
∫ ( ) 

( ) 

IV.F Perturbative RG (Second Order) 

The coarse grained Hamiltonian at second order in U is 

βH̃[ �̃ = V δfb 
0 + 

0

Λ/b 

(2

d

π

dq 
)d 

t +

2 

Kq2 

| ˜ + 〈U〉σ − 
1

2 

( 
U2
〉 

σ 
− 〈U〉

2 
σ 

) 
+ O(U3).m] m(q)|2 

〈 

(IV.47) 

To calculate 
〈 
U2
〉 

− 〈U〉
2 

we need to consider all possible decompositions of two Us
σ σ 

into �̃ σ as in eq.(IV.34). Since each U can be broken up into 6 types of terms as m and �

in eq.(IV.35), there are 36 such possibilities for two Us which can be arranged in a 6 × 6 

table. Many of the elements of this table are either zero, or can be neglected at this stage, 

due to a number of considerations: 

(i) All the 11 terms involving at least one factor of type [1] are zero because they cannot 

be contracted into a connected piece, and the disconnected elements cancel in calculating 

the cumulant. 

(ii) An additional 12 terms (such as [2] × [3]) involve an odd number of �σs and are zero 

due to their parity. 

(iii) Two terms, [2]×[5] and [5]×[2], involve a vertex where two �σs are contracted together, 

leaving a m̃(q<) σ(q>). This configuration is not allowed by the δ–function which � and a �

ensures momentum conservation for the vertex, as by construction q> + q< 6= 0. 

(iv) Terms [3]× [6], [4] × [6] and their partners by exchange have two factors of �̃ They m. 

involve two loop integrations, and appear as corrections to the coefficient t̃. We shall denote 

their net effect by A, which as noted earlier does not need to be known precisely at this 

order. 

(v) The term [5]× [5] also involves two factors of �̃m, while [2]× [2] includes 6 such factors. 

The latter is important as it indicates that the space of parameters is not closed at this 

order. Even if initially zero, a term proportional to m6 is generated under RG. In fact, 

considerations of momentum conservation indicate that both these terms are zero for q = 0, 

and are thus contributions to q2m2 and q2m6 . We shall comment on their effect later on. 

(vi) The contributions resulting from [6]×[6] are constants, and will be collectively denoted 

by u2V δfb 
2 . 
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∫ ∫ 

∫ 

∫ [ ] 

[ ] 
∫ 

[ ] 
∫ 

(vii) The terms [3] × [3], [3] × [4], [4] × [3], and [4] × [4] contribute to m̃
4 

For example, 

[3] × [3] results in 

u2 Λ/b ddq1 · · · d
dq4

Λ ddk1d
dk2d

dk′ 

1d
dk′ 

2× 2 × 2 × 2 
2 0 (2π)4d 

Λ/b (2π)4d 

× (2π)2dδd(q1 + q2 + k1 + k2)δ
d(k1 + k2 + q3 + q4) 

′ 

δαα′ (2π)dδd(k1 + k′ 

1) δαα′ (2π)dδd(k2 + k2) m(q1) m̃(q2)m̃(q3) m(q4)× �̃ · � � · �̃ = 
t + Kk1

2′ 

t + Kk2
2′ 

4nu 2 (2π)dδd(q1 + q2 + q3 + q4)m̃(q1) · �̃ � · m̃(q4) 

∫ Λ/b ddq1 · · · d
dq4 

� m(q2)m̃(q3) �
(2π)4d 

0 

ddk 1 
× . 

(2π)d (t + Kk2) (t + K(q1 + q2 − k)2) 
(IV.48) 

The contractions from terms [3]× [4], [4]× [3], and [4]× [4] lead to similar expressions with 

prefactors of 8, 8, and 16 respectively. Apart from the dependence on q1 and q2, the final 

result has the form of U [ �̃m]. In fact the last integral can be expanded as 

ddk 1 2Kk · (q1 + q2) − K(q1 + q2)
2 

f(q1 + q2) = 1 − + · · · . (IV.49) 
(2π)d (t + Kk2)2 (t + Kk2) 

After fourier transforming back to real space we find in addition to m4, such terms as 

m2(∇m)2, m2∇2m2 , · · ·. 

Putting all contributions together, the coarse grained Hamiltonian at order of u2 takes 

the form 

βH̃ = V 
( 
δfb 

0 + uδfb 
1 + u 2δfb 

2
) 

+ 

∫ Λ/b ddq 
|m̃(q)|2 

t + Kq2 

+ 2u(n + 2) 
Λ ddk 1 

− 
u2 

A(t, K, q2) 
0 (2π)d 2 Λ/b (2π)d t + Kk2 2 

+ 

∫ Λ/b ddq1 · · · d
dq4 

�̃ · m̃(q2)m̃(q3) �̃
(2π)4d 

m(q1) � � · m(q4)

0


× u − 
u2 

(8n + 64) 
Λ ddk 1

+ O(u 2 q 2) + O(u 2 m̃6 q 2 , · · ·) + O(u 3). 
2 Λ/b (2π)d (t + Kk2)2 

(IV.50) 

IV.G The ǫ–Expansion 

The parameter space (K, t, u) is no longer closed at this order; several new interactions 

proportional to m2 , m4, and m6, all consistent with symmetries of the problem, appear in 
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∫ 

the coarse grained Hamiltonian at second order in u. Ignoring these interactions for the 

time being, the coarse grained parameters are given by 

 
 K̃ = K − u 2A ′′ (0) 
 
 
 ∫ Λ 


 ddk 1 
 t̃ = t + 4(n + 2) u − u 2A(0) 

Λ/b (2π)d t + Kk2 , (IV.51) 
 
 
 Λ 
 ddk 1 
 2 


 ũ = u − 4(n + 8)u 2 
Λ/b (2π)d (t + Kk2)

where A(0) and A′′(0) correspond to the first two terms in the expansion of A(t, K, q2) in 

eq.(IV.50) in powers of q. 

After the rescaling q = b−1q ′ , and renormalization m̃ = z � ′ , steps of the RG proce� m 

dure, we obtain 

′ b−d−2 2 ˜ t ′ b−d 2˜ ′ b−3d u. K = z K, = z t, u = z 4˜ (IV.52) 

As before, the renormalization parameter z is chosen such that K ′ = K, leading to 

bd+2 

z 2 = = bd+2 
( 
1 + O(u 2) 

) 
. (IV.53) 

(1 − u2A′′ (0)/K) 

The value of z does depend on the fixed point position u ∗ . But as u ∗ is of the order of ǫ, 

z = b1+ d +O(ǫ2), is not changed at the lowest order. Using this value of z, and following 2 

the previous steps for constructing differential recursion relations, we obtain 

 
dt 4u(n + 2)KdΛ

d 
 2 
 = 2t + − A(t, K, Λ)u 
 

dℓ t + KΛ2 

 
 du 4(n + 8)KdΛ

d 
2 

. (IV.54) 

 = (4 − d)u − u 
dℓ (t + KΛ2)2 

The fixed points are obtained from dt/dℓ = du/dℓ = 0. In addition to the Gaussian 

fixed point at u ∗ = t ∗ = 0, discussed in the previous section, there is now a non-trivial 

fixed point located at 

 
K2 

∗ 


 u =
(t ∗ + KΛ2)2 

ǫ = ǫ + O(ǫ2)
 4(n + 8)KdΛd 4(n + 8)K4


 2u ∗(n + 2)KdΛ
d (n + 2) 

. (IV.55)

 
 t ∗ = − 

t∗ + KΛ2 
= − 

2(n + 8) 
KΛ2 ǫ + O(ǫ2) 

The above expressions have been further simplified by systematically keeping terms to first 

order in ǫ = 4 − d. 
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) 

(	 ) 

[ ] 

Linearizing the recursion relations in the vicinity of the fixed point results in 

( )

( 
4(n+2)KdΛd 4(n+2)KdΛd 

( ) 
d	 δt 2 − (t∗+KΛ2)2 u ∗ − A′ u ∗2 − 2Au∗ 

δt t∗+KΛ2 

dℓ δu 
= 

8(n+8)KdΛd 
∗2 8(n+8)KdΛd 

∗ δu 
. (IV.56) 

(t∗+KΛ2)3 u ǫ − (t∗+KΛ2)2 u 

At the Gaussian fixed point, t ∗ = u ∗ = 0, eq.(IV.45) is reproduced. At the new fixed point 

of eqs.(IV.55), 

( ) 4(n+2)K4Λ
4 

K2ǫ	 ( ) 
d	 δt 2 − 

K2Λ4 4(n+8)K4 
· · · · · · δt 

δu 
= 

8(n+8)K4Λ
4 

K2ǫ δu 
. (IV.57) 

dℓ	 O(ǫ2) ǫ − 
K2Λ4 4(n+8)K4 

We have not explicitly calculated the top element of the second column as it is not necessary 

for calculating the eigenvalues. This is because the lower element of the first column is 

zero to order of ǫ. Hence the eigenvalues are determined by the diagonal elements alone. 

The first eigenvalue is positive, controlling the instability of the fixed point, 

yt = 2 − 
(n + 2) 

ǫ + O(ǫ2).	 (IV.58) 
(n + 8) 

The second eigenvalue, 

yu = −ǫ + O(ǫ2), (IV.59) 

is negative for d < 4. The new fixed point thus has co-dimension of one and can describe the 

phase transition in these dimensions. It is quite satisfying that while various intermediate 

results, such as the position of the fixed point depend on such microscopic parameters as 

K and Λ, the final eigenvalues are pure numbers, only depending on n and d = 4 − ǫ. 

These eigenvalues characterize the universality classes of rotational symmetry breaking in 

d < 4. (Long range interaction may lead to new universality classes.) 

The divergence of the correlation length, ξ ∼ (δt)−ν , is controlled by the exponent 

{ [	 ]}

−1 

ν =
1 

= 2 1 − 
(n + 2) 

ǫ =
1

+
1 n + 2 

ǫ + O(ǫ2). (IV.60) 
yt 2(n + 8) 2 4 n + 8 

The singular part of the free energy scales as, f ∼ (δt)2−α, and the heat capacity diverges 

with the exponent 

α = 2 − dν = 2 − 
(4 − ǫ) 

1 + 
1 n + 2 

ǫ =
4 − n

ǫ + O(ǫ2). (IV.61) 
2 2 n + 8 2(n + 8) 

To complete the calculation of critical exponents, we need the eigenvalue associated with 

the (relevant) symmetry breaking field h. This is easily found by adding a term −�h · 
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( ) ( ) 

( ) 

ddx� = −� · � = 0)m(x) h m(q to the Hamiltonian. This term is not effected by coarse 

graining or rescaling, and after the renormalization step changes to −z�h � ′ (q ′ = 0), · m 

implying 

h ′ b1+ d d ǫ 
= zh = 2 h, =⇒ yh = 1 + + O(ǫ2) = 3 − + O(ǫ2). (IV.62) 

2 2 

The vanishing of magnetization as T → Tc 
−, is controlled by the exponent 

β = 
d − yh 

=
4 − ǫ 

− 1 × 
1 

1 + 
n + 2 

ǫ + O(ǫ2) 
yt 2 2 2(n + 8) 

(IV.63) 

=
1 
− 

3 
ǫ + O(ǫ2),

2 2(n + 8) 

while the susceptibility diverges as χ ∼ (δt)−γ , with 

γ =
2yh − d 

= 2 × 
1 

1 + 
n + 2 

ǫ = 1 + 
n + 2 

ǫ + O(ǫ2). (IV.64) 
yt 2 2(n + 8) 2(n + 8) 

Using the above results, we can estimate various exponents as a function of d and n. 

For example, for n = 1, by setting ǫ = 1 or 2 in eqs.(IV.60) and (IV.63) we obtain the 

values ν(1) ≈ 0.58, ν(2) ≈ 0.67, and β(1) ≈ 0.33, β(2) ≈ 0.17. The best estimates of these 

exponents in d = 3 are ν ≈ 0.63, and β ≈ 0.32. In d = 2 the exact values are known to be 

ν = 1 and β = 0.125. The estimates for β are quite good, while those for ν are less reliable. 

It is important to note that in all cases these estimates are an improvement over the mean 

field (saddle point) values. Since the expansion is around four dimensions, the results are 

more reliable in d = 3 than in d = 2. In any case, they correctly describe the decrease of 

β with lowering dimension, and the increase of ν. They also correctly describe the trends 

with varying n at a fixed d as indicated by the following table of exponents α(n). 

n = 1 n = 2 n = 3 n = 4 

O(ǫ) at ǫ = 1 0.17 0.11 0.06 0 

Experiments in d = 3 0.11 -0.01 -0.12 − 

Although the sign of α is incorrectly predicted at this order for n = 2 and 3, the decrease 

of α with increasing n is correctly described. 
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