## MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Problem 1. Consider the longest increasing subsequence problem. Denoting by $L_{n}$ the length of a longest increasing subsequence of a random permutation, as we have discussed in the lecture, it is known that the $\operatorname{limit}^{\lim }{ }_{n} E\left[L_{n}\right] / \sqrt{n}=\alpha$ exists. Namely $\mathbb{E}\left[L_{n}\right]$ is asymptotically $\alpha \sqrt{n}+o(\sqrt{n})$ We used Talagrand's concentration inequality to obtain concentration of $L_{n}$ around its median $m_{n}$. Show that in fact it must be the case that $\lim _{n} m_{n} /(\alpha \sqrt{n})$. Namely the median is also asymptotically $\alpha \sqrt{n}+o(\sqrt{n})$.

Problem 2. Given a graph $G$ with the node set $V$ and edge set $E$, a set of nodes $I \subset V$ is called an independent set if there is no edge between any two nodes in $I$. Let $Z$ be the total number of independent sets in $G$ (which is at least one since we assume that the empty set is an independent set) and at most $2^{|V|}$. Let $G=G(n, d n)$ be the Erdös-Rényi graph and let $Z_{n}$ be the corresponding (random) number of independent sets in Erdös-Rényi . Establish the following concentration inequality for $\log Z_{n}$ around its expectation $\mathbb{E}\left[\log Z_{n}\right]$ :

$$
\mathbb{P}\left(\log Z_{n} \geq \mathbb{E}\left[\log Z_{n}\right]+t\right) \leq 2 \exp \left(-\frac{t^{2}}{C n}\right)
$$

for some constant $C$ which does not depend on $n$.

Problem 3. Exercise 1 lecture 15.

Problem 4. Suppose $X^{n} \in \mathcal{L}_{2}$ is a sequence of processes converging to process $X \in \mathcal{L}_{2}$ in the sense $\mathbb{E}\left[\int_{0}^{t}\left(X_{s}^{n}-X_{s}\right)^{2} d s\right] \rightarrow 0$ as $n \rightarrow \infty$. Recall that as a part of the proof of Proposition 4 in lecture 16 we needed to show that $\mathbb{E}\left[\int_{0}^{t}\left(X_{s}^{n}-X_{s}\right)^{2} d s\right]$ is uniformly bounded, namely $\sup _{n} \mathbb{E}\left[\int_{0}^{t}\left(X_{s}^{n}+X_{s}\right)^{2} d s\right]<$ $\infty$. Establish this fact.

Problem 5. The goal of this exercise is to show that much of Ito calculus can be generalized to integration with respect to an arbitrary continuous square integrable martingales.

Let $M_{t} \in \mathcal{M}_{2, c}$ and $X_{t} \in \mathcal{L}_{2}$.
(a) Define $\int_{0}^{t} X_{s} d M_{s}$ for simple processes. Show that the resulting process is a martingale and establish Ito isometry for it.
(b) Given an arbitrary $X \in \mathcal{L}_{2}$, show that if $X^{n}$ is a sequence of simple processes such that $\lim _{n} \mathbb{E}\left[\int_{0}^{t}\left(X_{s}^{n}-X_{s}\right)^{2} d\left\langle M_{s}\right\rangle\right]=0$, then the sequence $\int_{0}^{t} X_{s}^{n} d M_{s}$ is Cauchy for every $t$ in the $\mathbb{L}_{2}$ sense. Use this to define $\int_{0}^{t} X_{s} d M_{s}$ for any process $X \in \mathcal{L}_{2}$ and establish Ito isometry for the Ito integral. Here the integration $d\left\langle M_{s}\right\rangle$ is understood in the Stieltjes sense. You do not need to prove existence of processes $X_{t}^{n}$ satisfying the requirement above (unless you would like to).

MIT OpenCourseWare
http://ocw.mit.edu

### 15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

