# Combinatorics: The Fine Art of Counting 

## Chinese Dice Group Activity

The following table lists the probabilities of all the various types of throws. The notation ( $64,1,1$ ) is a multi-nomial coefficient that indicates the number of distinct permutations of xxxxyz, which by the Mississippi rule is 6!/(4!*1!*1!). This is a generalization of the binomial coefficients where only one of the two numbers is listed, i.e. $(63)=(63,3)$.

| Throw Type | Count | Exact Probability | Approximation |
| :---: | ---: | :---: | :---: |
| 6 | 6 | $1 / 7776$ | .00013 |
| $5-1$ | $(65)^{\star} 6^{\star} 5=180$ | $5 / 1296$ | .0039 |
| $3-3$ | $(63)^{\star}(62)=300$ | $25 / 3888$ | .0064 |
| $4-2$ | $(64)^{\star} 6^{\star} 5=450$ | $75 / 7776$ | .0096 |
| $1-1-1-1-1-1$ | $6!=720$ | $5 / 324$ | .015 |
| $4-1-1$ | $(64,1,1)^{\star} 6^{\star}(52)=1800$ | $25 / 648$ | .039 |
| $2-2-2$ | $(62,2,2)^{\star}(63)=1800$ | $25 / 648$ | .039 |
| $3-2-1$ | $(63,2,1)^{\star} 6^{\star} 5^{\star} 4=7200$ | $25 / 162$ | .15 |
| $3-1-1-1$ | $(63,1,1,1)^{\star} 6^{\star}(53)=7200$ | $25 / 162$ | .15 |
| $2-1-1-1-1$ | $(62,1,1,1,1)^{\star} 6^{\star}(54)=10,800$ | $25 / 108$ | .23 |
| $2-2-1-1$ | $(62,2,1,1)^{*}(62)^{\star}(42)=16,200$ | $25 / 72$ | .35 |
| All Types | $6^{6}=46,656$ | 1 | 1 |

# Combinatorics: The Fine Art of Counting 

## "Craps" Group Activity

Let $W_{1}$ be the event of winning on the initial roll, let $L_{1}$ be the event of losing on the first roll, and let $P_{k}$ be the event of rolling the point value $k$ on the first roll.

$$
\begin{array}{ll}
P\left(W_{1}\right)=6 / 36+2 / 36=2 / 9 & P\left(L_{1}\right)=1 / 36+2 / 36+1 / 36=1 / 9 \\
P\left(P_{4}\right)=P\left(P_{10}\right)=3 / 36=1 / 12 & P\left(P_{5}\right)=P\left(P_{9}\right)=4 / 36=1 / 9 \\
P\left(P_{6}\right)=P\left(P_{8}\right)=5 / 36 &
\end{array}
$$

Let $W$ be the event of winning.

$$
P(W)=P\left(W_{1}\right)+2 * P\left(P_{4}\right) * P\left(W \mid P_{4}\right)+2 * P\left(P_{5}\right) * P\left(W \mid P_{5}\right)+2 * P\left(P_{6}\right) * P\left(W \mid P_{6}\right)
$$

Note that the probability rolling a given point value prior to rolling a 7 is the probability of not rolling either the point value or a 7 an arbitrary number of times (possibly zero) followed by rolling the point value.

Probability of not rolling a 4 or a $7=1-(1 / 12+1 / 6)=3 / 4$
$P\left(W \mid P_{4}\right)=1 / 12+(3 / 4)^{*}(1 / 12)+(3 / 4)^{2 *}(1 / 12)+(3 / 4)^{3 *}(1 / 12)+\ldots$
$P\left(W \mid P_{4}\right)=1 / 12$ * $[1 /(1-3 / 4)]=1 / 3$
Probability of not rolling a 5 or a $7=1-(1 / 9+1 / 6)=5 / 18$
$P\left(W \mid P_{5}\right)=1 / 9+(13 / 18)^{\star}(1 / 9)+(13 / 18)^{2} *(1 / 9)+(13 / 18)^{3 *}(1 / 9)+\ldots$
$P\left(W \mid P_{5}\right)=1 / 9 *[1 /(1-13 / 18)]=2 / 5$
Probability of not rolling a 6 or a $7=1-(5 / 36+1 / 6)=25 / 36$
$P\left(W \mid P_{6}\right)=1 / 12+(25 / 36)^{*}(1 / 12)+(25 / 36)^{2 *}(1 / 12)+(25 / 36)^{3 *}(1 / 12)+\ldots$
$P\left(W \mid P_{6}\right)=1 / 12$ * $[1 /(1-(25 / 36))]=5 / 11$
Putting this all together we obtain:
$P(W)=2 / 9+2 *(1 / 12) *(1 / 3)+2 *(1 / 9) *(2 / 5)+2(5 / 36) *(5 / 11)=976 / 1980=244 / 495$
$P(W) \sim 0.4929$

# Combinatorics: The Fine Art of Counting "Set" Group Activity 

Any two cards determine a set, i.e. there is one and only one third card that can be added to make a Set. If we count all pairs of cards, we will count each Set three times since there are three pairs we could choose from each Set. Thus there are (81 2)/3 = 27*40 = 1080 Sets. Any particular card is contained in 40 of these Sets, since 40*81/3 $=1080$.

3 properties in common: (43)*3 $3^{3}=108$ probability 1/10
2 properties in common: (4 2) $* 3^{2} * 3!=324$ probability $3 / 10$
1 property in common: (4 1)*3*(3!) ${ }^{2}=432 \quad$ probability 4/10
No properties in common: (3!) ${ }^{3}=216$ probability 2/10

The number of groups of 4 cards which contain a Set is 1080*78 so the probability that a group of 4 cards contain a Set is 1080*78 / (81 4) = 4/79~. 05

Five cards can contain just one Set, or two overlapping Sets. We will count both cases separately:

Exactly one Set: $1080 * 78 * 74 / 2$
Two overlapping Sets: 1080*78*3/2
Total: 1080*77*39
The probability that five cards contain a Set is 1080*77*39 / (81 5) = 10/79 ~ . 13

Six cards can contain just one Set, two overlapping Sets, or two disjoint Sets:
Exactly one Set: 1080*78*74*69/3!
Two overlapping Sets: $1080 * 78 * 3 / 2 * 72$
Two disjoint Sets: 1080*(1079-78*3/2)/2
Total:
1080*13*17*641
The probability six cards contain a Set is 1080*13*5791 / (81 6) $=\mathbf{2 8 9 5 5 / 1 1 5 5 7 7}$
~ . 25 (note this is very close but not equal to 20/79).

MIT OpenCourseWare
http://ocw.mit.edu

## Combinatorics: The Fine Art of Counting

Summer 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

