Charge Separation Part 1: Diode

Lecture 5 – 9/22/2011

MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011

Prof. Tonio Buonassisi

2.626/2.627 Roadmap

2.626/2.627: Fundamentals

Every photovoltaic device must obey:

Conversion Efficiency
$$(\eta) \equiv \frac{\text{Output Energy}}{\text{Input Energy}}$$

For most solar cells, this breaks down into:

Liebig's Law of the Minimum

S. Glunz, Advances in Optoelectronics 97370 (2007)

$\eta_{\text{total}} = \eta_{\text{absorption}} \times \eta_{\text{excitation}} \times \eta_{\text{drift/diffusion}} \times \eta_{\text{separation}} \times \eta_{\text{collection}}$

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline Silicon Solar Cells." Advances in OptoElectronics (2007).

Buonassisi (MIT) 2011

Diode: Essence of Charge Separation

- What is a diode?
- How is it made?
- Why care about diodes?

Diode: Essence of Charge Separation

Courtesy of Adrio Communications Ltd. Used with permission.

http://www.radio-electronics.com/info/data/thermionicvalves/vacuum-tube-theory/tube-tutorial-basics.php

Learning Objectives: Diode

- 1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.
- 2. Draw pictorially, with fixed and mobile charges, how builtin field of pn-junction is formed.
- 3. Current flow in a *pn*-junction: Describe the nature of drift, diffusion, and illumination currents in a diode. Show their direction and magnitude in the dark and under illumination.
- 4. Voltage across a *pn*-junction: Quantify the built-in voltage across a *pn*-junction. Quantify how the voltage across a *pn*-junction changes when an external bias voltage is applied.
- 5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Dopant Atoms

Carrier Binding Energy to Shallow Dopant Atoms

Carrier binding energy to a shallow (hydrogenic) dopant atom:

$$E = E_{\rm H} \frac{m^*}{m_{\rm e}} \frac{1}{\varepsilon^2} = (13.6 \text{ eV}) \cdot \frac{m^*}{m_{\rm e}} \frac{1}{\varepsilon^2}$$

Courtesy of PVCDROM. Used with permission.

Carrier Binding Energy to Shallow Dopant Atoms

Courtesy of PVCDROM. Used with permission.

Carrier binding energy to a shallow (hydrogenic) dopant atom: $E = E_{\rm H} \frac{m^*}{m_{\rm e}} \frac{1}{\varepsilon^2} = (13.6 \text{ eV}) \cdot \frac{m^*}{m_{\rm e}} \frac{1}{\varepsilon^2}$ Electron Screening

Learning Objectives: Diode

- 1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.
- 2. Draw pictorially, with fixed and mobile charges, how built-in field of pn-junction is formed.
- 3. Current flow in a *pn*-junction: Describe the nature of drift, diffusion, and illumination currents in a diode. Show their direction and magnitude in the dark and under illumination.
- 4. Voltage across a *pn*-junction: Quantify the built-in voltage across a *pn*-junction. Quantify how the voltage across a *pn*-junction changes when an external bias voltage is applied.
- 5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Gauss' Law: Review

Spatially variant fixed charge creates an electric field:

$$\frac{d\xi}{dx} = \frac{\rho}{\varepsilon}$$

 ξ = electric field ρ = charge density ε = material permittivity

Example: Capacitor

$$\nabla \cdot \xi = \frac{\rho}{\varepsilon}$$

Image by MIT OpenCourseWare.

Gauss' Law: Review

Spatially variant fixed charge creates an electric field:

$$\frac{d\xi}{dx} = \frac{\rho}{\varepsilon}$$

 ξ = electric field ρ = charge density ε = material permittivity

Drift Current: Net charge moves parallel to electric field

From: PVCDROM Buonassisi (MIT) 2011

Diffusion: Review

Courtesy of PVCDROM. Used with permission.

From PVCDROM

14

Recall the Checker Board Example

Let's imagine the n- and p-type materials in contact, but with an imaginary barrier in between them.

How a pn-junction comes into being

With the P and N type materials separated the carriers diffuse around randomly.

Courtesy of PVCDROM. Used with permission.

When that imaginary boundary is removed, electrons and holes diffuse into the other side.

How a pn-junction comes into being

Courtesy of PVCDROM. Used with permission.

Eventually, the accumulation of like charges [(h⁺ + P⁺) or (e⁻ + B⁻)] balances out the diffusion, and steady state condition is reached.

How a pn-junction comes into being

The net charge can be approximated as shown above.

How a pn-junction comes into being

Summary of Current Understanding

- 1. When light creates an electron-hole pair, a *pn*junction can separate the positive and negative charges because of the built-in electric field.
- 2. This built-in electric field is established at a pnjunction because of the balance of electron & hole drift and diffusion currents.

In-Class Exercise

Learning Objectives: Diode

- 1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.
- 2. Draw pictorially, with fixed and mobile charges, how builtin field of pn-junction is formed.
- 3. Current flow in a *pn*-junction: Describe the nature of drift, diffusion, and illumination currents in a diode. Show their direction and magnitude in the dark and under illumination.
- 4. Voltage across a *pn*-junction: Quantify the built-in voltage across a *pn*-junction. Quantify how the voltage across a *pn*-junction changes when an external bias voltage is applied.
- 5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Carrier Motion

Under equilibrium conditions in a homogeneous material: Individual carriers constantly experience Brownian motion, but the <u>net</u> charge flow is zero.

To achieve net charge flow (current), carriers must move via <u>diffusion</u> or <u>drift</u>.

Diffusion

From PVCDROM

Buonassisi (MIT) 2011

Drift Current

From PVCDROM

Courtesy of PVCDROM. Used with permission.
Current Density Equations

$$J_{e} = q\mu_{n}n\xi + qD_{e}\frac{dn}{dx}$$
$$J_{h} = q\mu_{h}p\xi - qD_{h}\frac{dp}{dx}$$
$$Dominates when \xi is when \xi is small}$$

Einstein Relationships: Relation between drift and diffusion:

$$D_{\rm e} = \left(\frac{kT}{q}\right) \mu_{\rm n}$$

$$D_{\rm h} = \left(\frac{kT}{q}\right)\mu_{\rm p}$$

What's ξ?

From differential form of Gauss' Law (a.k.a. Poisson's Equation):

$$\frac{d\xi}{dx} = \frac{\rho}{\varepsilon}$$

 ρ = charge density ε = material permittivity

We know the charge density is:

$$\rho = q\left(p - n + N_{\rm D}^+ - N_{\rm A}^-\right)$$
$$\rho \approx q\left(p - n + N_{\rm D} - N_{\rm A}^-\right)$$

 $N_{\rm D}^{+}$ = ionized donor concentration $N_{\rm A}^{-}$ = ionized acceptor concentration

Assuming all dopants are ionized at room temperature

In summa:

$$\frac{d\xi}{dx} = \frac{q}{\varepsilon} \left(p - n + N_{\rm D} - N_{\rm A} \right)$$

Continuity Equations

rate entering - rate exiting =
$$\frac{A}{q} \left\{ J_{e}(x) - \left[J_{e}(x + \delta x) \right] \right\}$$

= $\frac{A}{q} \frac{dJ_{e}}{dx} \delta x$

rate of generation - rate of recombination = $A\delta x(G-U)$

For electrons:

$$\frac{1}{q}\frac{dJ_{\rm e}}{dx} = U - G$$

For holes:

$$\frac{1}{q}\frac{dJ_{\rm h}}{dx} = -(U-G)$$

System of Equations Describing Transport in Semiconductors

Possible to Solve Analytically?

No! Coupled set of non-linear differential equations.

Must solve numerically (e.g., using computer simulations)...

... or make series of approximations to solve analytically.

Learning Objectives: Diode

- 1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.
- 2. Draw pictorially, with fixed and mobile charges, how builtin field of pn-junction is formed.
- 3. Current flow in a *pn*-junction: Describe the nature of drift and diffusion currents in a diode in the dark. Show their direction and magnitude under neutral, forward, and reverse bias conditions.
- 4. Voltage across a *pn*-junction: Quantify the built-in voltage across a *pn*-junction. Quantify how the voltage across a *pn*-junction changes when an external bias voltage is applied.
- 5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

New Concept: <u>Chemical Potential</u>

Band Diagram (E vs. x)

Courtesy of PVCDROM. Used with permission.

Buonassisi (MIT) 2011

New Concept: <u>Chemical Potential</u>

At absolute zero, no conductivity (perfect insulator).

Band Diagram (E vs. x)

New Concept: <u>Chemical Potential</u>

At T > 0 K, some carriers are thermally excited across the bandgap.

Band Diagram (E vs. x)

New Concept: Chemical Potential

At T > 0 K, some carriers are thermally excited across the bandgap.

New Concept: Chemical Potential

At T > 0 K, some carriers are thermally excited across the bandgap.

New Concept: Chemical Potential

At T > 0 K, some carriers are thermally excited across the bandgap.

Band Diagram (E vs. x)

- The *chemical potential* describes the average energy necessary to add or remove an infinitesimally small quantity of electrons to the system.
- In a semiconductor, the chemical potential is referred to as the "Fermi level."

Courtesy of PVCDROM. Used with permission.

We assume: All dopants are ionized!

Buonassisi (MIT) 2011

Voltage Across a pn-Junction

Voltage Across a pn-Junction

Buonassisi (MIT) 2011

Derivation

$$q \psi_{o} = E_{g} - \left(E_{F} - E_{V}\right) - \left(E_{C} - E_{F}\right)$$
$$= E_{g} - kT \ln\left(\frac{N_{V}}{N_{A}}\right) - kT \ln\left(\frac{N_{C}}{N_{D}}\right)$$
$$= E_{g} - kT \ln\left(\frac{N_{C}N_{V}}{N_{A}N_{D}}\right)$$
Built-in pn-junction potential a function of dopant concentrations.
$$\psi_{o} = \frac{kT}{q} \ln\left(\frac{N_{A}N_{D}}{n_{i}^{2}}\right)$$

Voltage Across a pn-Junction

Voltage Across a Biased pn-Junction

Effect of Bias on Width of Space-Charge Region

Effect of Bias on Width of Space-Charge Region

pn-junction, under dark conditions

Learning Objectives: Diode

- 1. Describe how conductivity of a semiconductor can be modified by the intentional introduction of dopants.
- 2. Draw pictorially, with fixed and mobile charges, how builtin field of pn-junction is formed.
- 3. Current flow in a *pn*-junction: Describe the nature of drift and diffusion currents in a diode in the dark. Show their direction and magnitude under neutral, forward, and reverse bias conditions.
- 4. Voltage across a *pn*-junction: Quantify the built-in voltage across a *pn*-junction. Quantify how the voltage across a *pn*-junction changes when an external bias voltage is applied.
- 5. Draw current-voltage (I-V) response, recognizing that minority carrier flux regulates current.

Carrier Concentrations Across a pn-Junction

Approximation 1: Device can be split into two types of region: quasineutral regions (space-charge density is assumed zero) and the depletion region (where carrier concentrations are small, and ionized dopants contribute to fixed charge).

60

Width of space charge region

Width of space charge region

Capacitance

Capacitance

Pn-junction under <u>zero</u> bias

Pn-junction under <u>forward</u> bias

Pn-junction under <u>forward</u> bias

Buonassisi (MIT) 2011

Buonassisi (MIT) 2011

70

<u>Approximation 3</u>: Only cases where minority carriers have a much lower concentration than majority carriers will be considered,

i.e.,
$$p_{pa} >> n_{pa}$$
, $n_{na} >> p_{na}$

$$p_{pa} = N_A + n_{pa}$$

Buonassisi (MIT) 2011

Current densities

Calculate (diffusive) currents in quasi-neutral region:

$$J_h = -qD_h \frac{dp}{dx}$$

... from previous slide ...

Current densities

$$\frac{1}{q}\frac{dJ_e}{dx} = U - G = -\frac{1}{q}\frac{dJ_h}{dx}$$

Magnitude of the change in current across the depletion region:

$$\delta J_e = \left| \delta J_h \right| = q \int_{-W}^{0} (U - G) dx \approx 0$$

Key assumption: W is small compared to L_e and L_h . Therefore, integral is negligible. It follows that the current J_e and J_h are essentially constant across the depletion region, as shown below.

Buonassisi (MIT) 2011

Ideal Diode Equation

Since J_e and J_h are known at all points in the depletion region, we can calculate the total current:

$$J_{\text{total}} = J_e \big|_{x'=0} + J_h \big|_{x=0} = \left(\frac{q D_e n_{p0}}{L_e} + \frac{q D_h p_{n0}}{L_h} \right) \left(e^{q V/kT} - 1 \right)$$

This leads to the ideal diode law:

$$I = I_o \left(e^{qV/kT} - 1 \right) \text{ where}$$
$$I_o = A \left(\frac{qD_e n_i^2}{L_e N_A} + \frac{qD_h n_i^2}{L_h N_D} \right)$$

Key Point

 The IV response of a pn-junction is determined by changes in *minority carrier current* at the edge of the space-charge region.

Readings are strongly encouraged

- Green, Chapter 4
- <u>http://www.pveducation.org/pvcdrom/</u>, Chapters 3 & 4.

pn-junction, under dark conditions

pn-junction, under dark conditions

Hands-On: Measure Solar Cell IV Curves

2.627 / 2.626 Fundamentals of Photovoltaics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.