
 
Combinatorics: The Fine Art of Counting 

Week 8 Lecture Notes – Graph Theory 
 
 

Introduction 
 
More than any other field of mathematics, graph theory poses some of the deepest and most 
fundamental questions in pure mathematics while at the same time offering some of the must 
useful results directly applicable to real world problems.  There are currently five (four?) unsolved 
problems in mathematics which are considered so important that there is a $1,000,000 reward for 
anyone who solves them.  One of these problems, the “P vs NP” question, is directly connected 
to several fundamental problems in graph theory.  Graph theoretic algorithms are used every day 
to solve problems in manufacturing, transportation, molecular biology, computer networking, 
finance, electrical engineering, digital imaging, …- the list goes on and on.  The many unsolved 
problems in graph theory and the wide range of practical applications make it a rich field of 
current mathematical research. 
 
A Whirlwind Tour of Graph Theory 
 
We saw several examples of graphs during the first lecture of this course when we looked at the 
regular polyhedra.  Graphs provided an abstract way of capturing the essential properties of 
these geometric objects – the relationships between the vertices, edges, and faces.  Today we 
will look at some other examples where graphs arise.  The virtue of using a graph to represent a 
problem is that it captures the essential features of a problem in a concise manner that provides a 
lot of flexibility (e.g. looking at the polyhedra as planar graphs).   
 
Example #1 – Maps 
 
Graphs are an obvious way to capture the essential features of a map.  Consider a geographic 
map where we use vertices to represent contiguous regions with edges between adjacent 
regions.  A famous problem for this type of map is the Four-Color Theorem, which states that 
the vertices of any planar graph can always be colored with four colors in such a way that no two 
adjacent vertices have the same color.  It is easy to see that three colors is not enough (consider 
the graph of the tetrahedron), and it is not too hard to prove that five colors is sufficient, but the 
Four-Color Theorem is extremely difficult.  The current proof is far from satisfactory; it involves 
checking so many special cases that a computer is required just to complete the proof. 
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Other types of maps that give rise to graphs may be more abstract, such as a map of a 
transportation system (e.g. a map of interstate highways, a train system, or an airline route map) 
or a network (e.g. a telephone network, a power grid, the internet).  In graphs of this type, 
important questions often relate to paths in the graph.  Is there always a path between any two 
vertices in the graph?  If so, the graph is said to be connected, if not the graph can be separated 
into two or more connected components.  To ensure the reliability of a system it may be 
important that connectivity persists even if one or more edges or vertices is removed (due to an 
accident or system failure).  Which subsets of edges will disconnect a connected graph if 
removed?  Such a set of edges is called a cut.  The reliability of a network is related to the size of 
the smallest cut. 
 

 
What is the shortest path between two vertices?  You may want to know this if you are planning 
a trip, routing a product shipment or sending an instant message over the internet.  A 
generalization of this question is to consider the worst case, i.e. what is the longest shortest path 
between any two vertices in a connected graph.  This value is called the diameter of the graph, 
and it is often desirable to have graphs that have small diameter.  Small diameter graphs are 
important when solving routing problems, but can also play a role in social networks (see below). 
 
A generalization of the notion of a path in a graph is a walk.  We imagine starting at some vertex 
in the graph and then walking from one adjacent vertex to the next along edges.  If we never use 
the same edge twice, the walk is called a trail.  If we never visit the same vertex twice, then the 
walk is a path. 
 
A famous question regarding the length of walks in a graph is the Traveling Salesman Problem 
– assuming the edges are labeled with distances, what is the shortest walk that goes through all 
the vertices?  An apparently simpler question might be whether there is a walk which passes 
through all the vertices exactly once, i.e. a path containing all the vertices.   Such a path is called 
a Hamiltonian path.  A pastime called “Around the World” popularized by Sir William Hamilton 
involved finding Hamiltonian paths (or cycles) in the graph of a dodecahedron (see below).  There 
is no general method known for efficiently determining whether a given graph contains a 
Hamiltonian path.  However it is easy to check whether a given list of vertices is a Hamiltonian 
Path, thus if someone claims a graph contains a Hamiltonian path they can easily convince us by 
simply telling us the order of the vertices in the path.  This is the essential feature of an NP-type 
problem.  Some problems seem hard to solve, but the answer is easy to check once you have 
one.  The “P vs NP” question asks whether NP-type problems are inherently harder to solve than 
problems where we have a reasonably efficient algorithm for finding the solution (these are P-
type problems). 
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The remarkable thing about many NP-type problems (including the Hamiltonian Path problem), is 
that answering this question for just one of these problems would settle the question for all of 
them (problems with this property are called NP-complete).  Thus to win $1,000,000 you can pick 
any one of these problems and either solve it, or prove that it is unsolvable. 
 
An apparently similar question is whether a graph contains a walk which passes through all the 
edges exactly once, i.e. a trail containing all the edges.  Such a trail is called an Eulerian tour in 
honor of the prodigious Swiss mathematician Leonhard Euler.  Among Euler’s numerous 
mathematical achievements, he was the person most responsible for the creation of graph theory 
as a formal field of mathematical study.  In contrast to the Hamiltonian Paths, determining 
whether a graph contains an Eulerian tour is straight-forward.  The question which motivated 
Euler to pursue this topic was whether it was possible to take a walk which crossed all the bridges 
in Konigsberg exactly once. 

 

 
Example #2 – Physical Models 
 
Many of the most important molecules in biology and chemistry have complex structures that can 
be described with graphs.  The vertices in such a graph represent atoms, and the edges 
represent bonds between atoms.  An important feature of such graphs may be the degree of the 
vertices - i.e. the number of adjacent vertices.  This corresponds to the number of bonds a 
particular atom has in the molecule.  There are chemical properties of atoms of a given type that 
determine the number of bonds they typically form (e.g. 1 for hydrogen, 2 for oxygen, 4 for 
carbon, etc…) and it may be important that the graphs satisfy certain constraints regarding the 
degrees of the vertices.  In order to represent double bonds between to atoms, it may be 
appropriate to extend our notion of a graph to a multi-graph which permits multiple edges 
between vertices (note that the Konigsberg Bridge diagram above corresponds to a multi-graph). 
 
One particularly important category of molecules are hydrocarbons (molecules made of carbon 
and hydrogen), and in such graphs an important feature is whether there are any cycles present, 
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and if so, how many and of what size.  A connected graph without any cycles is called a tree, and 
many saturated hydrocarbons have this structure (some small examples are shown below).  In 
the field of nano-technology, complex carbon molecules play an important role, e.g. the molecule 
C60, also known as Buckminsterfullerene or a “bucky ball”.   This molecule contains many cycles 
composed of 5 or 6 carbon atoms (it is a truncated icosahedron).  We will learn a number of 
important properties related to characterizing graphs which are trees, and analyzing the cycles in 
graphs which are not trees. 
 

  
Graphs can be used to model problems in physics as well.  The problem of computing the current 
flow through the wires of an electrical circuit is critical for designing complex electronic devices.  
This problem was greatly simplified by the German physicist and mathematician Kirchhoff who 
found a way to analyze the graph representing any electrical circuit in terms of trees and cycles. 

 

 

Example #3 – Relations 
 
The last and most important example we will look at are graphs which represent relationships 
between the elements of in a set of objects.  Using social networks as an example, we can 
represent the various acquaintances within a group of people by having a vertex for each person 
and placing an edge between people who know each other.  An interesting fact that can be 
proven using such graphs is that among any group of six people, there are either three people 
who all know each other, or three complete strangers.  Another aspect of social networks that can 
be analyzed with graph theory is the “small-world” phenomenon.  It has been conjectured that the 
graph of acquaintances among all the earth’s population has a diameter of six.  Pick any person 
on earth, and you know someone that knows someone that … knows this person and you only 
have to go through five people in between. 

 Rather than using edges to represent acquaintances between people, we might instead use them 
to represent compatibility – suppose we want to divide people up into pairs by matching 
compatible people (e.g. in a dating service).  A set of edges in a graph which do not have any 
vertices in common is called a matching.  If we are able to pair up all the vertices in the graph, 
we have a perfect matching.  When does a perfect matching exist (can you find one in the graph 
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below)?  If so how many are there?  If not what is the largest matching possible?  In a trading 
system it may be important to match buyers with sellers, in a chess tournament between teams 
from two different schools we may want to match opponents from opposing schools.  In both of 
these examples we can separate the vertices of the graph into two groups (e.g. buyers and 
sellers) and we are only interested in edges between vertices in opposite groups.  Such a graph 
is called a bipartite graph.  Another example of a matching problem is tiling a region of the floor 
with identical dominos.  How many ways can you do this?  How many ways can you put the 
dominos back in the box?  Both of these questions can be represented as matching problems. 
 

 
 
In a tournament, we may want to not only represent the opponents which are matched up, but the 
outcome of the game.  In this situation we can generalize our notion of a graph to include the 
concept of directed edges with an arrow indicating the order of the two ends of the edge.  We 
can place a directed edge pointing from the winner to the loser, and then use such a graph not 
only to declare an overall winner, but also to assign a ranking among the participants.  An 
interesting question about such graphs is whether they include a cycle (e.g. A beat B who beat C 
who beat D who then beat A) and if so, how should players be fairly ranked in such cases?  
 
Another example of relationships between objects are dependencies.  A large project or complex 
assembly process may consist of many different steps, some of which may be done in parallel, 
but some may depend upon the completion of earlier steps.  These dependencies can be 
represented in a graph using directed edges (see example below). In order to optimally plan such 
a project, it may be important to know both how long the longest path in such a graph is (often 
called the critical path), and also the maximum number of “parallel” edges, i.e. a set of edges no 
two of which lie on a path (this is a special type of cut).  Another example of dependencies are 
logical implications between propositions in a formal proof system, i.e. statements of the form “A 
implies B”.  Proving that a given theorem can be derived from a set of axioms may amount to 
finding a directed path in a graph in which the vertices represent propositions and the edges 
represent logical implications. 
 
Another type of dependency graph is a state transition diagram.  Consider a machine or computer 
program which may be in one of several different states.  Transitions between states can be 
represented by a directed edge between vertices representing the states.  The execution of the 
machine may be modeled as a tour along the directed edges of the graph.  Note that in transition 
diagrams we may want to allow self-loops as well as normal edges.  One question of particular 
interest for such graphs are whether a directed path exists from one state to another.  Another 
interesting question is the number of possible tours of a given length.  Consider the graph of the 
finite state machine depicted below.  This simple state transition diagram represents a machine 
which recognizes binary strings which do not contain two 1’s in a row.  The number of directed 
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tours of length n which start at vertex A is equal to the number of binary strings of length n which 
do not contain two 1’s in a row.  This turns out to be equal to the (n+1)st Fibonacci number.  This 
fact and many more complex string recognition problems can easily be proven by analyzing the 
graph of an appropriate state transition diagram. 
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Graphs can be used to represent negative relationships as well as positive ones.  Consider the 
problem of scheduling a set of extracurricular activities for which various students have 
registered.  If we associate a vertex with each activity and place an edge between any two 
activities which have a student in common, we can use this graph to determine how the activities 
may be scheduled.  If we can color the vertices of the graph in such a way that no adjacent 
vertices have the same color, this coloring can be used to assign time slots to the activities in 
such a way that no student is scheduled to do two things at the same time.  It may be important to 
try to minimize the number of time slots (there are only so many hours in the day), so we may 
want to determine the minimum number of colors required.  Recall that the Four-Color Theorem 
applies only to planar graphs, but for more general graphs, more than four colors may be required 
(e.g. the complete graph Kn requires n colors).  The minimum number of colors necessary to 
color the vertices of a graph so that no adjacent vertices have the same color is called the graph’s 
chromatic number.  Some graphs require a lot of colors (e.g. the complete graph Kn has 
chromatic number n), while others don’t (e.g. the complete bipartite graph Km,n has chromatic 
number 2).  Graph colorings can be used to solve a wide variety of problems and there are many 
open questions related to graph coloring. 
 
The last two examples we will mention in passing are the graphs of the factors of 60 and the 
subsets of the set {a,b,c,d}.  These graphs are examples of mathematical objects which have a 
particular type of relationship defined among the elements called a partial ordering.  In a partial 
ordering some pairs of elements have a well defined order (e.g. the set {a,b,c} contains the set 
{a,b}), but not necessarily all pairs do (e.g. the set {a,b} neither contains nor is contained by the 
set {b,c}).  Graphs of partial orders are of particular interest in combinatorics, and the two 
examples given here are a very special type of partial ordering called a lattice. 
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Lattice of factorizations of 60 

60 

2*30 3*20 4*15 6*10 

2*2*1 2*3*1 2*5*6 3*4*5 

2*2*3*5 

5*12 

 
 
 
 
 

 
 

Lattice of subsets of {a,b,c,d}

{a,b,

{a,b,c} {a,b,d} {a,c,d} {b,c,d} 

{a,b} {a,c} {a,d} {b,d} 

{} 

{b,c} {c,d} 

{a} {b} {c} {d} 
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Definitions 
 
Before we can study graph theory in more detail, we need to define some of our terms a little 
more precisely.  Graph theory uses a lot of definitions, but fortunately they are generally very 
straight-forward and intuitive (unlike probability). 
 
Graph:  A graph G=(V,E) consists of an arbitrary set of objects V called vertices and a set E 
which contains (unordered) pairs of (distinct) elements of V called edges. 
 
The vertices contained in an edge are said to be adjacent and form the end-points of the edge.  
Two edges are said to be adjacent if the have a vertex in common.  Vertices are sometimes 
called nodes or points but vertex is the most common term. 
 
Notice that the set V can be whatever we like as long as we have a way to distinguish the 
vertices.  When speaking in general terms we will usually use an abstract set V = {v1,v2,…,vn}, but 
in practical problems it will be convenient to let the elements of V correspond to objects in the 
problem (e.g. people, places, events, etc…).  You can think of V as a set of labels or names for 
the vertices. 
 
Directed Graph: We extend the definition above by requiring the edge set E to contain ordered 
pairs of (distinct) elements of V. 
 
By convention, the pair of vertices in an edge are distinct unless self-loops are explicitly 
permitted (a graph with self-loops is sometimes called a pseudo-graph). 
 
Degree: For any vertex v in a graph, the degree of the vertex equal to the number of edges which 
contain the vertex.  The degree of v is denoted by d(v). 
 
Theorem 1:  The sum of the degrees of all the vertices in a graph is equal to twice the number of 
edges, i.e. d(v) = 2|E| 
 
Proof: We saw this proof in the very first lecture.  If we add up the degrees of all the vertices in a 
graph, we are counting every edge twice, once for each end-point. 
 
Note that this implies that the sum of the degrees of a graph must always be an even number.  
This is a useful fact to remember. 
 
Regular Graph: A graph in which every vertex has the same degree is called a regular graph.  If 
all vertices have degree n, the graph is said to be n-regular or simply to have degree n. 
 
For example the cube is a 3-regular graph.  A cycle (defined below) is a 2-regular graph.  Note 
that since the sum of the degrees must be an even number, a regular graph with odd degree (e.g. 
the cube) must have an even number of vertices. 
 
Complete Graph:  The complete graph on n vertices K  consists of vertex set V = {vn 1,v2,…,vn} 
and the edge set E containing all pairs of vertices in V. 
 
K  is a regular graph of degree n-1. n
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A graph may be specified by listing the set of vertices and the set of edges.  Alternatively, a graph 
may be specified via a table called an adjacency matrix which contains a row and a column for 
each vertex.  If the vertex set is {v th

1, v2, v3, …}, the entry in the i  row and jth column of the 
adjacency matrix is 1 if the edge (v , vi j) is in E and 0 otherwise.  Note that the diagonal entries of 
the adjacency matrix will be 0 unless self-loops are permitted, and the adjacency matrix will 
always be symmetric if the graph is undirected.  Below is an adjacency matrix for the graph C4. 
 

0  1  0  1 
1  0  1  0 
0  1  0  1 
1  0  1  0 

 
Adjacency Matrix of C4 

 
 
The third and most common way to specify a graph is to draw a diagram.  However an important 
issue arises when drawing a graph on a piece of paper.  Consider the graph with the set of 
vertices {v1, v2, v , v3 4, v5, v } and edges (v6 1,v2), (v1,v5), (v1,v6), (v2,v3), (v2,v4), (v3,v ), (v5 3,v6), (v ,v4 5), 
and (v4,v6).  Try sketching this graph in the space below before reading on. 
 
Two drawings of this graph are shown on the next page.  It is likely that your drawing is not the 
same as either one.  There are many ways to draw the same graph, and for a graph of any 
complexity, it is not always obvious when two drawings represent the same edge relationships.

9 



 
 

 
 Two Drawings of K3,3 

 
Conversely, a given drawing may have the vertices labeled in different ways which may result in 
different edge sets.  If we swapped the labels of the vertices v1 and v2 in the example above, we 
would have to change all of the edges which contained these vertices to interchange the roles of 
v1 and v2 in order to keep the graph the “same”.  A re-labeling of a graph along with the 
corresponding changes to the edge set is called an isomorphism (a fancy word that means 
“identical shape”).  The concept of an isomorphism is analogous to the geometric concept of 
congruence, except that edges don’t have a particular size or shape, just end-points, so the only 
thing that matters is which vertices are adjacent and which aren’t. 
 
The question of when two graphs are isomorphic is a difficult one in general.  As an example, 
consider the graphs labeled G1, G2, and G3.  Which of these graphs are isomorphic?  How can 
you prove this?  Graphs G1 and G3 are isomorphic (in this case we can simply rotate the page to 
see the isomorphism, but in general it is not so easy).  Graph G2 is not isomorphic to the other 2.  
To see this, note that each node of degree 4 in G2 has two neighbors which have degree 4, while 
in G1 and G3 this is not true. 
 

 
         G           G          G1 2 3 
 
The problem of determining graph isomorphism is an unsolved problem.  If someone claims two 
graphs are isomorphic they can easily prove this to you by giving you a re-labeling of the vertices 
of one of the graphs which you can then easily check.  However without a re-labeling in hand, it is 
very hard to know one way or the other.  If two graphs are not isomorphic, we may be able to find 
some simple feature which differentiates the two graphs (e.g. the degrees of vertices, or the 
existence of certain paths or cycles), but this is not always possible in general. 
 
Sub-graph: A graph G1 = (V1, E1) is a sub-graph of G2 = (V2, E2) whenever V1  V and 2 
E1  E2. 
 
If G2 is a sub-graph of G1 we say that G1 contains G2.  Note that E2 does not necessarily need to 
contain all the edges in E1 which connect two vertices in V2.  When it does, we say that G2 is the 
sub-graph of G1 induced by V2. 
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Path: A path of length n is the graph P  on n+1 vertices {vn 0, v1, v2, …, vn} with n edges (v0,v1), 
(v1,v2), …, (vn-1,vn). 
 
Cycle: A cycle of length n is the graph C  on n vertices {vn 0, v2, …, v } with n edges (vn-1 0,v1), 
(v1,v2), …, (vn-1,v0). 
 

 
 
Note that C1 only arises when self-loops are permitted and C2 only arises in multi-graphs. 
 
We say that a given graph contains a path (or cycle) of length n if it contains a sub-graph which 
is isomorphic to Pn (or Cn). 
 
Note that under this definition the vertices of a path (or cycle) are always distinct.  If we want to 
talk about an arbitrary sequence of adjacent edges in a graph which may pass through the same 
vertex or edge more than once, we will use the word walk.  A walk in which all the vertices are 
distinct is a path.  A walk in which all the edges are distinct is called a trail.  A trail which begins 
and ends at the same vertex is called a circuit.  A circuit which doesn’t pass through the same 
vertex twice is a cycle. 
 
For a given sub-graph which is isomorphic to a path or cycle, there will be more than one re-
labeling which demonstrates this isomorphism because of the symmetry of paths and cycles (2 
for a path, 2n for a cycle of length n).  When counting paths or cycles in a graph we only count 
distinct sub-graphs. 
 
Having said this, it is important to note that a subset of the vertices is not enough to fully specify a 
path or a cycle.  The edges must also be specified and there may be multiple distinct sub-graphs 
which have the same vertex set but different edges.  As an example, the graph K4 contains 12 
distinct paths of length 3 (each containing 4 vertices), and 3 distinct cycles of length 4.  Note 
that 2*12 = 4! and 3*(2*4) = 4! 
 
Connected: A graph contains a path between every pair of vertices is connected (note that the 
graph consisting of a single vertex is connected).  In general, every graph is the union of one or 
more disjoint connected sub-graphs called the connected components – a connected graph has 
just one component, while a disconnected graph has more than one. 
 
Two vertices in a graph are said to be connected if the graph contains a path which includes both 
vertices - note that in this situation there is a path in the graph which has the two vertices as end-
points.  In a connected graph, all pairs of vertices are connected. 
 
Distance: The distance between two connected vertices is the length of the shortest path 
between the vertices. 
 
Diameter: The diameter of a connected graph is the maximum distance between any two 
vertices in the graph. 
 
Examples: Kn has diameter 1.  The cube has diameter 3.  Pn has diameter n, and Cn has diameter 
n/2 when n is even and (n+1)/2 when n is odd. 
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Forests and Trees:  A graph which does not contain a cycle is called a forest.  If it is a 
connected graph, it is called a tree.  In general, the connected components of a forest are trees. 
 

 
 
A graph with a single vertex (and no edges) is a tree.  For any other tree, the degree of every 
vertex must be non-zero since the graph is connected.  Vertices with degree 1 are called end-
points or leaves of the tree.   Vertices with degree greater than 1 are called internal vertices.  
 
Note that if any edge of a tree is removed, the result is a forest with two trees, so in graph theory, 
cutting down a tree creates a forest. 
 
We are now ready to use our definitions to prove a number of useful theorems.  We will begin 
with an easy one. 
 
Theorem 2:  Every tree with at least one edge contains two end-points 
 
Proof:  Every vertex in a tree with at least one edge must have non-zero degree.  Pick any 
vertex, and if its degree is not 1, walk along one of the edges containing the vertex and keep 
walking until you reach a vertex with degree 1.  A tree contains no cycles, so we will never visit 
the same vertex twice.  The tree is finite so we must eventually be forced to stop by a vertex with 
degree 1.  This is one of the two end-points.  Now turn around and start walking again until you 
reach another end-point.  This is the second one. 
QED 
 
Our next theorem uses a proof by induction.  Proofs by induction are often the simplest and 
clearest way to prove theorems in graph theory, and are a very useful tool in mathematics in 
general.  Rather than avoid proofs by induction as some introductory texts do, we shall embrace 
them with open arms.  The basic idea of an inductive proof is to start small (the base case), and 
then show you could in theory work your way up from this base case to any particular case.  To 
do this we assume that the theorem is true for all cases smaller than the particular one we are 
trying to prove (this is called the inductive hypothesis) and use this to prove the particular case. 
 
Key things to remember about proofs by induction: 

• Make sure you are clear about what you are inducting on – i.e. what “n” is.  It could be 
the number of vertices, the number of edges, the number of cycles, etc…  Making the 
right choice may simplify the proof considerably. 
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• Be careful about the base case - don’t just assume it is trivial (even though it usually is).  
Make sure you know where the base case starts – it won’t always be at n = 0, and note 
that your proof won’t apply when n is less than your base case. 

• Remember that your inductive hypothesis applies to all values of n which are greater 
than or equal to the base case and less than n, not just to n-1.  This is especially 
important in graph theory proofs because often we are breaking up graphs into smaller 
pieces, but the pieces aren’t always just 1 smaller. 
 

Theorem 3: A graph with n vertices is a tree if and only if it is connected and has n-1 edges. 
 
Proof:  First note that we have two things to prove, the “if” and the “only if”.  Well actually we 
have infinitely many things to prove, since we want our theorem to be true for every n, but for 
each n we have two things to prove.  In many situations it will be easier to prove these cases 
separately, i.e. prove the “if” for all n, and then prove the “only if” for all n, but here we will prove 
them both using a single induction on n, the number of vertices in the graph. 
The theorem is clearly true when n is equal to 1, since a single vertex is both a tree and a 
connected graph with 0 edges and there are no other graphs with 1 vertex.  Now suppose that n 
is greater than 1 and that the theorem is true for all graphs with fewer than n vertices.  We will 
now prove both parts of the theorem for a graph with n > 1 vertices. 
 
Suppose the graph is a tree.  It is clearly connected (by definition) and it must have at least one 
edge since n > 1.  By Theorem 2, it has two end-points, so pick one of them.  If we remove this 
end-point and the single edge containing it, the resulting graph is a tree with n-1 vertices, so by 
our inductive hypothesis it has n-2 edges.  This plus the single edge we removed means the 
graph has n-1 edges in total. 
 
Now suppose the graph is connected and has n-1 edges.  By Theorem 1, the sum of the degrees 
of the vertices is equal to twice the number of edges or 2n-2.  The average degree is less than 2, 
so there must be at least one vertex with degree 1 (there must be two in fact).  If we remove this 
vertex and the single edge containing it, we get a graph with n-1 vertices which is connected and 
has n-2 edges.  By our inductive hypothesis, this graph is a tree.  If we now add our vertex and 
edge back in, we have not created a cycle and the graph is connected, so it is also a tree. 
QED 
 
This is a simple proof, but it is worth understanding in detail, as it is a good model for more 
complex proofs. 
 
There are many other important properties of trees, some of which are explored in the homework 
problems.  We now want to turn our attention to some graphs which do contain cycles.  There are 
two particular types of graphs which deserve special consideration. 
 
Hamiltonian Graph:  A graph which contains a Hamiltonian cycle, i.e. a cycle which includes all 
the vertices, is said to be Hamiltonian. 
 
There are a some special categories of graphs which are known to be Hamiltonian (e.g. the 
regular polyhedral graphs are all Hamiltonian) but as mentioned earlier, the problem of 
determining whether an arbitrary graph is Hamiltonian is a difficult and no efficient solution is 
currently known.  Things are a bit different for the analogously defined Eulerian graphs however. 
 
Eulerian Graph:  A trail which includes all of the edges of a graph and visits every vertex is 
called an Eulerian Tour.  If a graph contains an Eulerian tour which is a circuit, i.e. an Eulerian 
circuit, the graph is simply said to be Eulerian (this is just a fancy word that means “the graphs 
that guy Euler was always going on about” – mathematics abounds with such terminology.  It 
would sound much less impressive if his name had been Fred). 
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The first major theorem we will prove was the first problem in graph theory that Euler solved (in 
one direction, the converse was proven much later) and relates to the Konigsberg bridge problem 
mentioned above.  We will prove this theorem for plain vanilla graphs, but the proof works just as 
well for multi-graphs and graphs with self-loops.  Note that an ample supply of jelly beans is 
required before embarking on this proof. 
 
Theorem:  A graph is Eulerian if and only if it is a connected graph in which every vertex has 
even degree. 
 
Proof Part 1) Suppose a graph is Eulerian, then it is connected and it contains an Eulerian circuit 
which begins and ends some vertex v.  Place a jelly bean on v as you leave it and begin walking 
along the Eulerian circuit, placing one jelly bean on each vertex when you reach it and another 
when you leave it.  Continue until you have walked the entire tour at which point you will have 
arrived back at v.  At this point every vertex in the graph has an even number of jelly beans on it, 
since it was visited at least once during the tour and each visit resulted in a jelly bean being 
placed both on arrival and departure (including the starting vertex v where we departed first and 
arrived last).  Each arrival and departure occurred along an edge incident to the vertex, and every 
edge in the graph was traversed exactly once, so the number of jelly beans on each vertex is 
equal to its degree.  Therefore every vertex has even degree. 
 
Proof Part 2) We will prove the second half by induction on the number of edges in the graph.  
First note that C3 is Eulerian, this will be our base case.  Now suppose G is a connected graph in 
which every vertex has even degree with n > 3 edges, and assume that every connected graph in 
which every vertex has even degree and which has less than n edges is Eulerian (note that such 
a graph will have at least 3 edges.  Pick any vertex in the graph.  It must have positive degree 
since the graph is connected, so pick an edge and walk along a tour through the graph.  Note that 
since every vertex has even degree, each new vertex you reached has a new edge which you 
have not yet traversed which you can leave by until you reach a vertex that you have already 
visited (the graph is finite so this must eventually happen).  Once you reach a vertex you have 
visited before you will have walked a cycle C.  Removing this cycle from the graph will leave a 
possibly disconnected graph, but every vertex will still have even degree.  Every component of 
this graph will have fewer edges than the original graph and will be a connected graph in which 
every vertex has even degree.  By the inductive hypothesis, all the components are Eulerian, so 
each contains an Eulerian circuit.  These circuits can be combined with the cycle C to form an 
Eulerian circuit of the original graph.  First walk the Eulerian circuit for the component containing 
the starting vertex, then proceed along the cycle and each time you come to a vertex in a new 
component (if any) walk the Eulerian circuit for that component before proceeding to the next 
vertex in the cycle. 
QED 
 
Corollary:  A graph contains an Eulerian tour if and only if it is a connected graph with at most 
two vertices of odd degree. 
 
Proof:  First note that a graph cannot have only one vertex with odd degree since the sum of the 
degrees must be even, and that if it has no vertices with odd degree, the theorem above applies, 
so the only case to consider is two vertices with odd degree.  Suppose the graph contains an 
Eulerian tour, then applying the same argument as above, every vertex other than the starting 
and ending vertex must have even degree so these must be the two vertices with odd degree. 
Conversely, If the graph has two vertices with odd degree, we can add one new vertex and two 
new edges connecting this vertex to the two vertices with odd degree, to create a new graph 
which is connected and has every vertex with even degree.  By the theorem above this new 
graph is Eulerian so it contains an Eulerian circuit.  If we now remove the vertex and edges we 
added, the remaining part of the Eulerian circuit is an Eulerian tour. 
QED 
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This theorem has a surprising number of applications.  We will give one example here, a number 
of others are explored on the homework problems. 
 
Problem:  In a set of 21 dominoes where each end of a domino is labeled with 1, 2, 3, 4, 5, or 6 
dots and every combination is represented exactly one, is it possible to construct a cycle 
containing all 21 dominos where the ends of every pair of adjacent dominoes match? 
 
Solution:  Consider the graph K6 with the vertices labeled 1, 2, 3, 4, 5, 6.  Each edge in this 
graph corresponds to a domino with different ends.  If we ignore the doubles for the moment, any 
line of dominos with matching ends corresponds to a trail in K6.  Every vertex in K6 has degree 5, 
so there are 6 nodes in this graph with odd degree, hence it is not Eulerian.  This means that no 
cycle of the dominos with different ends can be constructed.  Adding in the doubles doesn’t help 
since if we could make a valid cycle which included the doubles, we could remove the doubles 
and still have a valid cycle since the dominos on either side of a double must have matching 
ends.  Therefore no cycle which uses all the dominoes exists. 
 
In terms of the graph, adding in the double is equivalent to adding a self-loop to each node which 
increases the degree of all the nodes to 7 (self-loops add two to the degree) which is still odd.  
This fact is true in general, and makes it clear that Theorem 3 applies to graphs with self-loops as 
well. 
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