
Combinatorics: The Fine Art of Counting 

Week Five Problems 
 

Before perusing this week’s menu, please be sure that you have sampled a broad range of last 
week’s problems and read through the solutions to check your understanding of the concepts.   
This week’s problems build on the same theme – binomial coefficients in all their glory.  Please 
begin with a few appetizers and then move on to the Binomial Buffet for a combinatorial feast. 
 

Appetizers 

1. A landscaper is planting a row of 15 trees including 5 birch trees and 10 pine 
trees.  How many ways can this be done without having two birch trees next to 
each other? 
 
We will partition the 10 pine trees using the 5 birch trees as separators (note 
there are 6 distinct positions relative to the 5 birch trees).  First place a pine tree 
between each pair of birch trees (4 pine trees total) to ensure no two birch trees 
are adjacent, then partition the remaining 6 using five separators which can be 
done in (6+5 5) = (11 5) = 462 different ways.  

2. How many solutions does the equation a+b+c+d+e+f = 2006 have where a, b, c, 
d, e, and f are all positive integers? 
 
Given that the variables are all positive integers, we can subtract 1 from each of 
them and subtract 6 from the other side to obtain a new equation where we are 
expressing 2000 as an ordered sum of 6 non-negative integers.  There are 
(2000+5 5) = (2005 5) ways to do this. 

3. In how many ways can 20 identical balls be distributed among 5 distinct bins?  In 
how many ways can 5 identical balls be distributed among 20 distinct bins? 
 
20 identical balls can be partitioned among 5 distinct bins using 4 separators in 
(20+4 4) = (24 4) = 10,626 ways.  5 identical balls can be partitioned among 20 
distinct bins using 19 separators in (5+19 19) = (24 19) = (24 5) = 42,504 ways. 

4. A piñata containing 10 Tootsie Rolls and 5 Hershey Kisses breaks open and the 
candy is eagerly collected by 8 children.  In how many ways can the candy be 
distributed among the children? 
 
There are 8 children so we need 7 separators.  There are (10+7 7) ways to 
distribute the Tootsie Rolls and (5+7 7) ways to distribute the Hershey Kisses, so 
the candy can be distributed in (17 7)*(12 7) = 15,402,816 different ways. 
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5. A drawer contains 8 distinct pairs of gloves each of which consists of a matching 
left and right glove.  If you pull out four individual gloves at random, what is the 
probability that you have at least one pair of matching gloves?  What is the 
probability you have two pairs of matching gloves? 
 
There are (16 4) ways to select 4 of the 16 individual gloves.  There are 
16*14*12*10/4! ways to choose 4 non-matching gloves, so the probability of 
getting at least one pair of matching gloves is 1 – ((16*14*12*10)/4!) / (16 4) = 1 – 
8/13 = 5/13.  There are (8 2) ways to choose two of the eight matching pairs, so 
the probability of getting two matching pairs is (8 2) / (16 4) = 1/65. 

6. How many non-decreasing sequences of 7 decimal digits are there? (3334559 
and 0223448 are two examples). 
 
If we add a 0 to the beginning and a 9 to the end, every sequence of 7 non-
decreasing decimal digits defines a unique sequence of 8 non-negative gaps 
which must sum to 9 (e.g. for 3334559 the gaps are 3+0+0+1+1+0+4+0 = 9, and 
for 0223448 the gaps are 0+2+0+1+1+0+4+1 = 9).  We need 7 separators to 
count the partitions (the digits themselves separate the gaps), and we then find 
that there are (9+7 7) = (16 7) = 11,440 of them. 

7. On an integer lattice, how many direct paths are there from the origin (0,0) to the 
point (n,n)?  Now draw a diagonal line from (n,0) to (0,n).   Every direct path from 
(0,0) to (n,n) must cross this line at some point of the form (k,n-k).  How many 
direct paths from (0,0) to (n,n) go through the point (k,n-k)?  Now write a 
combinatorial identity equating your answer to the first question to the sum of 
your answers to the second question. 
 
There are (2n n) direct paths from (0,0) to (0,n).  There are (n k) direct paths 
from (0,0) to (k,n-k), and (n n-k) direct paths from (k,n-k) to (n,n), so there are a 
total of (n k)*(n n-k) = (n k)2 direct paths from (0,0) to (0,n) that go through the 
point (k,n-k).  Summing over all possible values of k we obtain the identity: 
 
                            (n 0)2 + (n 1)2 + (n 2)2 + … + (n n)2 = (2n n) 
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Binomial Buffet 

The problems below all involve proving combinatorial identities for various 
summations that may arise in combinatorial problems.  To make the problems 
easier/harder, you are only given the left hand side of the identity and have to 
determine the right hand side.  In each case you should obtain a simple expression 
involving at most one or two binomial coefficients.  For each problem, start by 
computing the sum for several small values and see if you can form a hypothesis as 
to what the right hand side might look like.  Then try to prove a result either by using 
a combinatorial argument (e.g. a bijection), applying an identity you already know 
(e.g. the hockey stick), and/or using algebraic manipulations. 
 
Keep an eye out for simple rearrangements that may make the problem easier, e.g. 
strategically changing (n k) to (n n-k), or using Gauss’s addition trick – compute the 
sum forward and backwards.  When constructing combinatorial arguments, bit-
strings and groups of people (e.g. boys and girls) are useful things to count in 
different ways. 

1. (n 1) + 2*(n 2) + 3*(n 3) + …+ n*(n n) = n*2n-1 
For symmetry reasons we will add the term 0*(n 0) = 0 to the LHS and then compute 
the sum twice, forwards and backwards: 
 
0*(n 0) +       1*(n 1)    +       2*(n 2)    + … + n*(n n) + 
n*(n n) + (n-1)*(n n-1) + (n-2)*(n n-2) + … + 0*(n 0) 
 
Noting that (n k) = (n n-k), we can add the pairs in columns and obtain: 
 
n*(n 0) + n*(n 1) + n*(n 2) + … + n(n n) = n*[(n 0) + (n 1) + (n 2) + … + (n n)]  = n*2n

 
We computed the sum on the LHS twice, so we now divide by 2 obtaining the RHS.  

2. (n 0)*(n 1) + (n 1)*(n 2) + (n 2)*(n 3) + … + (n n-1)*(n n) = (2n n-1) 
We will first re-write the LHS, strategically replacing (n k) with (n n-k) to obtain: 

 
(n 0)*(n n-1) + (n 1)*(n n-2) + (n 2)*(n n-3) + … + (n n-1)*(n 0) 
 
We can now see that each term represents a way to choose n-1 elements from a set 
of 2n elements.  If we pick n-1 people from a group of n boys and n girls where we 
first pick the boys and then the girls (in all possible ways) we obtain the expression 
above which is equivalent to the LHS.  But this is the same as simply picking n-1 
people out of the entire group of 2n, which results in the RHS. 
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3. (n 0) + (n+1 1) + (n+2 2) + … + (n+k k) = (n+k+1 k) 
 If we re-write the LHS replacing (n k) with (n n-k) to obtain: 

 (n n) + (n+1 n) + (n+2 n) + … + (n+k n) 
 
We can now apply the hockey stick identity to obtain (n+k+1 n+1) which is equivalent 
to the RHS. 

4.  (n 0)2 + (n 1)2 + (n 2)2 + … + (n n)2 = (2n n) 
This identity was proven using block-walking on an integer lattice in problem #7 
above.  Alternatively, if we replace (n k)2 with (n k)*(n n-k) on the LHS and consider 
choosing a group of n people out of a group of n boys and n girls by first choosing 
the boys and then choosing the girls (this is equal to the LHS) we can obtain the 
RHS by noting that this is the same as simply choosing n people out of a group of 2n 
people. 

5. (m 0)*(n k) + (m 1)*(n k-1) + (m 2)*(n k-2) + … + (m k)*(n 0) = (m+n k)  
Consider picking k people from a group of m boys and n girls.  The LHS is equivalent 
to first picking the boys and then the girls (in all possible ways), while the RHS is 
equivalent to just picking k of the m+n people. 

6. (n k)*(k k) + (n k+1)*(k+1 k) + (n k+2)*(k+2 k) + … + (n n)*(n k) = (n k)*2n-k 
Consider picking a team from n people with k starters and some number of 
substitutes (possibly 0).  The LHS is equivalent to first picking a team of at least k 
people and then choosing k of them to be starters - each term represents a different 
team size ranging from k to n.  The RHS is equivalent to picking exactly k starters 
plus an arbitrary subset of the remaining n-k people to fill out the team. 

7. (n 1) + 3*(n 3) + 5*(n 5) + …  = n*2n-2        (sum over odd binomial coefficients) 
Consider picking a team with an odd number of people with one of them designated 
as the captain out of a group of n people in total.  The LHS is equivalent to picking 
the team and then picking one of them to be captain.  The RHS represents first 
picking one of the n people to be the captain, and then choosing an even subset of 
the remaining n-1 people to fill out the team.  It was shown in class that the number 
of even subsets is equal to the number of odd subsets, so half of all the 2n-1 subsets 
of n-1 people have an even number, or 2n-2. 

8. (n 0)*(n k) + (n 1)*(n-1 k-1) + (n 2)*(n-2 k-2) + … + (n k)*(n-k 0) = (n k)*2k 

Consider choosing a team of k people out of a group of n where each team member 
gets either a team hat or a team shirt.  The LHS represents first choosing some 
number of people who get hats and then filling out the rest of the team with people 
who get shirts, whereas the RHS represents just choosing the entire team of k 
people and then letting each of the k team members choose a hat or a shirt.. 
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9. Multinomial Dessert Menu 

10. What is the coefficient of the term aibjck in the expansion of (a+b+c)n? 

Before collecting like terms, each term in the expansion is a product of n factors each 
of which is a, b, or c.  Those terms which have exactly i a’s, j b’s and k c’s can be 
combined into the single term aibjck and the number of such terms will be equal to 
the number of n letter strings containing i a’s, j b’s and k c’s, which by the Mississippi 
rule is n!/(i!*j!*k!). 

11. What is the sum of the coefficients of (a+b+c)n? 

Before collecting like terms each term is simply a product of n factors with three 
possibilities for each factor (a, b, or c), so there are 3n terms and the sum of the 
coefficients is 3n.  Collecting like terms doesn’t change the sum of the coefficients.  

12. Generalize your answers to problems 9 and 10 to more than three 
variables. 

The multinomial coefficients for m variables are of the form  n!/(i1!*i2!*i3!*…*im!) and 
the sum of the coefficients is mn. 
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