Combinatorics: The Fine Art of Counting

Week Two Menu

This week's menu consists of many small tasty dishes, some light, some hearty. The Spanish refer to this type of meal as *Tapas*. Please select several. All of these problems have a straight-forward solution, but some might be considered difficult to the uninitiated. Contest problems are identified. I have made the contest problems easier/harder by leaving out the answer choices offered on the test.

<u>Tapas Menu</u>

- 1. How many different ways can you rearrange the letters in BOSTON? How about MASSACHUSETTS?
- 2. 20 students show up to HSSP looking for open classes. Only 3 classes are still open, one has 3 spots, one has 11 spots, and one has 6 spots. How many different ways can the students be arranged in the 3 classes?
- 3. How many license plates with 3 decimal digits followed by 3 letters do not contain both the number 0 and the letter O?
- 4. How many ways can you paint the faces of a regular tetrahedron with four colors if each face is painted a different color? (Assume that two paintings that can be oriented to look the same are considered indistinguishable)
- 5. A circular table has 60 chairs around it. There are N people seated at this table so that the next person seated must sit next to someone. Find the smallest possible value of N. (AHSME 1991 #15)
- How many different sequences of the numbers {0,1,2} of length 10 do not contain any of the subsequences 12, 23, or 31? 3222132111 is such a sequence. (AIME 2003B #3)
- A decimal number is called "increasing" if each digit is greater than the previous one (e.g. 24589 is one). How many 5 digit increasing numbers are there? (AIME 1992 #2)
- Let S = {1, 2, ..., 10 }. Find the number of unordered pairs A, B where A and B are disjoint non-empty subsets of S. (counting unordered pairs simply means we don't distinguish the pair A,B and B,A) (AIME 2002B #9)
- 9. A 7 digit phone number $d_1d_2d_3d_4d_5d_6d_7$ is called memorable if $d_1d_2d_3$ is exactly the same sequence as $d_4d_5d_6$ or $d_5d_6d_7$ (possibly both). (e.g. 4357435 is memorable). Assuming each d_i can be any decimal digit (so d_1 could be 0), how many memorable telephone numbers are there? (AHMSE 1998 #24)
- 10. How many triangles can be formed with vertices on a 4x4 grid of points? (AHSME 1993 #28)

Combinatorics: The Fine Art of Counting Summer 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.