Problem Set 4

1. Block and Pulley System

A block of mass m_{1} is at rest on an inclined plane that makes an angle θ with the horizontal. The coefficient of static friction between the block and the incline surface is μ_{s}. A massless, inextensible string is attached to one end of the block, passes over a fixed pulley, pulley 1, around a second freely suspended pulley, pulley 2 , and is finally attached to a fixed support. The left hand part of the string is parallel to the surface of the inclined plane. The sections of the string coming off the suspended pulley are vertical. The pulleys are massless, but a second block of mass m_{2} is hung from the suspended pulley. Gravity acts downward.
(a) What is $m_{2, \text { min }}$, the minimum value of m_{2} for which block 1 just barely slides up the incline? Express your answers in terms of some or all of the variables m_{1}, θ, μ_{s} and g.
(b) What is $m_{2, \max }$, the maximum value of m_{2} for which block 1 just barely slides down the incline? Express your answers in terms of some or all of the variables m_{1}, θ, μ_{s} and g.
(c) Now assume that the block on the incline plane is sliding upward. The coefficient of kinetic friction between the block and the incline surface is μ_{k}. Find the magnitude of the acceleration of the block on the inclined plane, $a_{x 1}$. Express your answers in terms of some or all of the variables $m_{1}, m_{2}, \theta, \mu_{k}$ and the acceleration of gravity g.

2. Velocity Dependent Force

$$
m \xrightarrow{\boldsymbol{v}} \xrightarrow{\hat{i}}
$$

A particle of mass m moving parallel to the x-axis is acted on by a velocity dependent force directed against its motion. The force is given by:

$$
\vec{F}=-b e^{c v} \hat{i}
$$

where b is a positive constant (units N), c ia also a positive constant (units s m${ }^{-1}$), and v is the speed, the magnitude of the particle's velocity (units $\mathrm{m} \mathrm{s}^{-1}$). If at $t=0$, the particle is moving with speed v_{0}, find the speed $v(t)$ as a function of time t. Express your answer in terms of some or all of the following: b, m, t, c, and v_{0}.

3. Tension in Massive Rotating Rope with Object

One end of a uniform rope of mass m_{1} and length l is attached to a shaft that is rotating at constant angular velocity of magnitude ω. The other end is attached to a point-like object of mass m_{2}. Find $T(r)$, the tension in the rope as a function of r, the distance from the shaft.
Assume that the radius of the shaft is much smaller than l. You may also ignore the effect of gravitation - assume the shaft is rotating fast enough so that the mass and the rope are almost horizontal. Express your answer in terms of some or all of the following variables: m_{1}, m_{2}, ω, r and l.

4. Tension in Rope Wrapped Around a Rod

Two unequal blocks of masses m_{1} and $m_{2}, m_{1}>m_{2}$, are suspended by a rope over a fixed rod. The axis of the rod is perpendicular to the figure (only its cross section is shown). The coefficient of static friction between the rope and the rod is μ_{s}, and the coefficient of sliding friction is $\mu_{k}, \mu_{k}<\mu_{s}$. The mass of the rope can be ignored.
For this problem, you can use the result from Chapter 8, Example 8.11 in the course textbook, titled "The Capstan", where it is shown that when the rope is about to slide the tension at point B in the rope, T_{B}, is related to the tension at point A in the rope, T_{A}, by:
$T_{B}=T_{A} e^{-\mu_{s} \theta}$
where θ is the angle subtended by the portion of the rope in contact with the rod. In this problem, the angle θ is $\theta=\pi$. (Note: points A and B are the points where the rope loses contact with the surface of the rod and we assume the cross section of the rod to be a perfect circle).
(a) Let T_{1} be the magnitude of the force of tension exerted by the rope on block 1 . Is T_{A} greater, less than, or qual to T_{1} ?
(b) What is the value of m_{1} for which the rope starts sliding? Express your answer in terms of μ_{s} and m_{2}.
(c) Now assume that m_{1} is large enough so that the rope starts to slip and the masses start to move. What is a, the magnitude of the acceleration of the masses after sliding has begun?
(Hint: Just when the masses start moving, the relationship between T_{A} and T_{B} becomes $T_{B}=T_{A} e^{-\mu_{k} \theta}$, where μ_{s} is replaced by μ_{k}. You can show this by following similar logic used in solving example 8.11 in the textbook.)
Express your answer in terms of some or all of the following: μ_{k}, m_{1}, m_{2}, and g.

5. Drag Force at Low Speeds

At low speeds (especially in liquids rather than gases), the drag force is proportional to the velocity, i.e., $\vec{F}=-C \vec{v}$, where C is a constant. At time $t=0$, a small ball of mass m is projected into a liquid so that it initially has a horizontal velocity of magnitude u in the $+x$ direction as shown. (The vertical component of the velocity is zero). The gravitational acceleration is g. Consider the cartesian coordinate system shown in the figure (+x to the right and +y downwards).
(a) What is the component of the acceleration in the x direction for $t>0$? Express your answer in terms of v_{x} (the component of the velocity in the x direction), C, g, m and u as needed.
(b) What is the component of the acceleration in the y direction for $t>0$? Express your answer in terms of v_{y} (the component of the velocity in the y direction), C, g, m and u as needed.
(c) Using your result from part (a), find $v_{x}(t)$, the horizontal component of the ball's velocity as a function of time t. Express your answer in terms of C, g, m, u and t as needed.
(d) Using your result from part (b), find $v_{y}(t)$, the vertical component of the ball's velocity as a function of time t. Express your answer in terms of C, g, m, u and t as needed.
(e) What is $v_{x T}$, the value of the horizontal component of the ball's terminal velocity? Express your answer in terms of C, g, m and u as needed.
(f) What is $v_{y T}$, the value of the vertical component of the ball's terminal velocity? Express your answer in terms of C, g, m and u as needed.

6. Two Pulleys, Two Strings and Two Blocks

Block 1 and block 2, with masses m_{1} and m_{2}, are connected by a system of massless, inextensible ropes and massless pulleys as shown above.
Solve for the acceleration of block 2 in terms of m_{1}, m_{2} and g. Assume that "down" is positive. Express your answer in terms of some or all of the following: g, m_{1}, and m_{2}.

MIT OpenCourseWare
https://ocw.mit.edu

8.01 Classical Mechanics

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

