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CHAPTER THREE
TWO DIMENSIONAL WAVES

1 Reflection and tranmission of sound at an inter-

face

Reference : Brekhovskikh and Godin §.2.2.
The governing equation for sound in a homogeneous fluid is given by (7.31) and

(7.32) in Chapter One. In term of the velocity potential defined by u = V¢ it is

1 0%

——=V? 1.1

c? Ot? ¢ (1.1)
where cedenotes the sound speed. Recall that the fluid pressure pe= —p,0¢/0tealso
satisfies the same equation.

We first generalize the plane sinusoidal wave in three dimensional space
Blx, 1) = g, exet) = g, it (12)

where n is the unit vector in the direction of k. Here the phase function is
0(x,t) =k -x—wte (1.3)

The equation of constant phase (x,t) = 6, describes a moving surface. The wave

number vector k = kn is defined to be
k=Fkn=V0 (1.4)

hence is orthogonal to the surface of constant phase, and represents the direction of

wave propagation. The frequency is defined to be

06

= (L1.5)

w =
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Is (1.2) a solution? Let us check (1.7).

o o0 0 .
Ve= (%é a_yé%_zg ¢ =tk¢
V26 =V -V =ik-ik¢ = —k*¢
¢ 2
- v
Hence (1.1) is satisfied if
w = kce (1.6)

Consider two semi-infinite fluids separated by the plane interface along ze= 0. The
sound speeds in the upper and lower fluids are ceand ¢, respectively. Let a plane incident

wave Argive from z > @ at the incident angle of § with respect to the zeaxis,

pi = explik(zsinf — z cos )] (1.7)
implying that
k' = (k! k') = k(sin @, — cos 0) (1.8)

The motion is confined in the z, zeplane.

On the same (incidence) side of the interface we have the reflected wave
pr = Rexplik(zsind + z cos 0)] (1.9)
where Redenotes the reflection coefficient. The wavenumber vector is
k" = (kL kl) = Ek(sin 0, cos 0) (1.10)

x) 'z

In the lower medium z < @ the transmitted wave has the pressure
pr = Teexpliki(xzsin 6y — z cos 6,)] (1.11)

where Teis the transmission coefficient. Along the interface ze= 0 we require the

continuity of pressure and normal velocity, i.e.,
p] =0, z=d (1.12)

and

[w] =0 ze=0,e (1.13)
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where the square brackets signify the jump across the interface:

[f] = f(z=0+) — f(z =0-) (1.14)

We define the impedance of a simple harmonic waves by

pe

7 = 1.15
e (1.15)
where w is the vertical component of the fluid velocity. Because
Owe Ope
T = = 1.16
P Ote 1P 8zé6 ( )
pe —iwppe

It follows from the two continuity requirements that the impedance must be continuous
Z]=0 z=0 (1.18)

Note first that to satisfy the conditions of continuity for all = it is necessary that the ye
factors match, so that
ksinf = k; sin 6, (1.19)

or
sinf  sin6;

— (1.20)

ce c1

Eq. (1.19) or (1.20) is the famous Snell’s law of refraction. If ¢; < ¢, waves are incident
from the faster medium, the direction of the refracted (or transmitted) wave is closer to

the normal to the interface. Now (1.12) requires that
1+R="Te (1.21)

The impedance of the incident wave, the reflected wave, and the transmitted waves

are respectively

pce pce pic1
Zi=——, L, =———, 1= 1.22
cos 0 cos 0 ' cos 0, ( )

which are all constants, and the total impedance on the incidence/reflection side is

_ pce exp(—2ikzcosf) + Re
~ cos f exp(—2ikz cosf)) — Re

(1.23)
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which is in general a complex function of z. Next we impose (1.12) and get

pce 1 + Re
= — 1.24
' cosf1— Re ( )
hence
Zy cos b — pce
S R 1.2
he= Zy cos B + pce (1.25)

This formula is written in a general form where the impedance of the lower medium can

be anything . For the present example it is given by (1.22) and

p1c1 cos B — pccos by

fte= 1.26
- p1c1 cos B + pccos by (1.26)
Let
me= &, n :e£€ (1'27)
P C1

where the ratio of sound speeds neis called the index of refraction. We get after using

Snell’s law that

— L
mcos 6§ + n cos 0, mcos<9+n§/1—51229

The transmission coefficient follows readily from (1.21),

Rezmcose—ncosel mCOS@—nQ/l—SiZ# (1.28)

2 0
Te=1+ Re= ULl (1.29)
mcosf + ng/l — 51229

We now examine the physics.
If ne= ¢/c; >el, the incidence is from a faster to a slower medium, then Res always

real. If however n < ¢ then 6, >d). There is a critical incidence angle 6., defined by
sinf, = ne (1.30)

beyond which (6 >d..) the square roots above become imaginary. We must then take

) )
cos@lz\/l—sm ezz'@/sm b1 (1.31)

n? n?

This means that the reflection coefficient is now complex

. in2
mecosf — ing/S28 — 1

Re= = (1.32)

. in2
mcosf + in 512_20_1
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Figure 1: Complex reflection coefficient
with |R| = 1, implying complete reflection. As a check the transmitted wave is now

pr =T exp [k:l <zx sin 0 + zg/sin” 6 /n? — 1)} (1.33)

so the amplitude attenuates exponentially in z as 2 — —oo. Thus the wave train cannot

given by

penetrate much below the interface.
The dependence of R on various parameters is best displayed in the complex plane
R =RR+iSR.
Case 1: n > 1. Here R is always real.
For normal incidence 6 = 0,
m — ne

R = (1.34)
m —+ ne

R>0ifn <mand R <0 if n > m. In either case |[R| < 1 For glancing incidence
0 = w/2, R = —1. For any intermediate incidence angles, R falls in the segment of the
real axis as shown in figure 1.a. and 1.b.

Case 2. n < 1 then R is real only if § < 6., otherwise R becomes complex and has
the unit amplitude. It is clear from (1.32 ) that SR < 0 so that R falls on the half circle
in the lower half of the complex plane as shown in figure 1.c and 1.d.

Refs:

Graff: Wave Motion in Elastic Solids
Aki & Richards Quantitative Seismology, V. 1.
Achenbach. Wave Propagation in Elastic Solids
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2 Equations for elastic waves

Let the displacement vector at a point x; and time tebe denoted by w;(x;,t), then
Newton’s law applied to an material element of unit volume reads
82Ui . aTij
Porr ~ oa;

(2.1)

where 7;; is the stress tensor. We have neglected body force such as gravity. For a
homogeneous and isotropic elastic solid, we have the following relation between stress
and strain

Tij = A kk0ij + 211645 (2.2)

where A and p are Lamé constants and

CA (axj - 891;@-) (2:3)

is the strain tensor. Eq. (2.2) can be inverted to give

1+v v
ij = Tﬂ'j - Egkk5ij (2~4)
where
1A + )
FE=——- 2.5
A+ pe (25)
is Young’s modulus and
A
= — 2.6
2N+ p) ¢ (2:6)
Substituting (2.2) and (2.3) into (2.1) we get
67‘ij 0 kk 0 8uz ou;
— = A——0;; + pe /
Oz, Oz, +M6$j <8xj * 8@)
0 kk 82114' 82U'
= A e e—
0?u;
= () L 2,
( +“)axixj + uVu
In vector form (2.1) becomes
0*u 9
Pom = A+ w)V(V-u)+ puVau (2.7)
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Taking the divergence of (2.1) and denoting the dilatation by
Gul i 6’&2 i 6’&3

A= b= dr; Oxy Oxs (2:8)
we get the equation governing the dilatation alone
9?A 9 9
pW:OA—u)V-VA%—uVA:(A+2,u)VA (2.9)
or,
% =3 VA (2.10)
where

e J;z“e (2.11)

Thus the dilatation propagates as a wave at the speed c;. To be explained shortly, this
is a longitudinal waves, hence the subscript L. On the other hand, taking the curl of

(2.7) and denoting by & the rotation vector:
J=Vxu (2.12)
we then get the governing equation for the rotation alone

— =3 ViJ (2.13)

_ [pe
or = \/; (2.14)

Thus the rotation propagates as a wave at the slower speed cr. The subscript Teindicates

where

that this is a transverse wave, to be shown later.

The ratio of two wave speeds is

cr, A+ pe
— =/ —— >el. 2.15
- \/ v >d.e (2.15)

pe 1

it follows that the speed ratio depends only on Poisson’s ratio

Since

Cr, 2—2v
L 2.17
Ccr 1—-2v ( )
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There is a general theorem due to Helmholtz that any vector can be expressed as

the sum of an irrotational vector and a solenoidal vector i.e.,
u=Veo+V xH (2.18)

subject to the constraint that

V-H=0 (2.19)

The scalar ¢ and the vector H are called the displacement potentials. Substituting this
into (2.7), we get

2

pw[v¢+v x H) = uV?* Vo +V x H + A+ p)VV - [Vé + V x H]
Since V- V¢ = V2¢, and V-V x H = 0 we get
0%¢ O’H
2, 0O¢ 2y O
VIA+2p)V 8752] +V x [MV H-»p 5 1 0 (2.20)
Clearly the above equation is satisfied if
0%
2 _— =
(A +2u)V BTE 0 (2.21)
and )
0°H
pV2H — p i 0 (2.22)

Although the governing equations are simplified, the two potentials are usually coupled

by boundary conditions, unless the physical domain is infinite.

3 Free waves in infinite space

The dilatational wave equation admits a plane sinusoidal wave solution:
¢(X, t) — ¢0 ik(n-xcht) (3.1)

Here the phase function is

0(x,t) = k(n-x —cpt) (3.2)

which describes a moving surface. The wave number vector k = kn is defined to be

k=#kn=Vb (3.3)
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hence is orthogonal to the surface of constant phase, and represents the direction of

wave propagation. The frequency is

00

= kep = —— 3.4
v °r Ote (34)

A general solution is
¢=f(n-x—cpt) (3.5)

Similarly the following sinusoidal wave is a solution to the shear wave equation;

H= Ho tk(n-x—cpt) (36)

A general solution is
H=F(n-x— crt) (3.7)

We can also write (3.5) and (3.9) as

n-x
¢=ft— ) (3.8)
CL
and
H=F(t— —%) (3.9)
cr
where
S = E,e sy = = (3.10)
Cr, Ccr

are called the slowness vectors of longitudinal and transverse waves respectively.

In a dilatational wave the displacement vector is parallel to the wave number vector:
u,=Ve=fn (3.11)

where f’ is the ordinary derivative of fewith respect to its argument. Hence the di-
latational wave is a longitudinal (compression) wave. On the other hand in a rotational
wave the displacement vector is perpendicular to the wave number vector,
w = VxH=e (GE- G e (G- ve (T )
= e, (Fény — Fin.) + e, (Fén. — Fén,) + e. (Ffn, — Fén,)
— nxF (3.12)

Hence a rotational wave is a transverse (shear) wave.
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4 Elastic waves in a plane

Refs. Graff, Achenbach,
Aki and Richards : Quantitative Seismology, v.1

10

Let us examine waves propagating in the vertical plane of x, y. All physical quantities

are assumed to be uniform in the direction of z, hence 9/9z = 0, then

u_%_(?Hz u_%_@HZ u__f)HZ
T Oxe Oy’ Y Oye 0Ox’ 7 Oye
and
OH, OH,
8xe+ 8ye_0
where

2 2 2
o, 0% _ 15%

R R T
0*H, o*H, 1 0°H,

+ - "9 ) =LY,
012 or? & ot? p=ny
Note that u, is also governed by (4.16).

ze

From Hooke’s law the stress components can be written

Ter = A au“r% +2u§ﬁ:(>\+2u) au“r% —2u§ﬂ
Ore Oy

Ore  Oye Oze

B »P¢ 0% 9%  O°H,
= (2 (@*a?)‘z”{a—yfayax

Ozre  Oye Oye

*¢  0%*¢ 9*¢ ~ 0*H,
= o) [ == + =2} —oud =2
(A+2p) (89&2 * 8y2> ME(&T2 * 0xdy

ou, 0 0 Ou, 0 Ou,
Ty = )\( - —I—&>—I—2ue&:()\+2,u)< - +&>—2uel

Ore 0Oy

o,
Ozxe

e Jye

e

A ¢  0%¢
Toy = m(TM + Tyy) = V(Taw + Tyy) = A <@ + 6_g/2>
Ou, Ouy 0%y  0°H, O°H,
i dze  Oye drdye  Ox? Oy?
o ou, _82Hz N 0*H,
ve 'ue@_ye K 0y? Oyox
Tz = 0

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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Note that the governing equations for ¢ and H, are governed by waves uncoupled from
those for H,, and H,, hence the in-plane displacement components u,, u, are independent
of the out-of-plane component u,. The in-plane displacements (u,,u,) are associated
with dilatation and in-plane shear, represented respectively by ¢ and H,, which will
be referred to as the P wave and the SV wave. The out-of-plane displacement u, is
associated with H, and H,, and will be referred to as the SH wave.

Different physical situations arise for different boundary conditions. We shall con-

sider first the half plane problem bounded by the plane y = 0.

5 Reflection of elastic waves from a plane boundary

Several types of boundary conditions can be prescribed on the plane boundary : (i) dy-
namic: the stress components only (the traction condition); (ii) kinematic: the displace-
ment components only, or (iii). a combination of stress components and displacement
components. Most difficult are (iv) the mixed conditions in which stresses are given
over part of the boundary and displacements over the other.

We consider the simplest case where the plane ye= 0is completely free of external
stresses,

Tyy = Toy = 0,e (5.23)

and

Tyz = 0 (5.24)

It is clear that (5.23) affects the P and SV waves only, while (5.24) affects the SH
wave only. Therefore we have two uncoupled problems each of which can be treated

separately.

5.1 P and SV waves

Consider the case where only Peand SVewaves are present, then H, = H, = 0 Let all

waves have wavenumber vectors inclined in the positive x direction:

¢=fly) ©, H.=h(y) < (5.25)
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It follows from (4.15) and (4.16) that

2f d?h,
d_y2 + a fe: 0,6 dy2

+ B%h, =0, (5.26)

with
w? w?
_c% — &=k} — e B= —CQT — (2= \k2 - & (5.27)

We first take the square roots to be real; the general solution to (5.26) are sinusoids,

hence,

¢ = Ap i((x—ay—wt) 1+ Bp i(£x+ay7wt), H, = Ag i((x—By—wt) + By i(Cz+Py—wt) (528)

On the right-hand sides the first terms are the incident waves and the second are the
reflected waves. If the incident amplitudes Ap, Ag and are given, what are the properties
of the reflected waves Bp, Bs? The wave number components can be written in the polar

form:

(&,a) = kr(sinfy, cosby).e (¢, ) = kr(sinfr,cosbr) (5.29)

where (kr, kr) are the wavenumbers, the (6r,607) the directions of the P wave and SV

wave, respectively. In terms of these we rewrite (5.28)
b= Ap Hrlinoro—costny—wt) 4 g i(sin0ra+cosory—wl) (5.30)
H, = Ag itin0ra—cosbry—wt) | g i(sin0ra-tcosry—w) (5.31)
In order to satisfy (5.23) on y = 0 for all z, we must insist:
krsinfp = krsinfr.e (£ =) (5.32)
This is in the form of Snell’s law:
sinf; sinfr

- 5.33
- - (5.33)

implying . .
Smdoy, Cr, T

== =1 = 5.34

sin QT Cr, k’L " ( )

When (5.23) are applied on ye= 0 the exponential factors cancel, and we get two

algebraic conditions for the two unknown amplitudes of the reflected waves (Bp, Bg) :

k7 (2sin*0;, — k*)(Ap + Bp) — k#sin 207(As — Bs) =0 (5.35)
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k7 sin 20, (Ap — Bp) — k7. cos Op(Ag + Bs) = O.e (5.36)
Using (5.34), we get
2sin? 0, — k? = K*(2sin® O — 1) = —k? cos 207

The two equations can be solved and the solution expressed in matrix form:

B S S A
p | _ | Spp Ssp P (5.37)
Bg Sps S As
where
S S
s = | 7F" 8P (5.38)
Ses  Ses

denotes the scattering matrix. Thus Segs represents the reflected S-wave due to incident

P wave of unit amplitude, etc. It is straightforward to verify that

_ sin 26y, sin 207 — K? cos® 20

Ser = sin 260, sin 207 + k2 cos? 201 (5.39)
—2k? sin 207 cos 207
Ser = 5.40
5" Sin 201, sin 207 + K2 cos? 207 (5.40)
2sin 26 26
Sps — sin 207 cos 20r -

 sin 26} sin 207 + K2 cos? 207

Ses — s%n 20, s%n 201 — K% cos® 207 (5.42)
sin 207, sin 207 + k2 cos? 201

In view of (5.33) and

Cy, 2—2v
= e— .4
: cr 1—2v (5-43)

The scattering matrix is a function of Poisson’s ratio and the angle of incidence.
(i) P- wave Incidence : Consider the special case when the only incident wave is a
P wave. Then Ag = 0 and only Sep and Sep are relevant. . Note first that 6, > 67 in

general . For normal incidence, 6, = 0. We find
S@p = —1, SPS =0 (544)
there is no SV wave. On the other hand if

sin 20y, sin 207 — k* cos® 207 = 0 (5.45)
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Figure 2: Amplitude ratios for incident P waves

© Dover Publications Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

then only SVewave is reflected. This is the case of mode conversion, whereby an incident
P waves changes to a SV wave after reflection. The amplitude of the reflected SV wave
is

Bg _ tan20p

A_P = S@S = 2 (546)

(ii) SV wave Incidence : Let Ap = 0. Then only Sgp and Sgg are relevant. For
normal incidence, Sg¢s = —1, and Sgp = 0. Mode conversion also happens when (5.45)
is satisfied. Since 0 >efr, there is a critical incidence angle 67 beyond which the P

wave cannot propagate into the solid. At the critical angle
sinfy, =1l,e or sinfy =1/k (5.47)

Thus for v = 1/3, k = 2 and the critical incidence angle is 6y = 30°. The P wave
propagates along the x axis.
Beyond the critical angle of incidence, the Pewaves decay exponentially away from

the free surface. The amplitude of the SV wave is linear in yewhich is unphysical,
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Figure 3: Reflected wave amplitude ratios for incident SV waves

© Dover Publications Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

suggesting the limitation of unbounded space assumption.

5.2 SH wave

Because of (4.14) we can introduce a stream function 1 so that

g 00 O

oyé Y Oxe

Clearly

and

15

(5.48)

(5.49)

(5.50)

(5.51)
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The zero-stress boundary condition implies

o _,

B~ (5.52)

Thus the problem for 1 is analogous to one for sound waves reflected by a solid plane.

Again for monochromatic incident waves, the solution is easily shown to be
¢ _ (Aefi,@y . Aei,@y) tax—iwt (553)
where
o® + 3 = k2 (5.54)

We remark that when the boundary is any cylindrical surface with axis parallel to

the zeaxis, the stress-free condition reads
T., = 0,e on B.e (5.55)

where nes the unit outward normal to B. Since in the pure SH wave problem

Q. _ 0 oy 1ed U

— = — 2 =
Ten = Hone™ o ¥ & Onedt?

the e condition (5.55) implies
o

e 0,e on B.e (5.56)

Thus the analogy to acoustic scattering by a hard object is true irrespective of the

geometry of the scatterer.

6 Scattering of monochromatic SH waves

6.1 Solution in polar coordinates

We consider the scattering of two-dimensional SH waves of single frequency. The time-

dependent potential can be written as

V(@ y.t) = R [p(,y) ] (6.1)

where the potential ¢ is governed by the Helmholtz equation

82 82 2
V2q5+k2¢:8—£+ 0

57t Ko =0, k :ec% (6.2)
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To be specific consider the scatterer to be a finite cavity of some general geometry. On

the stress-free boundary B the shear stress vanishes,

2
Ton = _M_C;)% <% —iwt) =0 (63)
cr One
hence
¢
huth 4
One 0 (64)
Let the incident waves be a plane wave
¢r = Ae™x (6.5)

and the angle of incidence is 6, with respect to the positive x axis. In polar coordinates

we write

k = k(cosb,,sinf,),e x = r(cosf,sinf) (6.6)
¢r = Aexp [ikr(cos b, cosf + sin 8, sin §)] = Aehrcos@=0) (6.7)

It can be shown (see Appendix A) that the plane wave can be expanded in Fourier-Bessel

series :

tkr cos(0=0,) — Z €ni" Iy (kr) cosn(0 — 6,) (6.8)
n=0
where €, is the Jacobi symbol:
c=0 =2 n=123,...¢ (6.9)

Each term in the series (6.8) is called a partial wave.

Let the total wave be the sum of the incident and scattered waves

¢=¢1+ ¢s (6.10)

then the scattered waves must satisfy the radiation condition at infinity, i.e., it can only
radiate energy outward from the scatterer.
The boundary condition on the cavity surface is

% _,

e O T =ae (6.11)

In polar coordinates the governing equation reads

10 [ 0¢) 10% .,
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Since ¢; satisfies the preceding equation, so does ¢g.

By the method of separation of variables,

¢s(r,0) = R(r)O(0)

we find

R’ +rR + (K*r* —n*)Re= 0,e and ©" +n*0 =0

where ne= 0, 1,2, ... are eigenvalues in order that © is periodic in 6 with period 27. For

each eigenvalue nethe possible solutions are
©,, = (sinnb, cosnh),e
Ry = (H (kr), HY (k) e

where H(V(kr), H® (kr) are Hankel functions of the first and second kind, related to
the Bessel and Weber functions by

HO (kr) = Jo(kr) + Y, (kr), HP(kr) = J,(kr) — iYy(kr) (6.13)
The most general solution to the Helmholtz equation is
¢s = Ae) _ (A, sinnd + B, cosnb) {CnH,(Ll)(k:'r) + DnH,(f)(kr)} € (6.14)

n=0

For large radius the asymptotic form of the Hankel functions are

2 . T nm 2 . us nI
HWY ~ | = ibr=3=5) 0 g@ | — —ilbr=5=5) 6.15
n rkre ’ n wkr e (6.15)

In conjunction with the time factor exp(—iwt), H(! gives an outgoing wave while H(?
gives an incoming wave. To satisfy the radiation condition, we must discard all terms
involving H(®. From here on we shall abbreviate H(! simply by H,. The scattered
wave 1S now

¢s = Ae>_ (A, sinnb + B, cosnb) H,(kr) (6.16)

n=0

The expansion coefficients (A, B,,) must be chosen to satisfy the boundary condition

on the cavity surface’ Once they are determined, the wave is found everywhere. In

'In one of the numerical solution techniques, one divides the physical region by a circle enclosing the
cavity. Between the cavity and the circle, finite elements are used. Outside the circle, (6.16) is used.
By constructing a suitable variational principle, finite element computation yields the nodal coefficients

as well as the expansion coefficients. See (Chen & Mei , 1974).
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particular in the far field, we can use the asymptotic formula to get

i . 2 ..
¢s ~ A (A, sinnb + B, cosnf) —nm/2 [ ikr=in/d (6.17)

= wkr

Let us define the dimensionless directivity factor
A(0) =" (A, sinnd + B, cosnd) ~"/2 (6.18)
n=0

which indicates the angular variation of the far-field amplitude, then

2 ,
b5 ~ AA()/ %e“‘"*m/‘* (6.19)

This expression exhibits clearly the asymptotic behavior of ¢g as an outgoing wave. By

differentiation, we readily see that

: J9s B

which is one way of stating the radiation condition for two dimensional SH waves.

At any radius rethe total rate of energy outflux by the scattered wave is

2 auz 2 a¢ ) ) )
— = _ 27 —iwt 2.4 —iwt
", dor,, 1e ~ 17, dOR l pk e ] R [iwk?p it
_ pwktre 2T L 00]  pwkire, 2 09
e lws L - -2 J/O = (6.21)

where overline indicates time averaging over a wave period 27 /w.
We remark that in the analogous case of plane acoustics where the sound pressure

and radial fluid velocity are respectively,
0
pe= —poa—fée and u, = — (6.22)

the energy scattering rate is

r /O  dop = LR /C a6 (—igb*%ﬁ) _ LTS [ e <¢*%€> (6.23)

2
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6.2 A general theorem on scattering

For the same scatterer and the same frequency w, different angles of incidence 6; define

different scattering problems ¢;. In particular at infinity, we have

tkr cos 2 ikr—im
quNAj{ hreos(@=0;) 4 A;(0 )\/W—km’“ /4} (6.24)

Let us apply Green’s formula to ¢; and ¢, over a closed area bounded by a closed
contour C,
0 0 0 0
[ (0291~ 6:7 ) aae= [ (52— 6,52 asr [ ase( n5 - 1 Gt ) e
where n refers to the unit normal vector pointing out of S. The surface integral vanishes
on account of the Helmholtz equation, while the line integral along the cavity surface

vanishes by virtue of the boundary condition, hence

Oy 02
/Cd88<¢28—n6— ¢16_n6> dse=0 (625)
By similar reasoning, we get
0 0
/ <¢2 ¢le— o} ;2) dse=0 (6.26)

where ¢ denotes the complex conjugate of ¢;.

Let us choose ¢ = ¢ = ¢, in (6.26), and get

/Cds <¢6¢* _ 4 —¢; dse= 23 (/ dsgb%fe) (6.27)

Physically, across any circle the net rate of energy flux vanishes, i.e., the scattered power

must be balanced by the incident power.

Making use of (6.24) we get

0— %/zw rdo ikr cos(6—6,) + iAO(Q) tkr—im/4
0 \ whkre
R . —ikrcos(0—0,) _ . * —ikr+im/4
l ikeos(0 — 6,) ?lwkréél"( ) ]

(k)| A2

" rde | —ikeos(d —
—\9/0 rd {—zkazos( —0,) + -
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. | [
ikr[cos 0—0,)—1]+im/4/ ik *
+ (=ik) Wkréo
A . 2
—ikr[cos0—0,)—1]—im/4/ ik 0—6
+ (—ik) cos( O)“_wkréélo

The first term in the integrand gives no contribution to the integral above because of

periodicity. Since S(if) = S(if*), we get

B _z 2m 9
0=—= [ 1A,(0)df

27 9 . '
+%/ rdf {Ao(—ik:)’ / W[1 +cos( — 6,)] /4 lkr(lcos(@ao))}
0 T

27
_ .2 JRERGIRY

m™J0o

. 2 2m .
. —im/4 o tkr(1—cos(0—6,))
afe{ [A(,(k)m/—ﬁm/o d6[1 + cos(6 — 6,)] ]}

For large krethe remaining integral can be found approximately by the method of sta-

tionary phase (see Appendix B), with the result

2_7T im/4

27 .
/ d6[1 + cos(f — 6,)] Pr-eos0-02) (6.28)

0 kre

We get finally
2
/ LA[2d6 — —2RA(6,) (6.29)

0

Thus the total scattered energy in all directions is related to the amplitude of the
scattered wave in the forward direction. In atomic physics, where this theorem was
originated (by Niels Bohr), measurement of the scattering amplitude in all directions is
not easy. This theorem suggests an economical alternative.
Homework For the same scatterer, consider two scattering problems ¢; and ¢s.
Show that
A (02) = As(61) (6.30)

For general elastic waves, see Mei (1978) : Extensions of some identities in elastody-

namics with rigid inclusions. J . Acoust. Soc. Am. 64(5), 1514-1522.
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6.3 Scattering by a circular cavity

Without loss of generality we can take 8, = 0. On the surface of the cylindrical cavity

re= a, we impose
001, 65 _
Ore  Ore

0, r=eae

It follows that A,, = 0 and
e"i"AJ) (ka) + B,kH, (ka) =0, n=6,1,2,3,...n¢

where primes denote differentiation with respect to the argument. Hence

. Jh(ka)
Bn — _A " nYn
ent H! (ka)
The sum of incident and scattered waves is
B N Jp(ka)
o= Aigo nl [Jn(kr) ' (ka) Hn(k:'r)] cos nf (6.31)
and
P J! (ka)
_ wwt n . n
Y = Ae nz:% nl [Jn(k'r) H' (k) Hn(kr)] cos nf (6.32)

The limit of long waves can be approximately analyzed by using the expansions for

Bessel functions for small argument

™ 2 2"(n —1)!
Jn($) ~ %, Yn($) ~ ;lOg x,e Yn($) ~ T (633)
Then the scattered wave has the potential
¢s Jolka) . Ji(ka) 3
1 HO(kT)H()(ka) 22H1(kT)H{(ka) cos + O(ka)
= Z(ka)? (—%eHo(kr) — Hy(kr) cos 9) + O(ka)? (6.34)

The term Hy(kr) corresponds to a oscillating source which sends isotropic waves in all
directions. The second term is a dipole sending scattered waves mostly in forward and
backward directions. For large kr, the angular variation is a lot more complex. The far
field pattern for various kads shown in fig 4.

On the cavity surface, the displacement is proportional to ¢ (a, ) or ¢(a,d). The

angular variation is plotted for several kadn figure 5.
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Figure 4: Angular distribution in cylindrical scattering

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Figure 5: Polar distribution of run-up on a circular cylinder

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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7 Diffraction of SH wave by a long crack

References

Morse & Ingard, Theoretical Acoustics Series expansions.

Born & Wolf, Principle of Optics Fourier Transform and the method of steepest descent.
B. Noble. The Wiener-Hopf Technique.

If the obstacle is large, there is always a shadow behind where the incident wave
cannot penetrate deeply. The phenomenon of scattering by large obstacles is usually
referred to as diffraction.

Diffraction of plane incident SH waves by a long crack is identical to that of a hard
screen in acoustics. The exact solution was due to A. Sommerfeld. We shall apply
the boundary layer idea and give the approximate solution valid far away from the tip
kres 1 by the parabolic approximation, due to V. Fock..

Referring to figure () let us make a crude division of the entire field into the illumi-
nated zone I , dominated by the incident wave alone, the reflection zone II dominated
the sum of the incident and the reflected wave, and the shadow zone III where there is
no wave. The boundaries of these zones are the rays touching the crack tip. According

to this crude picture the solution is

A, exp(ik cos Oz + ik sin fy), Ie
® =14 A,lexp(ik cosOzet ik sin Oy) + exp(ik cos bz — iksinfy)|, II e (7.1)
0,6 e

Clearly (7.1) is inadequate because the potential cannot be discontinuous across the
boundaries. A remedy to provide smooth transitions is needed.

Consider the shadow boundary Ox’. Let us introduce a new Cartesian coordinate
system so that z’ axis is along, while the 3 axis is normal to, the shadow boundary.

The relations between (z,y) and (2,7') are
2 =xcosf+ysinh, 1y =ycos— xsinb (7.2)

Thus the incident wave is simply

/

¢r=A, ** (7.3)
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Figure 6: Wave zones near a long crack

Following the chain rule of differentiation,

0¢ _ 99 0 + 909 _ COSQ% - sin98—¢
Ozxe Ox' Ore Oy Oxe oz’ oy
0p 0902 060y . ,0¢ o¢
dye Oz’ 8yejL oy Oye Smeax’ * Cosef)y’

we can show straightforwardly that

o 0o _ 00 0
Ox2 8y2 - Ox? 8y’2

so that the Helmholtz equation is unchanged in form in the z’, 4y’ system.
We try to fit a boundary layer along the x’ axis and expect the potential to be almost

like a plane wave
¢(x,/,y/) _ A(a;’, y/) ikx' (7.4)
, but the amplitude is slowly modulated in both z’ and y" directions. Substituting (7.4

into the Helmholtz equation, we get

G [0*Ae _ DAe 02 A
k {89{;/2 + ik — KA+ 57+ k2A} ~0 (7.5)

Expecting that the characteristic scale L, of A along 2’ is much longer than a wavelength,

kL, > 1, we have

5 .kaAe>> 0%A
¢ e@? 0x'?
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Hence we get as the first approximation the Schrédinger equation?

_ 0Ae %A
2’&]666? + 5o 0 (7.7)

In this transition zone where the remaining terms are of comparable importance, hence

the length scales must be related by

k 1
_/eN —,e implying ky' ~ vVka'
Zz Y

Thus the transition zone is the interior of a parabola.

Equation (7.7) is of the parabolic type. The boundary conditions are

A(z,00) =0 (7.8)
Az, —o0) = A, (7.9)
The initial condition is
0, vy >d,
A0,y) = g (7.10)
Ay, y/ <d)

he initial-boundary value for Aehas no intrinsic length scales except z’,7’ themselves.
Therefore the condition kL, > 1 means kx’ > 1 i.e., far away from the tip. This
problem is somewhat analogous to the problem of one-dimensional heat diffusion across
a boundary. A convenient way of solution is the method of similarity.

Assume the solution

Ae= A, f () (7.11)

where
—ky'
— 7.12
1= (7.12)

is the similarity variable. We find upon substitution that fesatisfies the ordinary differ-

ential equation
f"—imyf =0 (7.13)

2In one-dimensional quantum mechanics the wave function in a potential-free field is governed by

the Schroédinger equation
oY 1 0%
h— 4+ ————= =0 7.6
"ot T 20 022 (7.6)
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subject to the boundary conditions that
fe=>0,ev— —o0; fe—ley— ooe (7.14)

Rewriting (7.13) as

"

f

=Ty
we get

log f' = imy/2 + constant.e

One more integration gives

Since
00 7:7T’LL2 i /4
/ exp 5 due= 73
we get
—im/4
Ce=
V2
and

A —ir/4 2 —in/4 ( in/4 2
fe= — = ! exp (%) due= 7 {W + /07 exp (%) du} (7.15)

Defining the cosine and sine Fresnel integrals by

v T2 v . [m?
Cly) = /0 cos (T) dv,e S(y) = /0 sin (T) dve (7.16)
we can then write
A IE e i s 7.17
115 +C0)| +idg + 5] (7.17)
In the complex plane the plot of C()+iS(7y) vs. = is the famous Cornu’s spiral, shown
in figure (77).
The wave intensity is given by
sz rew] +[grso]
_ 1 1 1

o

Since C, Se— 0 as v — 00, the wave intensity diminishes to zero gradually into the
shadow. However, C,Se— 1/2 as v — oo in an oscillatory manner. The wave inten-
sity oscillates while approaching to unity asymptotically. In optics this shows up as

alternately light and dark diffraction bands.
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Figure 7: Amplitude contours of H,
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Figure 8: Phase contours of H,

© sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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T

Figure 9: Diffraction of a normally incident E-polarized plane wave

Figure by MIT OpenCourseWare.

Figure 10: Cornu’s spiral, a plot of the Fresnel integrals

Figure by MIT OpenCourseWare.
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In more complex propagation problems, the parabolic approximation can simplify the
numerical task in that an elliptic boundary value problem involving an infinite domain
is reduced to an initial boundary value problem. One can use Crank-Nicholson scheme
to march in ”"time”, i.e., 2.

Homework Find by the parabolic approximation the transition solution along the

edge of the reflection zone.

8 Rayleigh surface waves

Refs. Graff, Achenbach, Fung

In a homogeneous elastic half plane, in addition to P, SV and SH waves, another
wave which is trapped along the surface of a half plane can also be present. Because
most of the action is near the surface, this surface wave is of special importance to
seismic effects on the ground surface.

Let us start from the governing equations again

020 ¢ 10%

— === 5= 8.1
or? oy 2 ot? © (8.1)
O*H, 0°H, 1 0%*H,
0z? oy? ¢ Ot?
We now seek waves propagating along the x direction
¢ =R (f(y) ingiwt) 7 Hz =R (h(y) igacfiwt) (83)
Then f(y), h(y) must satisfy
d? fe d*he
a7 + (wQ/c% - 52) fe=0.e W + (w2/c2T — 52) he=0,e (8.4)

To have surface waves we insist that

a=4/&-wcie B=4/&-uw/ch (8.5)

be real and positive. Keeping only the solutions which are bounded for ye~ oo, we get

¢ = Ae~ i(gxfwt)’ H, = Beiﬁy i(ngwt)' (86)
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The expressions for the displacements and stresses can be found straightforwardly.

Uy = (iﬁAe*ay - BBG*E?’) ifz—wt) o (8.7)
U, = — (aAe*Ey + iﬁBe’Ey) e—wt) o (8.8)
Tog = us[ (32 — £ - 2@2) Ae ™ — ZiBSBe_By} Eo—wt) ¢ (8.9)
Ty = us[ (32 + 62) Ae ™ 4 ZiBSBe_By} Eo—wt) o (8.10)
Toy = pd—20@EA™™ 4 (24 ) Be PV} ibrmet) (8.11)
On the free surface the traction-free conditions 7,, = 7,, = 0 require that
(B° + €2) Aet 2iFBe = 0,e (8.12)
—2ia¢ Aet (B +€*) Be = 0.c (8.13)
For nontrivial solutions of A, Bethe coefficient determinant must vanish,
_ 2 —
(B°+€2) —4aPe? = 0e (8.14)
or 22
w w? w?
T i T

which is the dispersion relation between frequency w and wavenumber . From either

(8.12) or (8.13) we get the amplitude ratio:

Ae 2B B4
Be Fre 2l

(8.16)

In terms of the wave velocity ce= w/&, (8.15) becomes

2 2 2\ 3 2\ 3
(2—%) :4(1—%) (1—%) e (8.17)
T L T

or, upon squaring both sides finally

g{(%f ~8 <g>4 + <24 - i—f) <c_(;€>2 — 16 <1 - %)} —0e  (8.18)

The first solution ce= w = 0 is at best a static problem. In fact @ = § = £ and

Ae= —iB, so that u, = u, = 0 which is of no interest.
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We need only consider the cubic equation for ¢2. Note that the roots of the cubic
equation depend only on Poisson’s ratio, through x* = 2(1 —v)/(1 — 2v). There can be
three real roots for ¢ or w, or one real root and two complex-conjugate roots. We rule
out the latter because the complex roots imply either temporal damping or instability;
neither of which is a propagating wave. When all three roots are real we must pick the
one so that both @ and /3 are real.

For ¢ = 0, the factor in curly brackets is

{.}:—16<1—C—2> <0
L
For ¢ = ¢r the same factor is equal to unity and hence positive. There must be a solution

for ¢ such that 0 < ¢ < ¢p. Furthermore, we cannot have roots in the range c/cp > 1.

If so,
2
— c
52:g2<1——2> <0
cr
which is not a surface wave. Thus the surface wave, if it exists, is slower than the shear

wave.

Numerical studies for the entire range of Poisson’s ratio (0 < v < 0.5) have shown
that there are one real and two complex conjugate roots if v > 0.263 ... and three real
roots if v < 0.263 . ... But there is only one real root that gives the surface wave velocity
cr- A graph of cg for all values of Poisson’s ratio, due to Knopoff , is shown in Fig. ?7?.

A curve-fitted expression for the Rayleigh wave velocity is

crfca=(0-87+1-12v)/(1+v).e (8.19)

For rocks, A = p and v = i, the roots are
(¢/cy)® =4,242/8/3,2 —2/&/3.e (8.20)
The only acceptable root for Rayleigh wave speed cp is
(crfer)? = (2—2/&/3)F =0-9194 (8.21)

or

cr = 0-919%4cr.e (8.22)
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Figure 11: The velocity of Rayleigh surface waves cg
Figure by MIT OpenCourseWare

The particle displacement of a particle on the free surface is, from (??) and (??)

ﬁ +§2 z—wt)
=)

(8.23)
ﬂ +&
= A i(z=wt) 24
( o (824)
Note that )
3 2
(1(3:1465—52—2g Af-I—E >d)
_2 J—
_ B +¢& (@—B)* +k
be= Ae| — =A|l————=
e= z{ a+ 2% % >e)
hence
u, = asin(wte- £x), u, = beos(wte— £x)
and ) )
um uy
The particle trajectory is an ellipse. In complex form we have

% + i%ﬁ = exp {i (wte- Exe— 7/2)} (8.26)

Hence as tdncreases,a particle at (x,0) traces the ellipse in the counter-clockwise direc-
tion. See figure (8).

33



3.9. Moving load on the ground surface 34

Instantaneous
Instantaneous wave surface Direction of wave propagation

particle velocity R o

Figure 12: Displacement of particles on the ground surface in Rayleigh surface wave
Figure by MIT OpenCourseWare.

9 Elastic waves due to a load traveling on the ground

surface

Refs: Fung: Foundations of Solid Mechanics
Cole and Huth: (1956, Elastic half space ; J Appl Mech25, 433-436.)
Mei, Si & Chen , (1985, Poro-elastic half space, Wave Motion, 7, 129-141.).

In this section the yeaxis is positive if pointing upwards.

Let the traction on the ground surface be :
Tyy = —P(x + Ut).e 7,y =0,e on ye=0 (9.1)

Let us make a (Galilean ) transformation to a coordinate system moving to the left at
the speed of U, so that the load appears stationary, Then, by the chain rule, derivatives

are changed according

0 o 0 0 0 0 0

— = — —e — = — — 9.2
dze  Oze ’e(%e—> 8yée te 6te+ Oxe (92)
In the moving coordinates, the wave equations are changed to
P 90 1 (9 8\
T o .
Froll o2 A <8te+ Ue@_x; ¢ (9:3)
&He *He 1 (0 _0\°
—=—=|=—+U—) He 9.4
Ox? + oy <8te+ 8x; (9-4)
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where we have abbreviated H, simply by H.
In the steady state limit they become
e 9*¢  U?0°®
02 ar T E o
0?He O*H U?9%He
o B & oa?
Introducing the Mach numbers:

35

(9.8)

(9.9)

(9.10)

m=Z, m-Z
Cr, Ccr
then (9.5 ) amd (9.6) become
0?d 92
2
(1—M)82 57 =0
0*He 0*He
2
O—A4)82<+ay =0
The stress components can be derived straightforwardly in terms of the potentials
0*®  9%He
e = (A+2u) V2P —2u
K (A+2u)v 8y &vﬁyg
U?0%°® 0P 0*He
= (A+2 —2u(M7? — 1 2ue——
(A+2u)— o 1 oz Tt 1 Oye
Using the fact that A+ 2u)/p = CL/CT, we further get
0P O0*He
M3 —2M? +2) — +2——
Similarly we find
0?d O0?He
M2—2———Q
Tw = l( ) Ox? 891;83/;

26, PH
Toy = K [28$8y6+ (M2 - 2) axgj

We now examine the special pressure distribution, as shown in figure (9):

T x>0,

p@mﬂﬂ@%{ ’

wr g <

Thus the traction boundary conditions (9.3) on the ground surface become
O*® O’H P,

2 _ _ _to — 0
(M2 2) 8%2 8$8y ,uep(x)’ Y 07
9% 0%*He
M2 —2 =0.
28x8ye+ ( ) Ox? =0, y=0¢

Three cases will be distinguished:

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)
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Figure 13: A moving pressure distribution on an elastic half space. Shown
in a moving coordinate system, the pressure appears stationary.

© sources unknown. All rights reserved. This content is excluded from our Creative
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9.1 Supersonic: M; > M, >el

Let us apply the exponential Fourier transform defined by

fo) = /OO F(x) ~™dg.e

1 foo ,
F@) = 5= [ () *ax 9.16
(@) = 5= [ FO) Mdre (9.16)
From the governing wave equations we get

Ed | 2302 Fh 2o

8—y2+ﬂ1>\ ¢ =0, 8—y2—|—ﬁ2>\ he=0; y<®8.e (9.17)
where

Bi=M?—1, j=d,2e (9.18)

The general solutions of the Fourier Transforms are
¢ =A(\) P4 B(\) TP,
he= C(\) ¥ + D())
so that

O(,y) = 5 /_ Z [A(\) PP 4 B(y) MePw)] ) e (9.19)

H(zy) = 5- [ [00) Y0 4 D) MeBo] e (9.20)



3.9. Moving load on the ground surface

37

In order that waves below the ground surface trail behind the surface load, we discard

the second term in each integral. Thus
6 =AM P, h=C() P

Now the boundary conditions require

d¢
d — N32he=0
and
dhe 1P, 1 1
CN2326 — 20 ( _ )
ﬁ2¢ dye  pe \\—ia; A+ iog

Use has been made of the result

/oo —i)\acr])(x)dxe — / —iA\T agzdm&/ —iAx al’”dme
1
e

( — i N+ za2>
It follows that
—2)?B1Ae- BiN*Ce= 0

and

- P, 1 1
_ BN At 202 By Co— 120 < _ )
P et P pe \ A —iay A+ ias

The last two equations can be solved to give

2P0< Lo > —
Tope\A—daq A +iae/) N2(B3 + 4515s)

Ce__iP0< Lo, > 20,
T pe \\—ia;  A+iay) N2(B5 +4615,)

The inverse transforms of ¢ and heare:

o
—-H

s o | G )
2rpel gy | /oo \A—dar A +ian

| {exp A (m [g ] y)] =

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)
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where
(M2 -2
kl = 2 ( 22 )_ —_—,€
(M —2)" + 48,0,
—923
ky = 5 fl ——.c (9.30)
(M3 —2)" + 48,0,
Using (9.10), ( 9.11) and ( 9.12), we get the stress components. For example
Txy 261]{71 /oo < 1 1 > iNE1
— = - LN 9.31
P, 2mie Joo \A — iy A+ ian (531
(M2 — 2)k, /°° ( 1 1 ) Ao
- — — 2 dN .32
2mie o \A —ia; At iag (9-32)
where
L=z+0ilyle &=+ Byl (9.33)
In view of (9.24), the inverse transform is immediate,
Ty =
Fy =281k P (&) — (M5 — 2)kaP (&) (9.34)
As a check, the shear stress on the ground surface y = 0 is
% = [2B1k1 — (ME — 2)ks| P(2) = 0 (9.35)
in view of (9.30).
It can be shown that
0
P = = (MF = M4 2) P (&) — BoksP (&) e
0
T,y = (to be worked out) (9.36)

Note that the disturbances in the half space indeed trail behind the surface pressure.
The P and SV waves are concentrated respectively along the characteristics  + 3;|y| =
constant and = + 32|y| =constant.

Homework: Verify the above results by the method of characteristics.

9.2 Subsonic case, 1 > M; > M,

In this case (9.8) and (9.9) are elliptic. Let

ﬂ% = 1_M1276 ﬁ2:1_M22a
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Figure 14: Stress variations in the ground under supersonic load on the surface.
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—Mj5 +2 .
(M3 —2)° — 45132
—26, .
(M3 —2)* — 4813,

The formal solutions for ® and Heare

o 2mpe)—o \ N —ida; A Hioe

> [AlBry i)\:cQ e
A2’

Byky [o° 1 1
—He = / ( — — - )
2mpe) —co \A — iy A+ iy

L Sgn
x MBay WSgA—nQdA. e (9.38)

ks =

oy (9.37)

By using (9.10), (9.11) and (9.12), the stress components can be expressed as Fourier

integrals, which can be evaluated in terms of the exponential integral defined by

Ei(z) = /oo 7__ dr
= —y—Inze- > (-1)"
n=1

Zn
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Let
21— x+ify,e 2o =x +ifye (9.40)

and

G(z) = " “E) (—a1z) — “*E)(az).e (9.41)

Then the stress components are

. T ks  20aky
e~ -an ) Bace) - Bai
N Ty ks 2Bk
= p = — (M —2) =S G (2) + 6;4%(;(,22)
- Ty 2061k
o= 2 = BR(G () — G () (9.42)
Note that
E if 7 < 0,
lim By (—ag21) = 1((.%'36') . 1 e
y10 —FBi(az) —im ifx>0,e
—FEi + mie if x <0, e
lim B (az1) = iafz]) +mie if 2 (9.43)
y10~ Ei(ax) if x>0
where
x) = —PV/ dr (9.44)
T T

with the integral being a principal value.

From the definitions k3 and k; become infinite when their denominators vanish; This
occurs when the external load travels at the speed of the Rayleigh surface wave and
indicates resonance. The unbounded resonance need not be a threat in practice because

the model of steady two-dimensional line load is an idealization not usually realized.

9.3 Transonic case, M; > 1> M,

The scalar potentials are

o = J X PTA(N) Wew
27T,u ’

He = 5 J d\ P B()\) WP (9.45)
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Figure 15: Stress variations in the ground under subsonic load on the surface.
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where
Al des 1 1
AN = — (M2 —2) (s 1+ T —( _ )
9@ (a1 ><5+ ) 6))\2 N—ion A+ia) "
. Al , z’e( 1 1 >
Bla) = 28 [ Sks +ikg | — - 4
(@) Zﬂl(x P I N Atian) (9.46)
— (M2 —2)?
k'5: (Z ) _2,6
(M3 —2)" + 16570,
B —4615,
. =

1 —.e
(M3 —2)" + 16573,
In terms of z; = z + iByeand & = x + G|y| all the integrals in (3.18) can again be

evaluated. The results involve the following functions:

HE) = “Ep(mf)+ “Ei(wf).e
HEE) = “HE (ailg]) + ~FEi(as€))
H(|¢])-e (9.47)
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The stresses are

. 7, 1 :
N (M3 —2M7 +2) (M3 - 2) —S{(ks — ko) G (21)}
el k-H ko —1é2 >d)
4B, | ksH (&) + ke e & >d, (9.48)
T | —ksH* (&) + ke —2l&l & <de
L T_yoy:_(Mtz)Ql%{(k — iks) G (1)}
vy PO 2 u 5 6 1
L ABD, | kH (&) + Ty T, & > (9.49)
™ —ksH* (&) + ke —2l@l & <
] 70 p .
oy = 2= (02— 2) ZAR (s — i) G ()}
2 ksHe&y) + mhke —182, >d,
R N CY:Y)
T | —ksH* (&) + ke 212l & <

A Partial wave expansion

A useful result in wave theory is the expansion of the plane wave in a Fourier series
of the polar angle 6. In polar coordinates the spatial factor of a plane wave of unit
amplitude is

ikx — ikrcosO'e

Consider the following product of exponential functions

o[£ 2 (2] [2 (Y]

< TEPR R (e (/2
_Zoot [ nl U(n+1) * 2l(n +2)! oot (D) ri(n+r)! e

The coeflicient of ¢ is nothing but J,(z), hence

exp [§e<t — %g] = i::ot"Jn(z).
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Figure 16: Stress variations in the ground under transonic load on the surface.
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Now we set

te=1ie? ze=kr.e

The plane wave then becomes
ikr _ i in(9+ﬂ/2Jn(2).€
N=—00
Using the fact that J_,, = (—1)"J,, we finally get

the — ik cosf Z €nt" Jp(kr) cosnb,e (A1)

where €, is the Jacobi symbol. The above result may be viewed as the Fourier expan-
sion of the plane wave with Bessel functions being the expansion coefficients. In wave
propagation theories, each term in the series represents a distinct angular variation and
is called a partial wave.

Using the orthogonality of cosnf, we may evaluate the Fourier coefficient

Jn(kr) =

/7r thrcost cos nfde, (A.2)
0

€T

which is one of a host of integral representations of Bessel functions.
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B Approximate evaluation of an integral
Consider the integral
2 .
| a0l + cos(o — 9,)] Hriteos0-0)
0
For large krethe stationary phase points are found from

0 .
%[1 —cos(f —6,)] =sin(6 — 0,) =0

or § =46,,0, + m within the range [0, 27|. Near the first stationary point the integrand

is dominated by
2A(90) ikt(6—60)2/2‘

When the limits are approximated by (—o0, c0), the integral can be evaluated to give

o0 g2 |21 in
A(@O) /_Oo ikro /2d9: ﬁe /4./4(90)

Near the second stationary point the integral vanishes since 1+cos(f—6,) ==1—1 = 0.

Hence the result (6.28) follows.
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