
 
Combinatorics: The Fine Art of Counting 

Week 9 Lecture Notes – Graph Theory 
 
 

For completeness I have included the definitions from last week’s lecture which we will be using 
in today’s lecture along with statements of the theorems we proved. 
 
Definitions 
 
Graph:  A graph G = (V, E) consists of an arbitrary set of objects V called vertices and a set E 
which contains unordered pairs of distinct elements of V called edges. 
 
Adjacent:  Two vertices in a graph are adjacent if there is an edge containing both of them.  Two 
edges are adjacent if they contain a common vertex.  Adjacent vertices are called neighbors. 
 
Degree: For any vertex v in a graph, the degree of the vertex is equal to the number of edges 
which contain the vertex.  The degree of v is denoted by d(v). 
 
Regular Graph: A graph in which every vertex has the same degree is called a regular graph.  If 
all vertices have degree k, the graph is said to be k-regular. 
 
Complete Graph:  The complete graph on n vertices Kn consists of the vertex set V = 
{v1,v2,…,vn} and the edge set E containing all pairs (vi,vj) of vertices in V. 
 
Isomorphic:  Two graphs are isomorphic if there exists a one-to-one correspondence between 
their vertex sets (i.e. a re-labeling) which induces a one-to-one correspondence between their 
edge sets.  More formally, if L is a re-labeling which maps the vertices of G to the vertices of H, 
then the edge set of H is precisely the set of edges (L(v),L(w)) where (v,w) is an edge in G. 
 
Sub-graph: A graph G1 = (V1, E1) is a sub-graph of G2 = (V2, E2) whenever V1 ⊆ V2 and 
E1 ⊆ E2. 
 
Path: A path of length n is the graph Pn on n+1 vertices {v0, v1, v2, …, vn} with n edges (v0,v1), 
(v1,v2), …, (vn-1,vn). 
 
Cycle: A cycle of length n is the graph Cn on n vertices {v0, v2, …, vn-1} with n edges (v0,v1), 
(v1,v2), …, (vn-1,v0). 
 
We say that a given graph contains a path (or cycle) of length n if it contains a sub-graph which 
is isomorphic to Pn (or Cn). 
 
Connected: A graph that contains a path between every pair of vertices is connected.  Every 
graph consists of one or more disjoint connected sub-graphs called the connected components. 
 
Distance: The distance between two connected vertices is the length of the shortest path 
between the vertices. 
 
Diameter: The diameter of a connected graph is the maximum distance between any two 
vertices in the graph. 
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Forests and Trees:  A graph which does not contain a cycle is called a forest.  If it is a 
connected graph, it is called a tree.  The connected components of a forest are trees. 
 
End-points and Isolated Vertices:  An end-point is a vertex with degree 1.  An isolated vertex is 
a vertex with degree 0. 
 
Hamiltonian Graph:  A graph which contains a Hamiltonian cycle, i.e. a cycle which includes all 
the vertices, is said to be Hamiltonian. 
 
Walks, Trails, and Circuits:  A walk in a graph is a sequence of adjacent edges.  A trail is a walk 
with distinct edges.  A circuit is a trail in which the first and last edge are adjacent. 
 
Eulerian Graph:  A trail which includes all of the edges of a graph and visits every vertex is 
called an Eulerian Tour.  If a graph contains an Eulerian tour which is a circuit, i.e. an Eulerian 
circuit, the graph is simply said to be Eulerian. 
 
Theorems Proven Last Week 
 
Theorem 1:  The sum of the degrees of all the vertices in a graph is equal to twice the number of 
edges, i.e. Σd(v) = 2|E| 
 
Theorem 2:  Every tree with at least one edge contains two end-points 
 
Theorem 3: A graph with n vertices is a tree if and only if it is connected and has n-1 edges. 
 
Theorem 4:  A graph is Eulerian if and only if it is a connected graph in which every vertex has 
even degree. 
 
Corollary 4.1:  A graph contains an Eulerian tour if and only if it is a connected graph with at 
most two vertices of odd degree. 
 
New Material 
 
We begin with a simple corollary to theorem 3 which follows almost immediately. 
 
Corollary 3.1: A graph with n vertices and at least n edges contains a cycle. 
 
Proof:  Let G be a graph with n vertices.  If G is connected then by theorem 3 it is not a tree, so it 
contains a cycle.  If G is not connected, one of its connected components has at least as many 
edges as vertices so this component is not a tree and must contain a cycle, hence G contains a 
cycle. 
QED 
 
This simple fact has a lot of practical applications, e.g. the sleepy mathematicians USAMO 
problem mentioned previously.  In many situations it may be difficult to find a particular cycle, but 
just by counting edges we can prove that a cycle must exist. 
 
There are a few more basic facts about trees that are useful to know. 
 
Theorem 5:  A graph is a tree if and only if there is a unique path between any two vertices. 
 
Proof:  We have two things to prove, the “if” and the “only if”.  Suppose G is a tree containing 
vertices v and w.  G is connected so there is a path from v and w, we simply need to show that 
this path must be unique.  Suppose there were two distinct paths from v and w.  Starting from v, 
let s be the first vertex where these paths diverge.  s could be equal to v, but it cannot be equal to 
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w since the paths must diverge somewhere.  Let t be the first vertex where the paths meet again 
– there must be such a vertex since they meet at w.  The two segments of the paths between s 
and t are disjoint, so together they form a cycle containing s and t which contradicts our 
supposition that G is a tree.  Thus the path from v to w must be unique. 
 
Conversely, suppose G is a graph which contains a unique path between any two vertices.  G is 
clearly connected.  G cannot contain a cycle, because a cycle contains two distinct paths 
between any pair of vertices in it.  Therefore G is a tree. 
QED 
 
Trees are very nice graphs to work with.  Unfortunately, not all graphs are trees.  However all 
connected graphs contain a tree which includes all the vertices.  Such a graph is called a 
spanning tree. 
 
Spanning Trees:  A spanning sub-graph of G is a sub-graph H which includes all the vertices of 
G.  In the case where H is a tree, H is called a spanning tree. 
 
Theorem 6:  Every connected graph contains a spanning tree. 
 
Proof:  Let G be a connected graph.  If G is a tree we are done, otherwise G must contain a 
cycle.  Removing an edge from this cycle will result in a connected graph with the same vertex 
set as G but fewer edges.  We can continue in this manner until there are no more cycles (there 
are only a finite number of edges to remove), at which point the remaining graph must be a tree. 
QED 
 
This proof gives us one way to construct a spanning tree, namely by removing edges from cycles.  
This is not a particular good method if the graph contains a lot of edges.  A more efficient 
approach is to simply pick a vertex to be a seedling, and then “grow” the spanning tree by 
connecting vertices one at a time.  As long as not all the vertices are in the tree, there must be a 
vertex in the tree which has a neighboring vertex not in the tree – simply pick one such vertex, 
connect it to the tree with a single edge, and repeat until all the vertices are in the tree. 
 
Spanning trees are useful in a lot of situations – efficiently broadcasting a message to all nodes in 
a network is but one example. 
 
We now look at perhaps the simplest case of graphs which aren’t trees, graphs where every 
vertex has degree 2. 
 
Theorem 7: A graph is 2-regular if and only if all its connected components are cycles. 
 
Proof: One direction of the theorem is trivial – a graph whose connected components are all 
cycles is clearly 2-regular.  We prove the other direction by induction on the number of vertices in 
the graph.  The base case is K3 which is 2-regular and has one connected component which is a 
cycle.  For a graph with n > 3 vertices, note that by Theorem 1, a 2-regular graph with n vertices 
has n edges and by Corollary 3.1 such a graph must contain a cycle.  Since the graph is 2-
regular, none of the vertices in this cycle can be contained in any other edges, so the cycle is a 
connected component.  The remainder of the graph (if any) is 2-regular and has less than n 
vertices so the inductive hypothesis applies. 
QED 
 
The theorem above is a very special instance of a much more general result regarding graphs 
which can be decomposed into cycles, but first we need to define exactly what we mean by this. 
 
Decomposition:  A decomposition of a graph G is a partitioning of the edges of the graph among 
a collection of sub-graphs H1, H2, H3, …, Hn. 
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Note that the partitioning applies only to the edges, not the vertices, so the sub-graphs Hi can 
share vertices, just not edges.  Any isolated vertices are effectively ignored by a decomposition, 
since it only pertains to the edges (according to our definition, isolated vertices could be included 
in any, all, or none of the sub-graphs in the decomposition).  We say that a graph G has a 
decomposition into cycles if there exists a decomposition H1, …, Hn of G where every Hi is 
isomorphic to a cycle. 
 
Theorem 8: A graph has a decomposition into cycles if and only if every vertex has even degree. 
 
Proof:  We effectively proved the “if” part of the statement in Theorem 4 when we showed that a 
graph in which every vertex has even degree can have a cycle removed from it leaving a graph 
with fewer edges that also has all vertices with even degree.  The cycle we removed, will be one 
of the sub-graphs in the decomposition, and we can simply keep removing cycles until we have 
partitioned all the edges. 
 
Proving the “only if” part simply requires noting that if G is a graph with a decomposition into sub-
graphs, the degree of any vertex in G is simply the sum of its degree in each of the sub-graphs in 
the decomposition which contain it, since they don’t share any edges.  If the sub-graphs are all 
isomorphic to cycles, the degree of any vertex in any sub-graph is 2, and the sum of the degrees 
is even. 
QED 
 
Corollary 8.1: A graph is Eulerian if and only if it is connected and has a decomposition into 
cycles. 
 
This follows immediately from Theorem 4 and 8.  Being able to decompose a graph into cycles is 
extremely useful in many applications and is one of the main application of Eulerian graphs.  The 
results above can be generalized to handle decompositions of graphs with vertices of odd degree 
into cycles and paths, but we will leave this topic for now. 
 
Graph Coloring 
 
Graph coloring is a major sub-topic of graph theory with many useful applications as well as many 
unsolved problems.  There are two types of graph colorings we will consider. 
 
Vertex-Colorings and Edge-Colorings:  Given a set C called the set of colors (these could be 
numbers, letters, names, whatever), a function which assigns a value in C to each vertex of a 
graph is called a vertex-coloring.  A proper vertex-coloring never assigns adjacent vertices the 
same color.  Similarly, a function which assigns a value from a set of colors C to each edge in a 
graph is called an edge-coloring.  A proper edge-coloring never assigns adjacent edges the same 
color. 
 
In the case of vertex-colorings, we will primarily be interested in colorings which are proper, and 
following convention, we will use the word coloring to mean a proper vertex-coloring.  In 
contrast, we will want to consider edge-colorings which are not necessarily proper. 
 
Note that the values of the set C are arbitrary, what is important is the size of C.  The most 
interesting question we will consider regarding colorings is how big the set C must be in order for 
a coloring of a given graph to exist. 
 
k-Coloring:  A coloring of a graph using a set of k colors is called a k-coloring.  A graph which 
has a k-coloring is said to be k-colorable. 
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The four-color theorem is equivalent to the statement that all planar graphs are 4-colorable.  Note 
that a graph which is k-colorable might be colorable with fewer than k colors.  It is often desirable 
to minimize the number of colors, i.e. find the smallest k. 
 
Chromatic Number:  The chromatic number of a graph G is the least k for which a k-coloring of 
G exists. 
 
Thus if a graph G has chromatic number k, then G has a k-coloring, but not a (k-1)-coloring.  For 
example a path has chromatic number 2, while the complete graph Kn has chromatic number n.  
We now consider the chromatic number of cycles. 
 
Theorem 9:  The chromatic number of Cn is 2 if n is even, and 3 if n is odd. 
 
Proof:  First note that the chromatic number must be at least 2 for any graph which has an edge 
in it, including all cycles.  We now prove the theorem by induction on n.  We will consider two 
base cases, C3 and C4.  C3 is isomorphic to K3 which has chromatic number 3.  C4 can be colored 
with two colors by giving opposing corners of the square the same color.  For n > 4, we can take 
a coloring of Cn-2 and insert 2 adjacent vertices and edges and then color the new vertices 
appropriately to get a coloring of Cn.  Thus the chromatic number of Cn is not greater than that of 
Cn-2.  In the case where n is odd, note that if Cn had chromatic number 2, we could remove two 
adjacent vertices and edges to get a 2-coloring of Cn-2 which contradicts the inductive hypothesis 
since n-2 must be odd if n is odd. 
QED 
  
Graphs which are 2-colorable are sufficiently important that they have a special name. 
 
Bipartite Graph:  A graph which is 2-colorable is called bipartite. 
 
We have already seen several bipartite graphs, including paths, cycles with even length, and the 
graph of the cube (but not any other regular polyhedra) 
 
Complete Bipartite Graph:  The complete bipartite graph Km,n consists of a vertex set which may 
be partitioned into two subsets of size m and n, along with all edges which contain exactly one 
vertex from each subset.  Note that the graph Km,n has m+n vertices and m*n edges. 
 
Graphs which are bipartite have a surprisingly simple characterization. 
 
Theorem 10:  A graph is bipartite if and only it does not contain a cycle of odd length. 
 
Proof:  Note that by Theorem 9, a cycle of odd length has chromatic number 3.  The chromatic 
number of any graph must be at least as big as the chromatic number of any of its sub-graphs, so 
a graph containing an odd cycle can’t be bipartite.  The other direction of the theorem is more 
interesting. 
 
Suppose G is a graph which does not contain any odd cycles.  Without loss of generality we can 
assume that G is connected, since to show that a graph is bipartite it is enough to show that each 
of its connected components is bipartite.   
 
Pick a vertex v and color it red.  For every other vertex x, color x red if d(x,v) is even, otherwise 
color it blue.   We now need to show that this is a proper coloring.  Suppose not, i.e. suppose 
(x,y) is an edge in G and x and y both have the same color.  Note that d(x,v) and d(y,v) are either 
equal or differ by one, since x and y are adjacent.  We will show that these distances must be 
different, which implies that x and y can’t have the same color. 
 
Consider a shortest path from v to x and a shortest path from v to y (one of these paths could 
have length 0 if x or y is equal to v – this doesn’t affect the proof).  Let w be the last vertex the 
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paths have in common.  Note that the length of both paths from v up to w must be d(v,w) since 
otherwise one of them would not be a shortest path.  If w is equal to x or y, then clearly one of the 
paths is longer than the other.  Otherwise, consider the cycle formed by taking the path from w to 
x together with the path from w to y and the edge (x,y).   The length of this cycle is d(v,x)-d(v,w) + 
d(v,y)-d(v,w) + 1.  This must be an even number since G does not contain an odd cycle, which 
implies that d(v,x) and d(v,y) cannot be equal. 
QED 
 
Note that a special case of this theorem is that all trees are bipartite, since they don’t contain any 
cycles (odd or otherwise). 
 
The proof above not only characterizes the graphs which are 2-colorable, but gives an efficient 
method for checking whether this is true.  First pick a vertex v and compute the distance from v to 
every other vertex in the graph using the algorithm below.  Once we have done this we then color 
the vertices with even distances red (including v itself) and color the other vertices blue.  We then 
simply check whether this coloring is proper by examining the end-points of each edge and 
making sure they have different colors.  If we find two adjacent vertices with the same color than 
by the proof above, we know that the graph is not 2-colorable. 
 
The algorithm below gives a simple method for computing the shortest path from v to any vertex 
in the graph G.  There are other algorithms, but this one has the virtue of simplicity and most 
others are variations of the same basic idea. 
 
Shortest Path Algorithm 
 
Given a graph G and a vertex v, we wish to compute the value d(x) = d(v,x) for all x in G.  We will 
do this by starting with a worst case estimate of d(x) for each vertex x, call it e(x), which is always 
greater than or equal to d(x), and then proceed to refine our estimate step by step until e(x) = d(x) 
for every vertex x.  Let n be the number of vertices in G. 
 

Initialization: Set e(v) = 0 and set e(x) = n. 
Update Step: For each vertex x, check e(y) for each adjacent vertex y, and if e(y)+1 is 
less than e(x), set e(x) = e(y)+1 and note that a change was made. 
Termination: If no changes were made for any vertex, terminate. 

 
It is easy to see that e(x) ≥ d(x) always holds, since this is true initially and the update step will 
never make it false – if a neighboring vertex has a valid distance estimate more than one less 
than our current estimate, we could use a path that included the neighboring edge followed by a 
path from the neighbor to v.  It is also clear that the algorithm must eventually terminate, since if a 
change is made than e(x) is reduced by at least 1 for some vertex x.  The total sum of the e(x)’s is 
thus always decreasing and can never be 0.  In fact the sum of all the e(x)’s is less than n2 at the 
beginning, so the algorithm must terminate after fewer than n2 update steps. 
 
The fact that may not be immediately obvious is that when the algorithm terminates, e(x) = d(x) 
for every vertex x.  To see why this must be true, suppose it is not.  Then e(x) > d(x) for some 
vertex x.  Now walk along the shortest path P from v to x and find the first edge (y,z) where e(y) = 
d(y) but e(z) > d(z) – such an edge must exist since e(v) = d(v) but e(x) > d(x).  Any sub-path of a 
shortest path is also a shortest path, so in particular the segment of P from v to y is a shortest 
path from v to y a and the segment of P from v to z is a shortest path from v to z, hence d(z) > 
d(y).  But e(z) > d(z) > d(y) = e(y), so e(y)+1 must be less than e(z).  This means that the 
algorithm cannot have terminated, because it would have changed e(z) in the update step. 
 
This algorithm can be used to compute the shortest path between any two vertices reasonably 
efficiently, so finding the optimal route between two points on a map is not a particularly hard 
problem.  This problem should not be confused with the traveling salesman problem which aims 
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to find the optimal route which travels through an entire set of points on a map.  As the set of 
points to be visited gets large, the problem becomes very difficult. 
 
Surprisingly, in contrast to determining whether a graph is bipartite, the problem of determining 
whether a graph is 3-colorable is much harder.  It belongs in the same class of NP-complete 
problems as the traveling salesman and Hamiltonian path problems.  No good solution is known 
and trying all possible colorings is impractical for all but the smallest graphs. 
 
Edge Colorings 
 
Suppose you are organizing a tournament for n contestants using a round-robin format, i.e. each 
player will be matched against every other player at some point during the tournament which will 
consist of several rounds.  How many rounds will be required to accomplish this?  How should the 
contestants be matched up in each round?  What if the number of contestants is odd, how should 
this be handled?  The answer to this and many other questions can be found using edge-
colorings of graphs. 
 
Given a graph G with its edges colored, for any particular color c, we can define a sub-graph Hc 
consisting of just those edges with the color c and the vertices they contain.  A sub-graph in 
which all the edges have the same color is called mono-chromatic. 
 
Any coloring of the edges partitions the edges and thus gives a decomposition of G into mono-
chromatic sub-graphs.  In the case of a proper edge-coloring, these mono-chromatic sub-graphs 
must consist entirely of non-adjacent edges and their end-points, i.e. the sub-graphs match-up 
pairs of vertices.  Every vertex in such a sub-graph will have degree 1. 
 
Matching:  Given a graph G, a 1-regular sub-graph H of G is called a matching.  If H spans G 
(i.e. has the same vertex set), then H is called a perfect matching. 
 
Such a decomposition is exactly what we need to schedule a tournament with n players.  If we 
have a proper edge-coloring of the graph Kn with k colors.  We can use the coloring to schedule a 
tournament with k rounds – the mono-chromatic sub-graphs will tell us how to match the players 
in each round. 
 
Note that each vertex in Kn has n-1 edges, so k must be at least n-1.  This is true for any regular 
graph, i.e. a proper edge-coloring of a k-regular graph must use at least k colors.  When a k-
regular graph can be colored with exactly k colors, a remarkable thing happens – every vertex 
appears in every mono-chromatic sub-graph, i.e. the coloring decomposes the graph into k 
perfect matchings. 
 
As an example, consider the graph K4.  The edges of K4 can be properly colored with 3 colors.  
This is easy to see if we draw K4 as an equilateral triangle with a vertex in the center connected 
to each of the corners oriented so that it’s base is horizontal  Take the horizontal along with the 
vertical edge at the top and color them R, then take the congruent pair of edges which are rotated 
120 degrees and color them G, and then color the final pair (rotated another 120 degrees) blue.  
The cube is another example of a 3-regular graph whose edges can be properly colored with 3 
colors. 
 
The example of K4 described above can be generalized to give the following remarkable result: 
 
Theorem 11: Kn has a proper edge-coloring with n-1 colors if and only if n is even. 
 
Proof: It is easy to see why n-1 colors is not sufficient when n is odd.  Kn is a regular graph of 
degree n-1.  As noted above, if it is properly colored with n-1 colors, then the mono-chromatic 
sub-graphs will be perfect matchings, but it is not possible to perfectly match an odd number of 
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vertices.  Now suppose that n is even.  We will construct a perfect matching using a very useful 
trick of the graph theory trade called “turning”. 
 
Pick one vertex x of Kn and then place the other m=n-1 vertices in an evenly spaced circle around 
x with vertex 0 directly above x and the remaining vertices numbered from 0 to m-1.  Draw a 
vertical edge (0,x), then draw horizontal edges (1,m-1), (2,m-2), …, ((m-1)/2,(m+1)/2) to pair up 
all the vertices.  This set of edges forms a perfect matching and will be our first mono-chromatic 
sub-graph.  Now rotate all the edges clockwise around the circle by one vertex to get the next 
mono-chromatic sub-graph and continue all the way around the circle.  Because m is odd, no 
edges will be repeated and every edge will be colored exactly once using m=n-1 colors. 
QED 
 
The “turning” trick used in the proof above can be used in lots of other situations.  For example 
the octahedron can be properly edge-colored using 4 colors by standing the octahedron on a 
vertex with a horizontal edge facing you.  Take the right-hand edge leading down from the top 
vertex along with the left-hand edge leading up from the bottom vertex together with the 
horizontal edge in back as the first perfect matching, then rotate this set of edges 90 degrees to 
get the next perfect matching. 
 
The last topic we will look at relates to edge-colorings which are not proper colorings. 
 
Ramsey Theory 
 
One of the simplest and most well known results in graph theory (sometimes known as the 
“strangers and friends” theorem) can be stated informally as follows: 
 
“At a party with six people, either there are three mutual friends or three mutual strangers (or 
both).” 
 
We can state this in graph-theoretic terms as follows: 
 
Theorem 12: Any 2-coloring of the edges of K6 contains a mono-chromatic triangle. 
 
Proof:  Given a 2-coloring of the edges of K6 pick any vertex v.  Since v has degree 5 at least 3 
of the edges containing v must be the same color, call it red. (this is a trivial example of what is 
sometimes known as the “pigeon-hole-principle” – if 5 pigeons are crammed into two boxes, 
one of the boxes must have at least 3 pigeons in it).  Now consider 3 neighbors of v which are 
joined to v via a red edge.  Either the 3 edges between the 3 neighbors are all blue, in which case 
there is a blue triangle, or one of them is red, in which case that edge together with the edges 
leading to v constitute a red triangle. 
QED 
 
Given the proof, the theorem above may seem weak – the argument we made applied to every 
vertex and we only needed to use it once.  We can in fact prove something stronger, that there 
must be at least two mono-chromatic triangles.  It is possible to prove this using a much more 
involved version of the argument above, but instead we will give a very different proof based on 
counting. 
 
Theorem 12.1: Any 2-coloring of the edges of K6 contains two mono-chromatic triangles. 
 
Proof: Given a 2-coloring of the edges of K6 call a triangle bi-chromatic if it contains edges in 
both colors.  We know that K6 contains (6 3) = 20 triangles, but how many of these are bi-
chromatic?  We will show that at most 18 are, so there must be 2 mono-chromatic triangles. 
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Each bi-chromatic triangle contains exactly two bi-chromatic paths of length 2, and every bi-
chromatic path of length 2 is contained in exactly 1 bi-chromatic triangle.  Thus the number of bi-
chromatic 2-paths is exactly twice the number of bi-chromatic triangles.  A given vertex can be 
the center of at most 6 bi-chromatic paths (e.g. when 3 edges are red and 2 are blue).  There are 
6 vertices in K6 so there are at most 6*6 = 36 bi-chromatic paths which means there at most 18 
bi-chromatic triangles. 
QED 
 
Note that the bi-chromatic triangles in the theorem above need not be disjoint - if they are the 
same color they can share an edge.  This theorem is tight in the sense that there are 2-colorings 
of the edges of K6 which have only 2 mono-chromatic triangles (both disjoint and non-disjoint 
cases occur). 
 
Note also that the edges of K5 can be 2-colored without any mono-chromatic triangles – simply 
color two disjoint 5-cycles red and blue. 
 
This theorem is a very special case of a much more general theorem called Ramsey’s theorem 
which relates to a topic called extremal graph theory.  We will we look at one generalization of 
the problem above in this area. 
 
We can restate the problem as a general question about complete graphs.  What is the smallest 
number n = R(m) such that any 2-coloring of the edges of Kn must have a mono-chromatic sub-
graph which contains Km?  We proved above that R(3) = 6, since we showed that any 2-coloring 
of K6 must contain a mono-chromatic sub-graph including K3 (a triangle), but this is not true for 
K5. 
 
The numbers R(m) are known as Ramsey numbers.  The fourth Ramsey number R(4) is 18.  It is 
possible to prove bounds on the values of other Ramsey numbers, but for m > 4 the exact value 
of R(m) remains unknown.  A lot of work has been done to narrow down the problem so that it is 
now known that R(5) must be between 43 and 49 (inclusive), but the exact value is extremely 
difficult to determine despite years of concerted effort.  The known ranges of some other Ramsey 
numbers are listed below: 
 

m 3 4 5 6 7 8 9 10 
R(m) 6 18 43 to 

49 
102 to 
165 

205 to 
540 

282 to 
1870 

565 to 
6588 

798 to 
23556 

 
 

It is possible that with further refinements and/or computational power R(5) may be determined in 
the foreseeable future, however the value of R(6) and any larger Ramsey numbers would appear 
to be completely out of reach using current technology.  The following quote from Paul Erdos 
aptly sums up the situation: 
 

"Imagine an alien force, vastly more powerful than us landing on Earth and 
demanding the value of R(5), or they will destroy our planet. In that case we 
should marshal all our computers and all our mathematicians and attempt to find 
the value. But suppose, instead, that they asked for R(6), then we should attempt 
to destroy the aliens". - Paul Erdős

 
Turan’s Theorem 
 
Another area of extremal graph theory related to the question above asks what is the largest 
graph with 6 vertices which does not contain a triangle, i.e. how many edges can such a graph 
have?  In terms of the question above this tells us the size of the largest mono-chromatic sub-
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graph in a 2-coloring of the edges of K6 which does not contain a triangle (we know of course that 
the other mono-chromatic must contain two). 
 
Fortunately this question is much easier to answer, and we can do so in a fairly general fashion.  
We will prove a result for arbitrary graphs which are triangle-free. 
 
Note that a bipartite graph does not contain a triangle, since it has no odd cycles.  If n is even, the 
complete bipartite graph Kn/2,n/2 will have n2/4 edges – in our example K3,3 is a graph with 6 
vertices and 9 edges which does not contain a triangle.  We will prove that this is the largest 
number of edges possible. 
 
Theorem 13: Any graph with n vertices which does not contain a triangle has at most n2/4 edges. 
 
Proof: Let G = (V,E) be a graph with n vertices which does not contain a triangle.  Let v be the 
vertex in G with maximum degree.  Let S be the set of vertices adjacent to v, and let T=V-S 
consist of the remaining vertices in G (including v).  None of the vertices in S can be adjacent to 
each other since G does not contain a triangle, so they must all have degree ≤ |T|.  All of the 
vertices in T must have degree less than |S| = d(v), since v had the maximum degree.  If we add 
up the degrees of all the vertices in each set and divide by 2 we find that the number of edges in 
G is at most (|S|*|T| + |T|*|S|) / 2 = |S|*|T|.  We know that |S|+|T| =  n, and the maximum value 
|S|*|T| can have occurs when |S| is as close to |T| as possible (equal if n is even), but is always 
less than (n/2)2 = n2/4. 
QED 
 
Thus K3,3 is the largest triangle-free graph when n = 6.  Note that the complement of K3,3 is two 
disjoint triangles, so in some sense when 2-coloring the edges of K6, maximizing the size of one 
mono-chromatic sub-graph pushes all the edges in the other sub-graph into triangles. 
 
As with Ramsey theory, the theorem above can be generalized to address the question, what is 
the largest graph with n vertices that does not contain Km.  When m is greater than 3, the answer 
will turn out to be a complete (m-1)-partite graph, i.e a graph whose vertices are partitioned into 
m-1 subsets where no edges occur within a subset.  Graphs which maximize the number of 
edges subject to this constraint are called Turan graphs. 
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