1.138J/2.062J/18.376J Wave Propagation

Take-Home Exam

This is a closed-book exam. You may use only your own class notes, problem sets and the lecture notes posted on the $1.138 \mathrm{~J} / 2.062 \mathrm{~J} / 18.376 \mathrm{~J}$ website. You are not allowed to discuss this exam with anyone else.

Problem 1 (10 points)

A long, uniform taut string (mass per unit length ρ, tension T) along $-\infty<x<\infty$ is supported on an elastic foundation of stiffness α, and a point mass M is attached at $x=0$.

Suppose that a time-harmonic vertical force

$$
F \cos \Omega t
$$

is applied to the mass at $x=0$.
Determine the steady-state displacement response of the string for $-\infty<x<\infty$.

Problem 2 (10 points)

The propagation of free uni-directional surface waves of small amplitude on moderately shallow water is governed by the equation

$$
\frac{\partial \eta}{\partial t}+c_{0} \frac{\partial \eta}{\partial x}+\beta \frac{\partial^{3} \eta}{\partial x^{3}}=0
$$

where $\eta(x, t)$ is the free-surface elevation and c_{0} and β are constants.
(a) Suppose that an external localized pressure disturbance traveling with constant speed V acts on the free surface. Determine the wavenumber(s) of the excited steadystate radiating wave(s), depending on the forcing speed V. Sketch the position of these waves relative to the forcing. (Take $c_{0}>0$ and consider $\beta>0$ and $\beta<0$ as well as $V>0$ and $V<0$.)
(b) Suppose at $t=0$ a localized initial wave disturbance is introduced in the vicinity of $x=0$. Sketch qualitatively the time history of the response for $t>0$ at a fixed station $x=L>0$, far from the region of the initial disturbance. Sketch qualitatively a snapshot of the disturbance for $-\infty<x<\infty$ at time $t=T$, long after the initial excitation. Justify your answers. (Again, $c_{0}>0$ and consider $\beta>0$ and $\beta<0$.)

Problem 3 (10 points)

Consider a long uniform string of mass per unit length ρ, split into two pieces. The two halves are attached to a massless ring which slides vertically without friction on a fixed rod at $x=0$. The left string half $(x \leq 0)$ is taut with tension T while the right string half ($x \geq 0$) is taut with tension T^{\prime}.

Suppose that a traveling wave of frequency ω comes in from the negative x direction. Compute the reflection and transmission coefficients.

MIT OpenCourseWare
https://ocw.mit.edu

2.062J / 1.138J / 18.376J Wave Propagation

Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

