Problem Set 3

1. Bead on a Rotating Hoop

A bead lies on a frictionless hoop of radius R that rotates around a vertical diameter with constant angular speed ω , as shown in the figure below.

- (a) What should ω be so that the bead maintains the same position on the hoop, at an angle θ with respect to the vertical? Express you answer in terms of some or all of the following: θ , R and g.
- (b) Analyzing the answer for Part A, you will find that there is a range of angular speeds, $0 < \omega < \omega_o$ for which the fixed angle $\theta = 0$ (meaning that the only balanced position is at the bottom of the hoop). Find the value of ω_o . Express you answer in terms of some or all of the following: R and q.

2. Banked Turn

A car of mass m is going around a circular turn of radius R, which is banked at an angle β with respect to the ground. Assume there is friction between the wheels and the road. Let μ_s be the coefficient of static friction and g the magnitude of the gravitational acceleration. You may neglect kinetic friction (that is, the car's tires do not slip). Derive an expression for the range of possible speeds $v_{\min} \leq v \leq v_{\max}$ necessary to keep the car moving in a circle without slipping up or down the embanked turn. Express your answer in terms of some or all of the following: μ_s , β , m, R and g.

3. Tetherball Breaking Off

A small ball of mass m is suspended by a string of length l. The string makes an angle β with the vertical. The ball revolves in a circle with an unknown constant angular speed ω . The orbital plane of the ball is at a height h above the ground. Let g be the gravitational constant. You may ignore air resistance and the size of the ball.

- (a) Find an expression for the angular speed ω . Express you answer in terms of some or all of the following: l, β , and g.
- (b) Later, the ball detaches from the string just as it passes the x-axis. It flies through the air and hits the ground at an unknown horizontal distance d from the point at which it detached from the string.

What horizontal distance d does the ball traverse before it hits the ground? Express you answer in terms of some or all of the following: l, β and h.

4. Two Boxes Around a Shaft

Box 1 and box 2 are whirling around a shaft with a constant angular velocity of magnitude ω . Box 1 is at a distance d from the central axis, and box 2 is at a distance 2d from the axis. You may ignore the mass of the strings and neglect the effect of gravity. Express your answer in terms of d, ω , m_1 and m_2 , the masses of box 1 and 2.

- (a) Calculate T_B , the tension in string B (the string connecting box 1 and box 2):
- (b) Calculate T_A , the tension in string A (the string connecting box 1 and the shaft):

5. Satellite

- (a) Two satellites are orbiting earth at different altitudes. Which satellite orbits at a higher speed v around earth? Assume that the orbits are circular and both satellites have the same mass.
- (b) Which satellite orbits with a longer period, T, around earth? Assume that the orbits are circular and both satellites have the same mass.

6. A coin on a rotating disk

A coin of mass m is on a rigid disk at a distance d from the center of the disk. There is friction between the coin and the disk. The coefficient of static friction is μ_s . At time t = 0, the disk begins to rotate with a constant angular acceleration of magnitude α . The magnitude of the acceleration due to gravity is g.

Express you answers in terms of some or all of the given variables m, d, μ_s, α, t and g as needed.

- (a) While the coin remains at rest relative to the disk, what is f_s , the magnitude of the force of static friction exerted by the disk on the coin as a function of time t?
- (b) At what angular speed ω will the coin start to slip with respect to the disk?

MIT OpenCourseWare https://ocw.mit.edu

8.01 Classical Mechanics Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.