Combinatorics: The Fine Art of Counting

Chinese Dice Group Activity

The following table lists the probabilities of all the various types of throws. The notation (6 4, 1, 1) is a multi-nomial coefficient that indicates the number of distinct permutations of xxxxyz, which by the Mississippi rule is 6!/(4!*1!*1!). This is a generalization of the binomial coefficients where only one of the two numbers is listed, i.e. (6 3) = (6 3, 3).

Throw Type	Count	Exact Probability	Approximation
6	6	1/7776	.00013
5-1	(6 5)*6*5 = 180	5/1296	.0039
3-3	(6 3)*(6 2) = 300	25/3888	.0064
4-2	(6 4)*6*5 = 450	75/7776	.0096
1-1-1-1-1	6! = 720	5/324	.015
4-1-1	(6 4, 1, 1)*6*(5 2) = 1800	25/648	.039
2-2-2	(62,2,2)*(63) = 1800	25/648	.039
3-2-1	(6 3,2,1)*6*5*4 = 7200	25/162	.15
3-1-1-1	(6 3, 1, 1, 1)*6*(5 3) = 7200	25/162	.15
2-1-1-1-1	(6 2, 1, 1, 1, 1)*6*(5 4) = 10,800	25/108	.23
2-2-1-1	$(62,2,1,1)^*(62)^*(42) = 16,200$	25/72	.35
All Types	$6^6 = 46,656$	1	1

Combinatorics: The Fine Art of Counting

"Craps" Group Activity

Let W_1 be the event of winning on the initial roll, let L_1 be the event of losing on the first roll, and let P_k be the event of rolling the point value k on the first roll.

 $P(W_1) = 6/36 + 2/36 =$ **2/9** $\qquad P(L_1) = 1/36 + 2/36 + 1/36 =$ **1/9** $P(P_4) = P(P_{10}) = 3/36 =$ **1/12** $\qquad P(P_5) = P(P_9) = 4/36 =$ **1/9** $P(P_6) = P(P_8) =$ **5/36**

Let W be the event of winning.

$$P(W) = P(W_1) + 2*P(P_4)*P(W|P_4) + 2*P(P_5)*P(W|P_5) + 2*P(P_6)*P(W|P_6)$$

Note that the probability rolling a given point value prior to rolling a 7 is the probability of **not rolling either the point value or a 7** an arbitrary number of times (possibly zero) followed by rolling the point value.

Probability of not rolling a 4 or a 7 = 1 – (1/12+1/6) = 3/4 $P(W|P_4) = 1/12 + (3/4)^*(1/12) + (3/4)^2*(1/12) + (3/4)^3*(1/12) + \dots$ $P(W|P_4) = 1/12 * [1/(1 - 3/4)] = 1/3$

Probability of not rolling a 5 or a 7 = 1 – (1/9+1/6) = 5/18 $P(W|P_5) = 1/9 + (13/18)^*(1/9) + (13/18)^2 * (1/9) + (13/18)^3 * (1/9) + \dots$ $P(W|P_5) = 1/9 * [1/(1 - 13/18)] =$ **2/5**

Probability of not rolling a 6 or a 7 = 1 – (5/36+1/6) = 25/36 $P(W|P_6) = 1/12 + (25/36)^*(1/12) + (25/36)^2*(1/12) + (25/36)^3*(1/12) + \dots$ $P(W|P_6) = 1/12 * [1/(1-(25/36))] = 5/11$

Putting this all together we obtain:

 $P(W) = 2/9 + 2^{(1/12)(1/3)} + 2^{(1/9)(2/5)} + 2^{(5/36)(5/11)} = 976/1980 = 244/495$ $P(W) \sim 0.4929$

Combinatorics: The Fine Art of Counting "Set" Group Activity

Any two cards determine a set, i.e. there is one and only one third card that can be added to make a Set. If we count all pairs of cards, we will count each Set three times since there are three pairs we could choose from each Set. Thus there are $(81\ 2)/3 = 27*40 = 1080$ Sets. Any particular card is contained in 40 of these Sets, since 40*81/3 = 1080.

3 properties in common:	(4 3)*3 ³	= 108	probability 1/10
2 properties in common:	(4 2)*3 ² *3!	= 324	probability 3/10
1 property in common:	(4 1)*3*(3!) ²	= 432	probability 4/10
No properties in common:	(3!) ³	= 216	probability 2/10

The number of groups of 4 cards which contain a Set is 1080^*78 so the probability that a group of 4 cards contain a Set is $1080^*78 / (81 4) = 4/79 \sim .05$

Five cards can contain just one Set, or two overlapping Sets. We will count both cases separately:

Exactly one Set:	1080*78*74/2
Two overlapping Sets:	1080*78*3/2
Total:	1080*77*39

The probability that five cards contain a Set is $1080*77*39 / (815) = 10/79 \sim .13$

Six cards can contain just one Set, two overlapping Sets, or two disjoint Sets:

Exactly one Set:	1080*78*74*69/3!
Two overlapping Sets:	1080*78*3/2*72
Two disjoint Sets:	1080*(1079-78*3/2)/2
Total:	1080*13*17*641

The probability six cards contain a Set is 1080*13*5791 / (81 6) = **28955/115577** ~ **.25** (note this is very close but not equal to 20/79).

Combinatorics: The Fine Art of Counting Summer 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.