dx} \cdot \int dx$
 $\frac{d(x)}{dx} \cdot \int dx$
 $\frac{d(x)}{dx} \cdot \int dx$





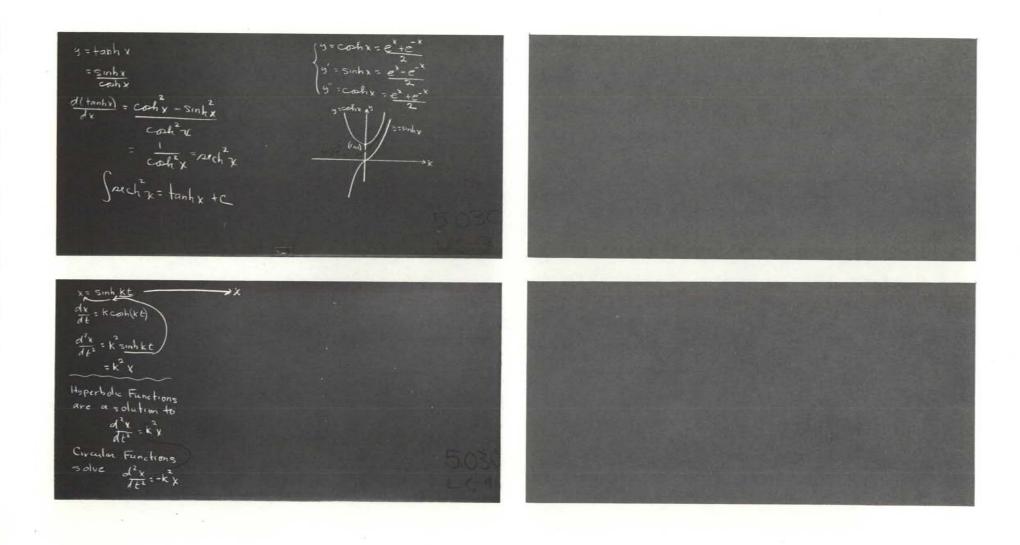
$$\begin{cases} D(e^{\frac{1}{2}}) = e^{\frac{1}{2}} \\ D(e^{\frac{1}{2}}) = e^{\frac{1}{2}} \end{cases}$$

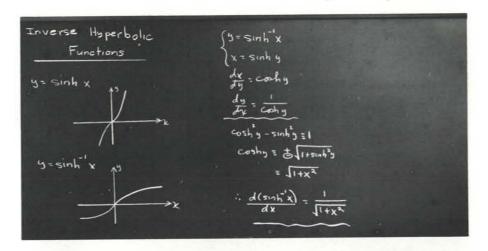
$$D(\frac{e^{\frac{1}{2}}}{e^{\frac{1}{2}}}) = e^{\frac{1}{2}} e^{\frac{1}{2}}$$

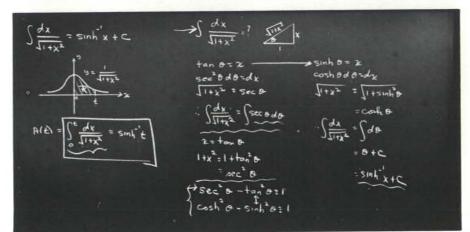
$$D(\frac{e^{\frac{1}{2}}}{e^{\frac{1}{2}}}) = e^{\frac{1}{2}} e^{\frac{1}{2}}$$

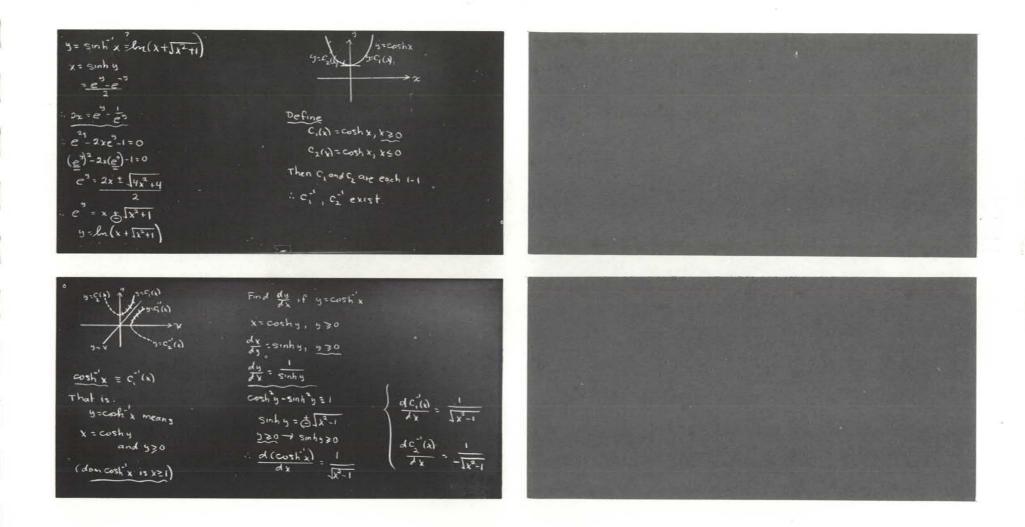
$$D(\frac{e^{\frac{1}{2}}}{e^{\frac{1}{2}}}) = e^{\frac{1}{2}} e^{\frac{1}{2}}$$

$$D(e^{\frac{1}{2}}) = e^{\frac{1}{2}} e^{\frac{1}{2$$



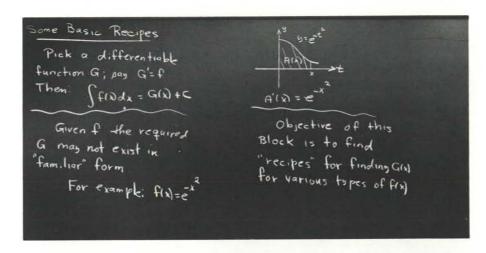






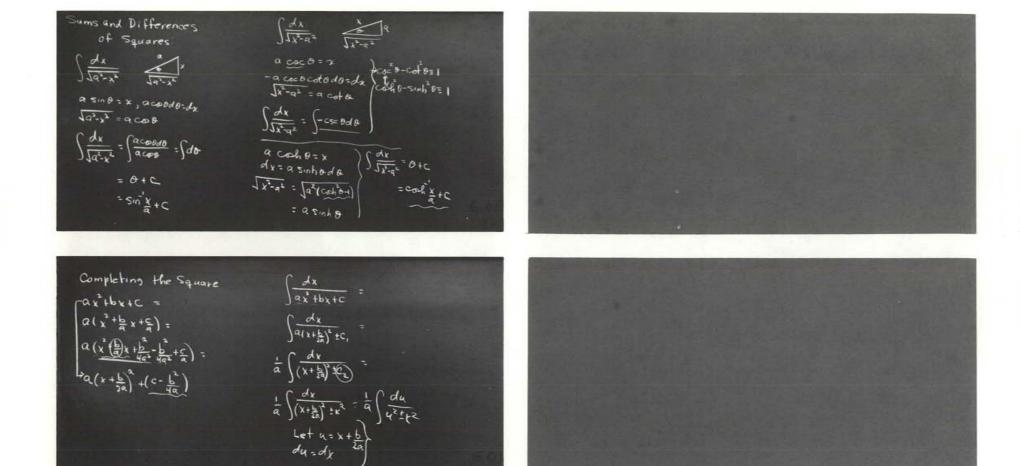
Block VI: More Integration Techniques

6.010 Some Basic Recipes



$$\int u \, du = \begin{cases} \frac{u}{n+1} + C, n \neq -1 \\ \ln |u| + C, n \neq -1 \end{cases}$$

$$\int \cos^2 x \, dx = \int \cos^2 x \cos x \, dx = \int \cos^2 x \cos^2 x \, dx = \int \cos^2 x \cos$$



$$\int \frac{dx}{(x-1)(x^{2}+1)} = ?$$

$$\int \frac{1}{(x-1)(x^{2}+1)} = \frac{1}{2} \left[\frac{1}{x-1} - \frac{x+1}{x^{2}+1} \right]$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{1}{x^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{1}{x^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{1}{x^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{1}{x^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{1}{x^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{1}{x^{2}+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

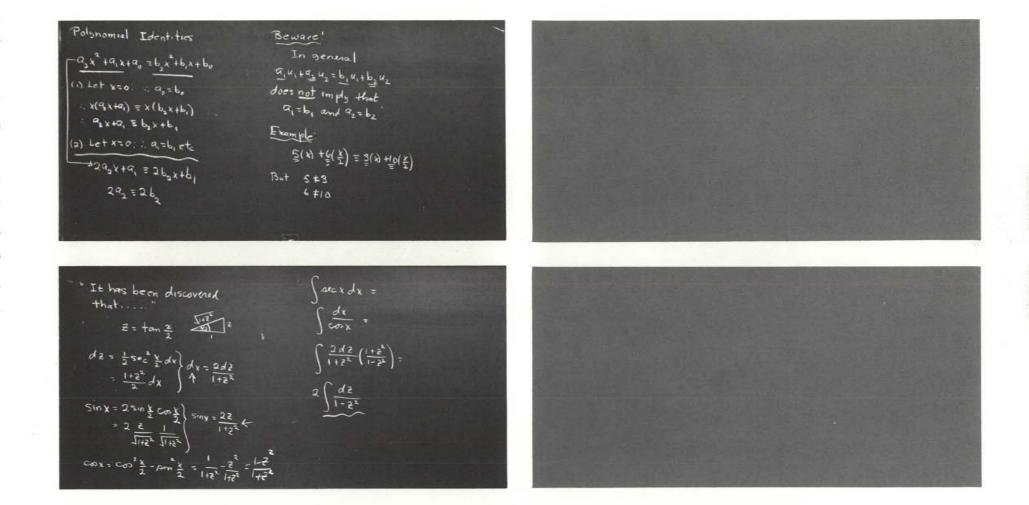
$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

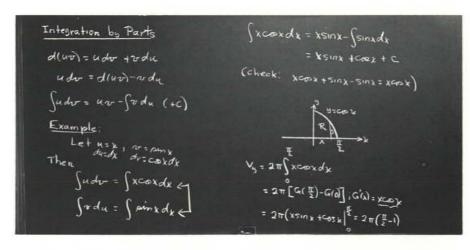
$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1} \right)$$

$$= \frac{1}{2} \left(\frac{x}{x+1} \right) - \frac{1}{2} \left(\frac{x}{x+1$$





$$\int \frac{x \cos x}{dx} \int \frac{u=z}{dx} dx = \cos z dx$$

$$\int \frac{x \sin x}{dx} \int \frac{u=z}{dx} dx = \sin x (tc)$$

$$= x \sin x - \int \sin x dx$$

$$= x \sin x + \cos x + c$$

$$\int \frac{x \cos x}{x} dx \int \frac{u=z}{x} dx = x \sin x + \cos x + c$$

$$\int \frac{x \cos x}{x} dx \int \frac{u=\cos x}{x} dx = \frac{1}{2} x^2 \cos x + \frac{1}{2} \int \frac{x^2 \sin x}{x} dx$$

$$= \frac{1}{2} x^2 \cos x + \frac{1}{2} \int x^2 \sin x dx$$

$$\int \frac{x \sin x}{x} dx = \frac{1}{2} x \cos x + \frac{1}{2} \int x^2 \sin x dx$$

$$\int \frac{x \sin x}{x} dx = \frac{1}{2} x \cos x + \frac{1}{2} \int x \sin x dx$$

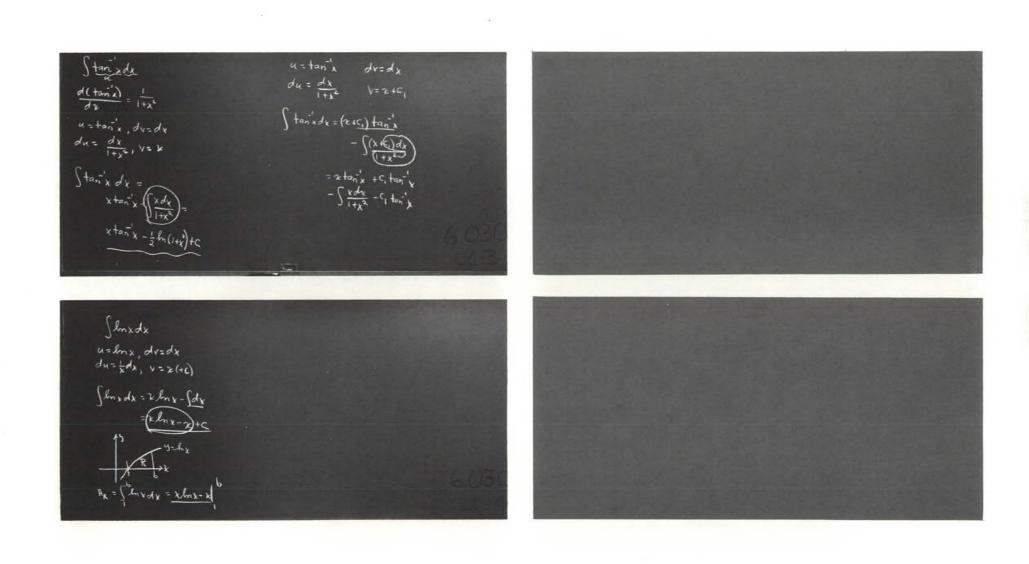
$$\int \frac{x \sin x}{x} dx = \frac{1}{2} x \cos x + \frac{1}{2} \int \frac{x^2 \sin x}{x} dx$$

$$\int \frac{x \sin x}{x} dx = \frac{1}{2} x \cos x + \frac{1}{2} \int \frac{x \cos x}{x} dx$$

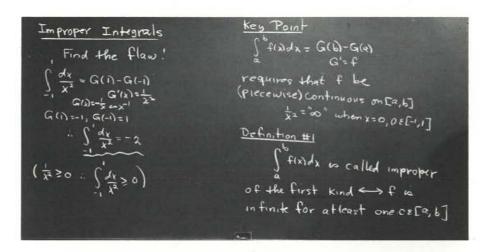
$$\int \frac{x \sin x}{x} dx = \frac{1}{2} x \cos x + \frac{1}{2} \int \frac{x \cos x}{x} dx$$

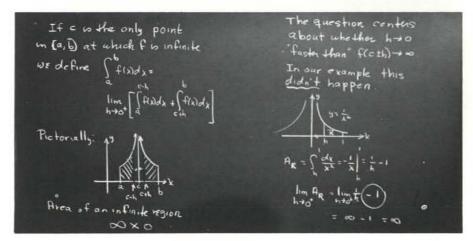
$$\int \frac{x \sin x}{x} dx = \frac{1}{2} x \cos x + \frac{1}{2} \int \frac{x \cos x}{x} dx$$

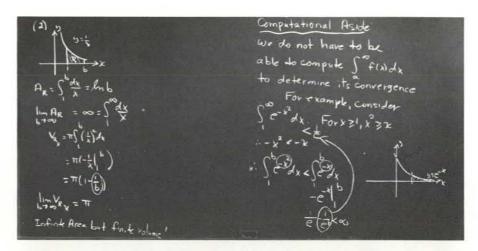
$$\int \frac{x \sin x}{x} dx = \frac{1}{2} x \cos x + \frac{1}{2} \int \frac{x \cos x}{x} dx$$

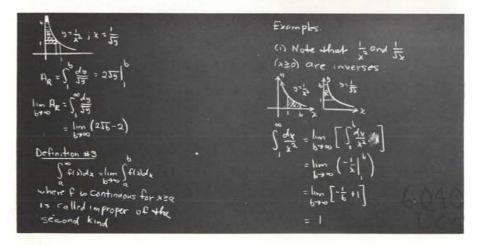


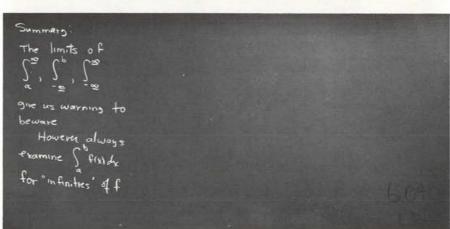
6.040 Improper Integrals





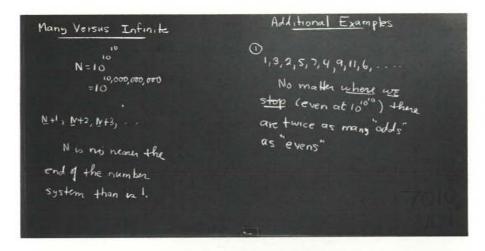


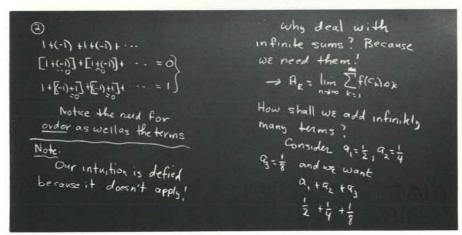


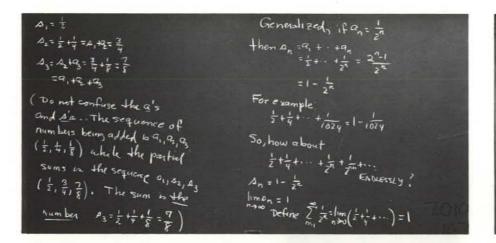


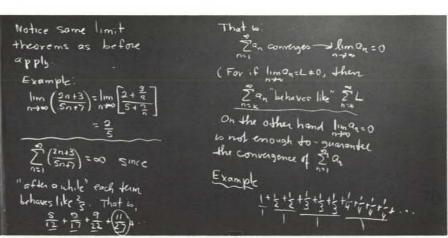
Block VII: Infinite Series

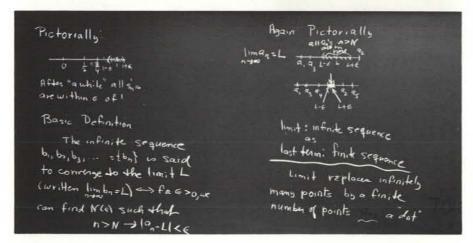
7.010 Many Versus Infinite









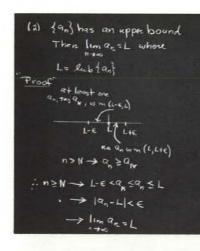


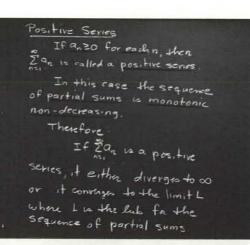
7.020 Positive Series

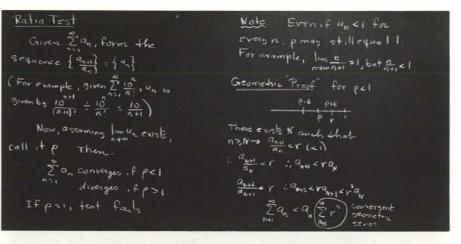
34 min.

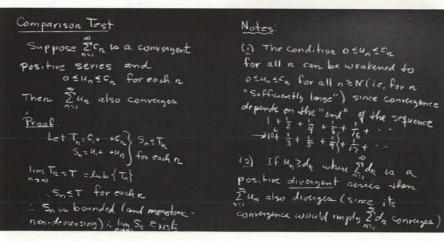
These results are more Positive Series subtle for infinite sets: Ordering Examples 5={11,8,9,7,10} (1) Let 5= {a, a, = 1 = {7,8,9,10,11} 1 is lub for 5, but 1 \$ 5 752, 1122 where 205 (2) Let 5 = { a, a, = +} .. 7 is a lower bound for s 5= {1, 1/3, 1/3, --} o is 916 for 5, but 0\$5 Formal Definitions 9 19 10 11 (#) M is called an upper 7 is the greatest lower bound fors bound for 5 <> Il is the least upper bound for S MZZ, for all zes

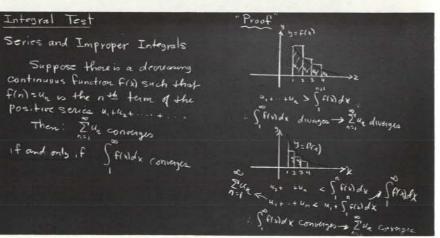
(#4) A sequence 29, 1s (#2) Mis called a least upper bound called monotonic non-decreasing if fors if (i) Mio an upper bound fr. 5 and (2) LKM+Lional u.b. for 5 (That is; a, eq, eq, eq, eq, eq, eq, eq, (M need not belong to 5) For such sequences, two possibilities exist: (i) {and has no upper bound B Asct is bounded if it has In this case WE write both an upper and a lower bound Im an = to Ken Property (An example in: Every bounded set has a 1,2,3, , n, whou a, = n) glb and lub



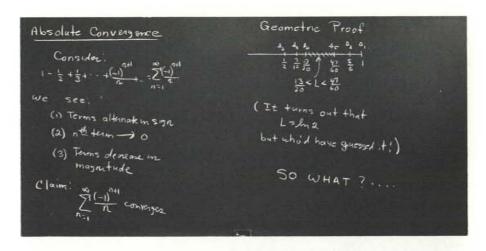


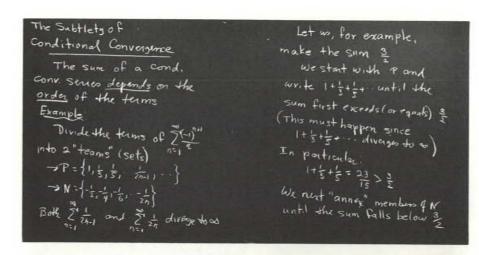


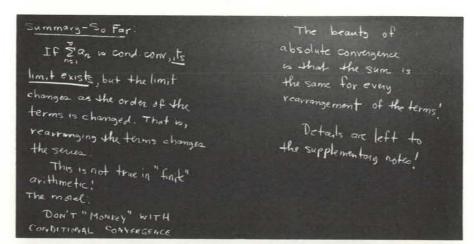


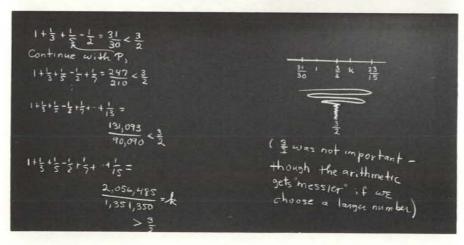


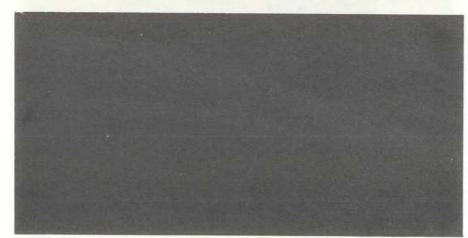
21 min.



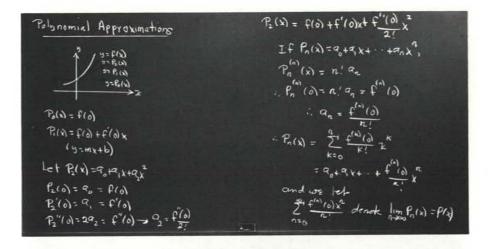


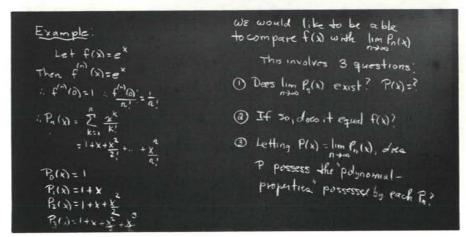


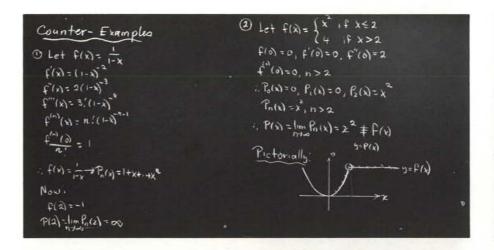


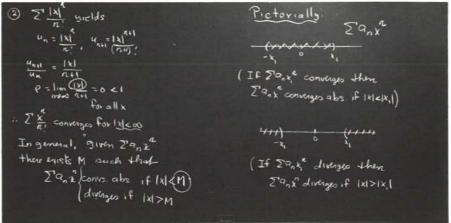


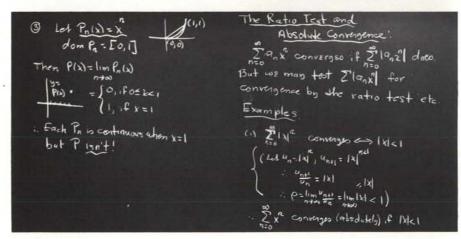
32 min.

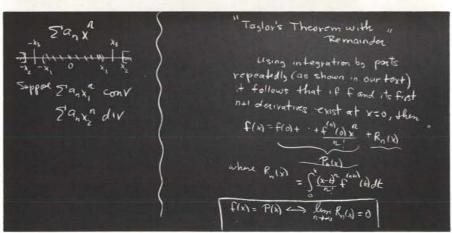








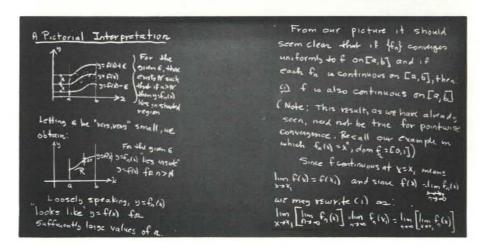


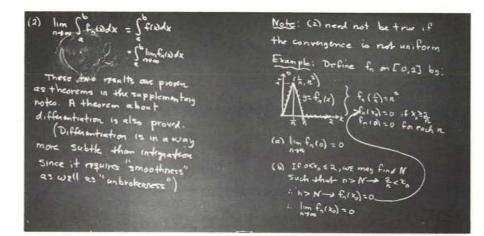


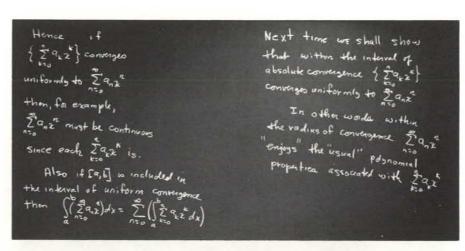
7.050 Uniform Convergence

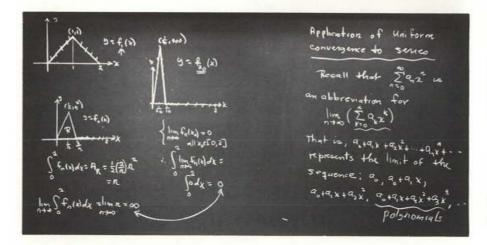
28 min.

Two Basic Definitions Uniform Convergence (1) Let dom fn = [a,b]. We Review: If limfo(1) = f(1) say that converges pointwise to f on [0,6] () lim fo(x)=f(x) fa for all z & [a, b] we say that each ze [a, b]. {fn} converges to f(x) on [a, b] That is, girm EDO we can Example , Suppose fo(x) = 1 x2 find Ni such that n > Ni implies | fo(x) -f(x) | ce for a piece x [[[] Then fix = lim for 1 = 1x2 Hence { nx2 } converge to 122 Ingoneral, the choice of N depends on the choice of x, and Now how fo (2)=2 lim fo (4) = 8 there are infinitely many such Choices in [a, b] n>N, → |f,(2)-2|<€ n>N2→ (2) If we can find one N such that no N -> |fn(x)-f(x)| = E 15-(4)-FICE of course, No and Na need not for every ze[3,6] we say that be the same. the convergence is uniform









7.060 Uniform Convergence of Series

27 min.

```
Uniform Convergence

of Series

|f(x)-\sum_{k=1}^{n}f_k(x)|=|\sum_{k=1}^{n}f_k(x)-\sum_{k=1}^{n}f_k(x)|

We instrains M-Test

Suppose \sum_{k=1}^{n}M_n is a

Positive convergent series

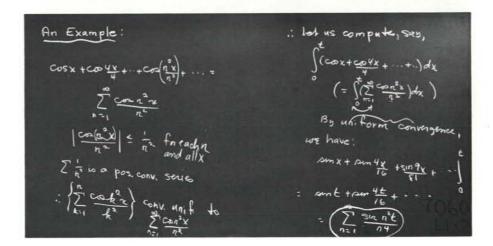
and that |f_n(x)| \leq M_n

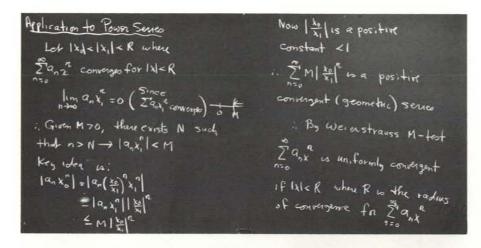
for each n and each x \in [a,b]

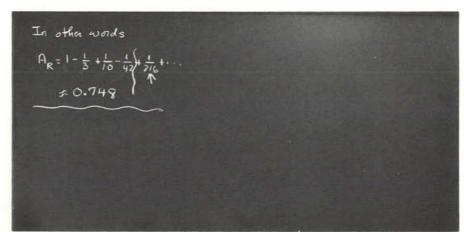
Then \{\sum_{k=1}^{n}f_k(x)\} converges

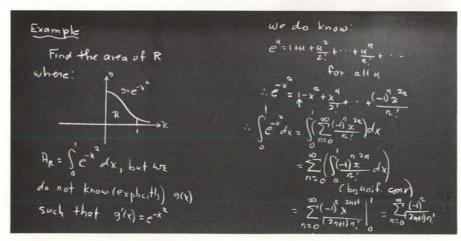
Uniformly to \sum_{k=1}^{n}f_k(x) converges

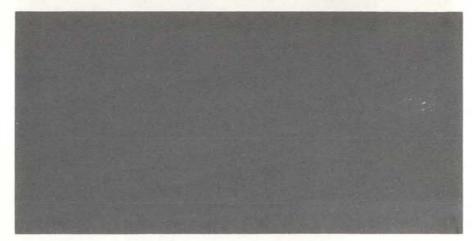
Uniformly to \sum_{k=1}^{n}f_k(x) in the pendent f_n(x) is a second f_n(x) in the pendent f_n(x) is a second f_n(x) in the pendent f_n(x) in the pendent
```





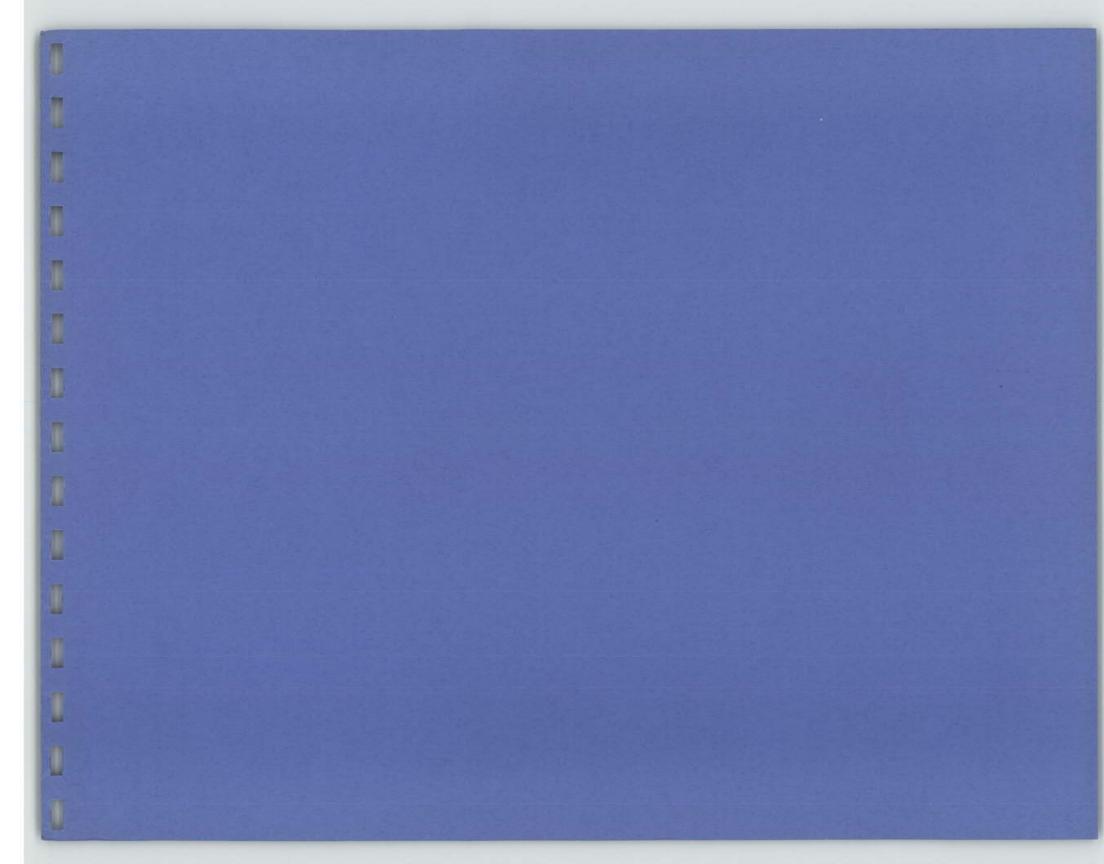


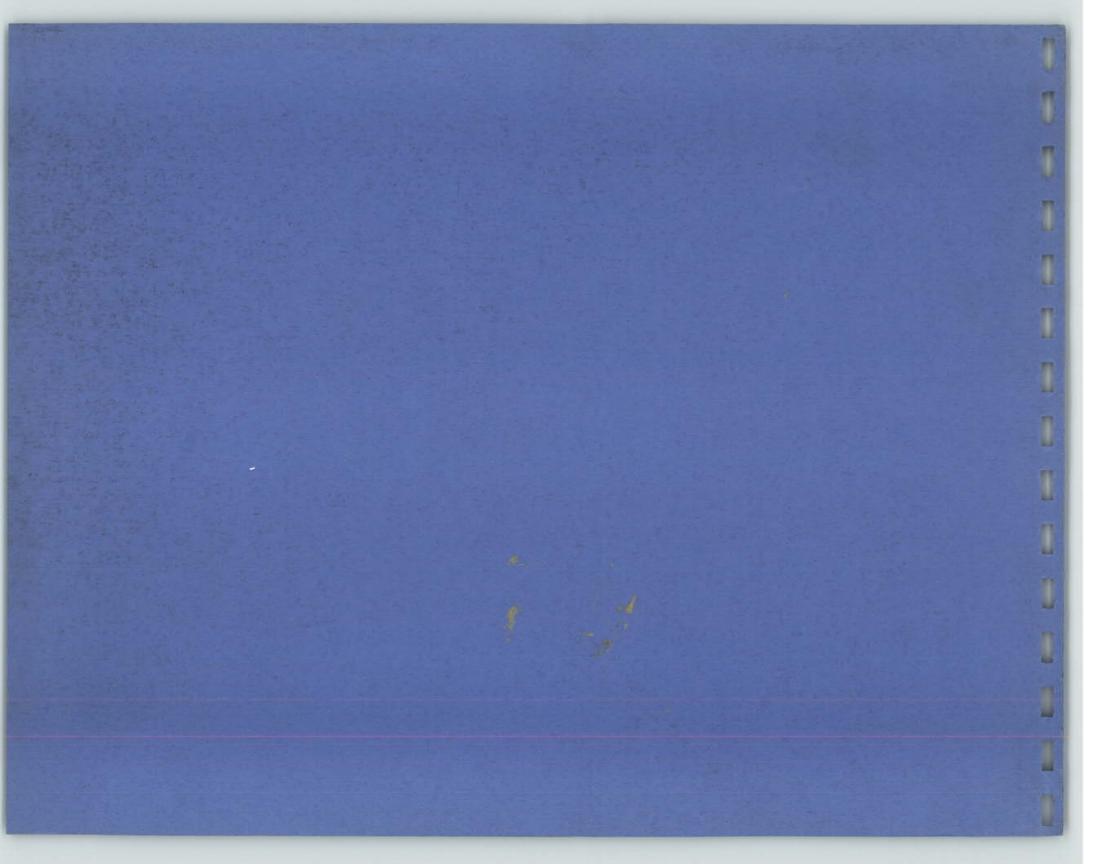












MIT OpenCourseWare http://ocw.mit.edu

Resource: Calculus Revisited Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.