MITOCW | MIT_IIT-JEE_Video6_OCW_720p

For the non-homogeneous system of equations, which means that for your Right Hand Side, at least one of b1, b2, â $€_{\mid}$bn is non-zero, letâ $€^{\text {TM }}$ s see how to solve this: The general matrix representation is AX equals B Premultiply it by A inverse: so A inverse times A times X equals A inverse times B (You have to do the operation on both sides of the equation, to keep the relation the same) And provided A inverse exists, then you will recognize this part: A inverse times A as the Identity matrix of Order n [times X] equals A inverse times B. Any matrix multiplied by Identity is just itself, so that gives us the solution: X equals A inverse times B, provided A inverse exists, i.e.
[X equals] $\operatorname{adjoint}(\mathrm{A})$ over $\operatorname{det}(\mathrm{A})$ times B So this is the method to find the solution to a set of linear equations in n unknowns.

Now there are some special cases: This thing $[X=\operatorname{adj}(A)$ over $\operatorname{det}(A)$ times $B]$ works fine if the $\operatorname{det}(A)$ is non-zero What happens if the determinant of A is zero?

Special case: if $\operatorname{det}(A)$ is zero, look at the numerator of this expression $[X=\operatorname{adj}(A) \operatorname{over} \operatorname{det}(A)$ times $B]$: If $[\operatorname{adj}(A)$ times B], i.e. if this product is not zero, the system of equations [AX = B] is Inconsistent, and it has NO SOLUTIONS.

But if the numerator $[\operatorname{adj}(\mathrm{A})$ times B$]$ is also zero (in addition to the denominator being zero), then the system is Consistent, and it has an INFINITE NUMBER OF SOLUTIONS.

Okâ $€_{\mid}$so this is one way, using Matrix Operations, to solve a system of simultaneous linear equations.

A second way, is using Determinants, or what is known as â€œCramerâ€ ${ }^{T M}$ s Ruleâ€: For the same system of equations $[A X=B]$, the solution for each unknown variable is given as: xi equals $1 \operatorname{over} \operatorname{det}(A)$ times this determinant: so a11, a21, â $€_{\mid}^{\mid}$an1 a21, a22, â $\left.\right|_{\mid} ^{\prime}$ an2 and then observe this carefully: find the ith column of the determinant: so a1i: replace it by b1 a2i: replace it by b2 so this is a substitution operation: you donâ $€^{\top M t}$ keep the original term a1i, a2i, â $€_{\mid}^{\prime}$ And so onâ ξ_{\mid}keep replacing this [column] by the elements of the Right Hand Side â€| bn And then the rest of the determinant stays the same: all the way up to a1n, a2n, ann So this whole operation: we can write it in short-hand as: [xi equals] det(Ai) over $\operatorname{det}(\mathrm{A})$, where the $\operatorname{det}(\mathrm{Ai})$ basically means that you are substituting the ith column of the determinant $\operatorname{det}(A)$ by the Right Hand Side, i.e. the elements of matrix B.

This is known as Cramerâ $€^{\text {TM }}$ s Rule.

In reality: these two (methods to solve a system of linear equations) are identical.

If you care to write this $[X=\operatorname{adj}(A)$ over $\operatorname{det}(A)$ times $B]$ whole thing down symbolically, you can show that this works out to be [xi equals] det(Ai) over $\operatorname{det}(\mathrm{A})$ exactly.
i.e. each element of $X[x i]$ will work out to be $\operatorname{adj}(A) \operatorname{over} \operatorname{det}(A)$ times matrix B, which will work out to be this [det(Ai) over $\operatorname{det}(A)]$ Now again, what happens if the denominator is zero?

Special case: if $\operatorname{det}(A)$ equals zero, well again â€" look at the numerator: If any of the numerators $\operatorname{det}(\mathrm{Ai})$ is also zero: Inconsistent set of equations (i.e. there is NO SOLUTION).
lâ $€^{T M m}$ sorry â $€^{\prime \prime}$ if any of the determinants in the numerator is non-zero: it is Inconsistent (NO SOLUTION).

If all $\operatorname{det}(\mathrm{Ai})$ determinants are zero for all i : the system is Consistent, and it has an INFINITE NUMBER OF SOLUTIONS.

So weâ $€^{T M}$ ve looked at 2 methods of how to solve a system of simultaneous linear equations in n unknowns, for the â€œNon-homogeneous caseâ€, which means at least one of the elements of your Right Hand Side (the B matrix) is non-zero.

Now the only thing to look at that is remaining, is the â€œHomogeneousâ€ system: which means that every single one of the Right Hand Side (b1, b2, â $€_{\mid}^{\prime}$ bn) is zero.

Again, we can look at it using this method [i.e.

Cramerâ $€^{\text {TM }}$ s Rule]: If the determinant $\operatorname{det}(A)$ is non-zero: there is only a TRIVIAL SOLUTION, which means every single variable $x 1, x 2, \hat{a} \xi_{\mid}^{\mid}$all the way to xn is zero.

But if the determinant $\operatorname{det}(A)$ is zero: then there is an INFINITE NUMBER OF SOLUTIONS.

So these are the 2 general methods to find out the values of the unknown variables $x 1, x 2$, $\hat{\nmid} €_{l}^{l}$ all the way through xn.

Letâ $€^{T M}$ s take a Solved Example to better understand how to work these methods.

Example: Letâ $€^{T M}$ s say Solve this system of equations: $x+7 y$ â $€^{\prime \prime} 3 z=1125 y+z=\hat{a} €^{\prime \prime} 3$ And $3 x a ̂ €^{\prime \prime} 6 y+2 z=0$ Now as soon as you have a set of equations given to you, there are a few things to check: So first of all, how many unknowns?
x, y and $z: 3$ unknowns, and you have 3 equations (in 3 unknowns): so the number of equations is equal to the number of unknowns.

Now the Right Hand part of this set of equations: 11, â " $^{3}, 0$: so clearly it is NOT a Homogeneous system, because you have these non-zero elements $\{11$, â $£$ " 3$\}$ on the Right Hand Side.

The next thing to check: would be this determinant $\operatorname{det}(A)$: this part: $A X$ equals B : let us first write it in that form: So A would be 1, 7, â€" 3 itâ $€^{T M}$ s 0 times x so $0,25,1$ And 3 , â $€^{\prime \prime} 6,2$ This is your A matrix Times the variable matrix:
in this case $x y z$ Equals B, which is 11 , â€" 3,0 So after writing it in this form $A X$ equals B, the next thing to check is whether determinant, $\operatorname{det}(A)$ is zero or not.

Check this calculation: so [determinant of] 1,7 , â€" $30,25,13$, â€" 6 , 2 Works out to be: 1 times 56 lâ€ ${ }^{\top \mathrm{TM} m}$ expanding by this [first] column NOTE that: if any column or row of a determinant has one or more zero elements, it is always easier to expand by that row or column So thatâ $€^{T M}$ s why lâ $€^{T M} m$ choosing to expand by this [first] column (instead of by any other row or column) 1 times (50 plus 6), so 56 , minus 0 times (something) (the cofactor of this element, which we donâ€ ${ }^{\text {TM } t ~ c a r e ~ a b o u t), ~ p l u s ~} 3$ times (7 minus $\mathfrak{a} €^{\prime \prime} 75$), so 82 So the value of the determinant, $\operatorname{det}(\mathrm{A})$ works out to be 302, which is not zero. Which means: we can find out these unknown values

Letâ $€^{T M}$ s first try to find out the values of x, y and z by the Matrix Method.

Using the Matrix Method: well, x, y and z : you need to find out as A inverse times B using this definition [X equals A inverse times B] And to do that: you first need to find out A inverse, so that is $\operatorname{adj}(A)$ times B over $\operatorname{det}(A)$ For calculating the adjoint: you need to find out the Co-Factors of each element of A. Letâ $€^{T M}$ s take an example. To recall: C 11 is ($\hat{\mathrm{a}} €^{\prime \prime} 1$) to the power of $(\mathrm{i}+\mathrm{j})$, so $(1+1)$, and then, i.e. mentally block off the ith row and jth column and calculate the determinant of the Minor of aij: so 50 minus â€" 6 , which equals (â€"1)2(56) equals 56 And so onâ $€_{\mid}^{\mid l a ̂} €^{T M} \mid l$ leave it as an exercise for the reader to calculate each Cofactor And what you can show, is: $\operatorname{Adj}(A)$ is basically the transpose of the Co-factors of all the elements of A, which works out to be this: 56, 4, 82 3, â€"7, $\hat{a ̂} €^{\prime \prime} 1 \hat{a ̂} €^{\prime \prime} 75,27,25$ So A inverse is simply the adjoint adj(A) divided by the determinant $\operatorname{det}(A)$, so 1 over 302 times gonna write it again> And then, once you have A inverse: you get your unknown variables x, y, z is [equal to] A inverse times B Wellâ $€_{\mid}$lâ $€^{\top M} \|$ write it here: 1 over 302 times $56,4,823$, â " 7 , â $€^{\prime \prime} 1$ â $€^{\prime \prime} 75,27,25$ times your Right Hand Side matrix, which is 11 , â $e^{\prime 3} 3,0$ And you can do this calculation; it works out to be: Letâ $€^{\top M}$ s still keep this \{302\} outside: 1 over 302 times (first do the multiplication here and you can show that this works out to be) â€" 906 Which finally gives you x is $2 y$ is 0 and z is $\hat{a} €$ " 3 So this is one way to find out the values of x, y and z

