
Combinatorics: The Fine Art of Counting 

Week Three Solutions 
 
Note: in these notes multiplication is assumed to take precedence over division, so 4!/2!2!  = 4!/(2!*2!), and 
binomial coefficients are written horizontally: (4 2) denotes “4 choose 2” or 4!/2!2! 
 

Appetizers 
 

1. How many 5 letter words have at least one double letter, i.e. two consecutive 
letters that are the same? 

265 – 26*254 = 1,725,126 

2. A Venn diagram is drawn using three circular regions of radius 1 with their 
centers all distance 1 from each other.  What is the area of the intersection of all 
three regions?  What is the area of their union? 

Let A, B, and C be the three circular regions.  A∪B∪C can be seen to be equal to 
the union of three 60° sectors of radius 1, call them X, Y, and Z.  The intersection 
of any 2 or 3 of these is an equilateral triangle with side length 1.  Applying PIE, , 
we have |XUYUZ| = |X| + |Y| + |Z| - (|X∪Y| + |Y∪Z| + |Z∪X|) + |X∪Y∪Z| which is 
equal to  3*3*π/6 – 3*√3/4 + √3/4 = π/2 - √3/2. 

The intersection of any two of A, B, or C has area 2π/3 - √3/2, as shown in class.  
Applying PIE,  |AUBUC| = |A| + |B| + |C| - (|A∪B| + |B∪C| + |C∪A|) + |A∪B∪B| 
equal to 3π - 3*(2π/3 - √3/2) + (π/2 - √3/2) = 3π/2 + √3 

3. A diagonal of polygon is any line segment between vertices which is not an edge 
of the polygon.  How many diagonals does an n-sided polygon have? 

(n 2) – n 

4. A diagonal of a polyhedron is any line segment between the vertices of a 
polyhedron which is not an edge of the polyhedron.  A tetrahedron has no 
diagonals, while an octahedron has 3 diagonals. How many diagonals do the 
cube, dodecahedron and icosahedron have? 

The cube has (8 2) – 12 = 16, the dodecahedron has (20 2) – 30 = 160, and the 
icosahedron has (12 2) – 30 = 36. 

5. Let Pn denote the nth centered pentagonal number: the number of points in a 
pentagonally symmetric lattice with one point in the center and n points on each 
side.   The first four pentagonal numbers are 1, 6, 16, and 31.  Find a formula for 
Pn. 
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P n= 5*(n 2) + 1  (note that (1 2) = 0, so this is correct when n = 1) 
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1. How many different even integers ≥ 4000 and < 7000 have four different digits? 

(AIME 1993 #1) 

Partitioning the problem on the three possible values for the first digit (4,5, or 6) 
gives the sum 1*4*8*7 + 1*5*8*7 + 1*4*8*7 = 728. 

2. How many integers less than 500 can be written as the sum of 2 positive integer 
cubes? 

There are 7 positive cubes less than 500.  The sum of any distinct pair is less 
than 500 except for 63 + 73.  These sums are all distinct.  You can either check 
this or make use of the following bit of folklore: the first Ramanujan number 
(integers which can be written as the sum of two positive cubes in two different 
ways) is 1729. 

There are thus (7 2) – 1 = 20 integers less than 500 that can be written as the 
sum of two distinct positive integer cubes.  If we permit the two cubes to be the 
same, then there are an additional six integers (note 73 + 73 > 500) that can be 
written as the sum of two positive integer cubes for a total of 26. 

3. Two of the squares of a 7x7 checkerboard are painted yellow and the rest are 
painted green.  Two color schemes are indistinguishable if the board can be 
rotated so that they look the same.  How many distinct color schemes are there? 
(AIME 1996 #7) 

There are a total of (49 2) ways to pick two of the 49 squares to paint yellow, but 
these are not all distinct if we consider rotations indistinguishable.  There are two 
cases to consider, paintings which have the two yellow squares diametrically 
opposing, and those which do not.  There 48/2! = 24 paintings of the first type 
(pick any square other than the center and the diametrically opposing square 
(48*1 choices), then divide by 2 since we could have picked them in either order).  
There are (49 2) – 24 = 1,152 paintings of the second type. 

Each painting of the first type has two rotations which are indistinguishable color 
schemes, and each painting of the second type has four.  Thus the total number 
of distinct color schemes is 24/2 + 1,152/4 = 300.   

4. Robert has 4 indistinguishable gold coins and 4 indistinguishable silver coins.  
Each coin has a face on one side and tails on the other.  How many 
distinguishable stacks of the eight coins have no coins stacked face-to-face? 
(AIME 2005 #5) 
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Ignoring color for the moment, either all the coins are face down, or one of the 8 
coins is the lowest coin which is face up and all the coins above it are also be 
face up.  Thus there are 8+1 = 9 ways to stack 8 colorless coins with none face-
to-face.  For any such stacking, we can choose any 4 of the 8 coins to be gold 
(the remaining 4 will be silver), giving a total of 9*(8 4) = 630 distinct stacks. 

5. Prove that it is impossible to draw a general Venn diagram for 4 sets with circles, 
i.e. 4 circles representing sets cannot be drawn in the plane so that every 
possible intersection of the 4 sets has its own distinct region with non-zero area. 

To represent every possible intersection, there must be 24 = 16 distinct regions in 
the Venn diagram.  Pick any group of the 4 sets.  There must be a region in the 
Venn diagram which corresponds to the elements which are in every one of the 
chosen sets, and not contained in any of the other sets (note that for the empty 
group this region corresponds to the points in U which are not in any of the four 
sets). 

If we place a vertex at each point where the circumferences of two circles 
intersect, we can consider the Venn diagram a planar graph with edges defined 
by arcs between adjacent vertices along a circumference and the faces which 
are bounded by these edges correspond to the distinct regions of the Venn 
diagram with non-zero area (including the exterior face outside all the sets).  
Since every circle must intersect every other circle, this planar graph is clearly 
connected. 

Two distinct circles can intersect in at most two points along their 
circumferences.  Given that all possible intersections must have distinct non-zero 
areas, we may assume that each pair intersects in exactly two points and that 
these points are all distinct, thus each vertex has degree 4. 

There are 2*(4 2) = 12 vertices in the graph, and since therefore 12*4/2 = 24 
edges.  By Euler’s formula for connected planar graphs, V+F-E=2, which implies 
that F =  2 + E – V = 14 which is less than 16.  Thus it is not possible to draw a 
Venn diagram with 4 circles that has a distinct region for every possible 
intersection of sets. 

Note that it is possible to make a general Venn diagram for 4 (or even more) sets 
using ellipses or polygons.  The key difference is that unlike circles, these figures 
can intersect in more than two points while still being distinct.  
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1. How many diagonals of a regular decagon (a 10 sided polygon) are not parallel 
to any of the sides (AMC12)? 

A decagon has (10 2) – 10 = 35  diagonals.  Each pair of opposing sides has 
three diagonals which are parallel to them, so 5*3 = 15 of the diagonals are 
parallel to a side.  Therefore 35-15 = 20 diagonals are not parallel to any side. 

2. Let p(m,n) denote the nth centered m-agonal number: the number of points in an 
m-sided polygonal lattice with a point in the center and n points per side.  Take 
p(m,1) to be 1 (i.e. start with a single point) and then add concentric polygons 
with k equally spaced points for 2 ≤ k ≤ n.  Note that p(3,n) is not the same as the 
nth triangular number, nor is p(4,n) the same as the nth square number - these 
numbers are based on lattices constructed starting from a corner rather than the 
center.  Find a general formula for p(m,n) that works for any m and any n. 

An m-sided centered polygonal lattice can be partitioned into m triangles with 
side length n-1 plus the center point.  Thus p(m,n) = m*(n 2) + 1. 

3. In a shooting match a marksman must break eight targets arrange in three 
hanging columns of 3, 3, and 2 targets respectively.  Whenever a target is 
broken, it must be the lowest unbroken target in its column.  In how many 
different orders can the eight targets be broken? (AIME 1990 #8) 

Label the columns A, B, and C.  There is a 1-1 correspondence between distinct 
permutations of the string AAABBBCC and different valid orders for breaking the 
targets – each letter in the string indicates the next column to be targeted.  
Applying the  Mississippi rule, there are 8!/3!3!2! = 560 possible orders. 

4. An integer is called snakelike if its decimal representation has consecutive digits 
alternately increasing and decreasing (e.g. 192837465 is snakelike).  How many 
4 digit numbers with distinct digits are snakelike? (AIME 2004 #6) 

We can partition the problem into two cases based on whether the number 
contains the digit 0 or not.  There are (9 4) ways to choose 4 distinct non-zero 
decimal digits, and (9 3) ways to choose 4 distinct decimal digits one of which is 
zero. 

Given four distinct digits, for any of the (4 2) = 6 pairs of digits we can choose 
from these four, at most one snakelike number can be formed which has these 
two digits in the first two positions, since the smaller of the chosen pair must 
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come first, then the larger, and then the smaller of the remaining pair, followed by 
the last digit. 

In the case where none of the digits is 0, a snakelike number can be formed for 
all but one of the 6 choices for the starting pair of digits – we can’t choose the 
smallest two digits, since in this case the third digit will be greater than the 
second.  Thus there are (9 4)*(6-1) = 630 four digit snakelike numbers with 
distinct digits that don’t contain 0. 

In the case where one of the digits is 0, we can’t choose this as one of the 
starting pair of digits, and we are left with (3 2) = 3 possible choices, all of which 
will result in a valid snakelike number, so there are (9 3)*3 = 252 four digit 
snakelike numbers with distinct digits that do contain 0. 

Thus there are a total of 630 + 252 = 882 four digit snakelike numbers with 
distinct digits. 

5. A deck of forty cards consists of four 1’s, four 2’s, …, and four 10’s.  One 
matching pair of cards is removed from the deck.  Two cards are now drawn at 
random from the deck.  What is the probability they form a pair? (AIME 2000B #3) 

There are (38 2) possible pairs of cards that can be drawn from the remaining 
deck, and 9*(4 2) + 1 of these pairs are matching, thus the probability is given by 
the ratio [9*(4 2) + 1] / (38 2) = 55/703. 
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1. A convex polyhedron P has 26 vertices, 60 edges, and 36 faces, 24 of which are 
triangular and 12 of which are quadrilaterals.  A space diagonal is a line segment 
connecting two non-adjacent vertices that do not belong to the same face.  How 
many space diagonals does P have?  (AIME 2003 #3) 

There are (26 2) possible line segments between vertices of P.  60 of these are 
edges between adjacent vertices, and 2*12 = 24 are diagonals on one of the 
quadrilateral faces (note the triangular faces have 0 diagonals).  Thus there are a 
total of (26 2) – 60 – 24 = 241 space diagonals. 

2. The nine horizontal and nine vertical lines on an 8x8 checkerboard form r 
rectangles of which s are squares.  Find r and s. (AIME 1997 #2) 

The number of rectangles is  (9 2)*(9 2) = 1296 since each rectangle is 
determined by a pair of edges in distinct columns and a pair of edges in distinct 
rows.  For a given side length j between 1 and 8, there is one square which has 
its lower left corner at position 0,0, and there are a total of (9-j)2 locations which 
the lower left corner could occupy.  Thus there is 12 8x8 square, 22 7x7 squares, 
… 82 1x1 squares.  This gives a total of 12+22+32+…+82 = 204 squares (we will 
learn in a later class that the sum of the first n squares is 2*(n+2 3) – (n+1 2) or 
2*(10 3) – (9 2) in this case). 

3. The increasing sequence 2, 3, 5, 6, 7, 10, 11,… consists of all positive integers 
which are neither the square nor the cube of a positive integer.  Find the 500th 
term of this sequence. (AIME 1990 #1) 

Since there are 22 squares less than 500, we know that the answer is at least 
522.  There are 8 positive cubes less than 521, so the answer could be as much 
as 531 if all the squares and cubes were distinct (note that we also have to skip 
232 = 529 if we get that far).  We suspect the answer is probably 528 or 530, but 
we need to count carefully to avoid OBOEs. 

Let U be the set of positive integers less than 529.  Let S be the subset of U 
which are squares and C the subset of U which are cubes.  The integers in the 
defined sequence which are members of U is (SUC)c.  By the principle of 
inclusion/exclusion |SUC| = |S| + |C| - |S∩C|.  S∩C is the set of integers less than 
529 which are both squares and cubes, which means they must be 6th powers.  
There are only two such numbers since 36 = 729.  Thus |SUC| = 22 + 8 – 2 = 28.  
So we have |(SUC)c| = |U| - |SUC| = 528 – 28 = 500.  The 500th term of the 
sequence is simply the largest element in (SUC)c which is 528. 
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4. Show why three-of-a-kind beats two-pair in poker by counting the number of 
poker hands containing exactly three cards of the same rank (with the other two 
cards different ranks) versus the number of poker hands containing two different 
pairs of cards with the same rank (but no three of the same rank). 

We can count these hands by first choosing ranks and then suit for each of the 
five cards.  There are (13 1) choices of rank for three cards of the same rank, 
and each of these three must be a different suit, so there are (4 3) ways to 
choose the suits of these three cards.  The remaining two card must have two 
different ranks chosen from the remaining 12 ranks, and each card may be one 
of four suits, giving a total of (13 1)*(4 3)*(12 2)*(4 1)*(4 1) = 54,912 hands with 
three-of-a-kind.  (Note that we use binomial coefficients explicitly here to avoid 
careless mistakes – e.g. when choosing the ranks of the two remaining cards, 
the order of the choice does not matter). 

Similarly for two-pair, there are (13 2) ways to choose the two ranks of the two 
pairs, and the two cards in each pair must have two different suits chosen from 
the four suits.  The fifth card may have any of the 11 remaining ranks and may be 
any of the four suits, giving (13 2)*(4 2)*(4 2)*(11 1)*(4 1) = 123,552. 

5. Ten points in the plane are given, no three co-linear.  Four distinct segments 
joining pairs of these points are chosen at random with uniform probability.  What 
is the probability that three of the four segments chosen form the sides of a 
triangle? (AIME 1999 #10) 

There are (10 2) = 45 distinct line segments between pairs of points.  There are 
thus (45 4) ways to pick four distinct segments. 

There are (10 3) distinct triangles that can be formed among the 10 points and 
each has three sides.  A choice of four segments which contains a triangle must 
consist of the three sides of one of these (10 3) triangles along with one of the 
other 45 – 3 = 42 segments.  Thus there are (10 3)*42 ways of picking four 
distinct segments which include the sides of a triangle. 

The probability is therefore (10 3)*4 / (45 4) = 16/473. 
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Fall 
 

1. Ten male/female couples meet for a dinner party and they all greet each other in 
the following manner: the men all shake hands, the women all exchange kisses, 
and each man exchanges kisses with each woman.  Assuming every person 
greets every other person and counting each handshake or kiss exchange 
between two people just once, how many handshakes and kiss exchanges are 
there?  How many greetings all together?  Given that the number of greetings is 
the sum of the handshakes and the kisses, can you derive a general 
combinatorial identity? 

There are (10 2) handshakes, (10 2) + 102 kiss exchanges, and (20 2) greetings 
in total.  Since the first two numbers must sum to the third, we have the general 
combinatorial identity: (2n 2) = 2*(n 2) + n2.  This can be easily verified 
algebraically, but it need not be – this is a perfectly valid combinatorial proof. 

2. Ten points are marked on a circle.  How many distinct convex polygons can be 
drawn using some (or all) of the ten points as vertices? (Polygons are distinct 
unless they have exactly the same vertices.) (AIME 1989 #2) 

Any subset of 3 or more vertices determines a unique convex polygon.  There 
are 210 – (10 2) – (10 1) – (10 0) = 1,024 – 45 – 10 – 1 = 968 such subsets. 

3. A fair coin is tossed ten times.  Find the probability that heads never occurs on 
two consecutive tosses (AIME 1990 #9) 

There are 210 = 1024 possible sequences of coin tosses, all equally likely.  A 
sequence of ten coin tosses with no consecutive heads corresponds to a string of 
10 bits with no adjacent 1s (and vice versa).  It was shown in class that the 
number of n-bit strings with no adjacent 1s satisfies the Fibonacci recurrence: 
F(n) = F(n-1) + F(n-2) starting with F(1) = 2 and F(2) = 3.  Since F(10) = 144, the 
probability that heads never occurs on consecutive tosses is 144/1024 = 9/64. 

4. One hundred concentric circles with radii 1,2,3,…,100 are drawn in the plane.  
The inner circle is colored red and each region bounded by concentric circles is 
colored green or red with no two adjacent regions the same color.  What fraction 
of the entire circle with radius 100 is colored green?  (AIME 2003 #2) 

We can compute the area colored by repeatedly including and excluding the 
areas of the concentric circles.  This gives the sum 1002π - 992π + 982π - 972π + 
… + 22π - 12π = π[(1002-992) + (982-972) + … + (22-12)].  Noting that the 
difference ot two squares can be factored as a2-b2 = (a-b)(a+b) and (a-b) = 1 in 
each pair of squares above, this simplifies to π[(100+99)+(98+97)+…+(2+1)] 
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which is simply (101 2)*π.  The fraction of the entire circle which is colored green 
is thus (101 2)*π / 1002π = 101/200. 

5. Given n lines in the plane in general position (each line intersects every other line 
in a distinct point), into how many regions to they divide the plane? 

We will give two separate proofs.  The first uses Euler’s formula for planar 
graphs. Place a vertex at each of the (n 2) intersection points and then draw a 
circle in the plane which contains all these points in its interior and place a vertex 
at the 2n intersections of the lines with the circle.  The number of regions 
contained inside the circle is equal to the number of regions of the plane 
partitioned by the lines.  Now consider the connected planar graph formed by the 
V = (n 2) + 2n vertices and the line segments or arcs between them.  Each of the 
(n 2) vertices at the intersection of two lines has degree 4, while the 2n vertices 
along the circle have degree 3.  Counting edge-vertex combinations we have that 
2E = 4*(n 2) + 3*2n, so E = 2*(n 2) + 3n.  Applying Euler’s formula V+F-E=2 to 
compute F we obtain F = 2 + E – V = 2 + 2*(n 2) + 3n – (n 2) – 2n = 2 + (n 2) + n.  
Since we only want to count faces in the interior of the circle, we subtract 1 for 
the exterior face to obtain a total of (n 2) + n + 1 regions. 

A simpler but more abstract proof is the following.  Place a temporary test line 
which lies to one side of all the intersection points of the n lines and is not parallel 
to any pair of intersection points.  This test line is intersected by all n lines since it 
is not parallel to any of them, and therefore it passes through n+1 regions of the 
plane partitioned by the n lines.  Slide the test line across the plane, always 
keeping it parallel to its original position.  As we do this the test line will encounter 
the (n 2) intersection points of the n lines one by one, and each time it does it will 
enter exactly one new region of the plane (note that any intersection point 
involves only 2 lines and the test line already passes through 3 of the 4 regions 
determined by just these 2 lines).  There are thus a total of (n 2) + n + 1 regions.  

The second proof can be easily generalized to higher dimensions, e.g. 
intersecting planes in space. 
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