
´ CROSSING NUMBERS AND THE SZEMER EDI-TROTTER
 

THEOREM
 

In this lecture we study the crossing numbers of graphs and apply the results 
to prove the Szemeredi-Trotter theorem. These ideas follow the paper “Crossing 
numbers and hard Erds problems in discrete geometry” by László A Székely (Combin. 
Probab. Comput. 6 (1997), no. 3, 353-358). 

1. Crossing number estimates 

Proposition 1.1. If G is a planar graph with E edges and V vertices, then E −3V ≤ 
0. 

Proof. We can reduce to the case that G is connected. 
Suppose that G is planar and consider an embedding of G into S2 . This embedding 

cuts S2 into faces, and we get a polyhedral structure on S2 with V vertices, E edges, 
and some number F of faces. By the Euler formula, V − E + F = 2. The number 
of faces cannot easily be read from the graph G, but we can estimate it as follows. 
Each face has at least three edges in its boundary, whereas each edge borders exactly 
two faces. Therefore F ≤ (2/3)E. Plugging in we get 

2 = V − E + F ≤ V − (1/3)E. 
Rearranging gives E − 3V ≤ −6, and we’re done. D 

Technical details: Why did we assume G connected? Consider a graph homeo
morphic to two circles, embedded in S2 as two concentric circles. This gives three 
“faces” - two disks and an annulus. The Euler formula is false for this configuration 
because annular faces are not allowed. In class, we discussed some other configu
rations that require thought, like a single edge, and a tree. There is an interesting 
book by Lakatos that describes of difficulty of correctly formulating the hypotheses 
of the Euler formula. 

If E −3V is positive, then we see that G is not planar, and if E −3V is large then 
we may expect that G has a large crossing number. We prove a simple bound for 
this now. 

Proposition 1.2. The crossing number of G is at least E − 3V . 

Proof. Let k(G) be the crossing number of G. Embed G in the plane with k(G) 
crossings. By removing at most k(G) edges, we get a planar graph G′ with E ′ = E−k 

′ − 3V ′edges and V ′ ≤ V vertices. We see 0 ≥ E ≥ E − k − 3V . D 
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For perspective, consider the complete graph Kn. It has n vertices and n 
2

edges. 
For large n, this proposition shows that the crossing number of Kn is � n2 . On 
the other hand, the only upper bound we have so far is the trivial bound that the 
crossing number of Kn is ; n4 . 

What may we hope to improve in this proposition? When we remove an edge 
of G, it’s in our interest to remove the edge with the most crossings, and when we 
do this, the crossing number of G can decrease by more than 1. For example, for 
the complete graph Kn, it looks plausible that there is always an edge with ∼ n2 

crossings. How may we estimate this? 
This seems to be a tricky problem, and Székely found a very clever solution. 

Instead of trying to prove that one edge intersects many other edges, he considered 
a small random subgraph G′ ⊂ G and proved that two edges of G′ must cross. Since 
G′ is only a small piece of G, it follows that many pairs of edges in G must cross. 

Theorem 1.3. If G is a graph with E edges and V vertices, and E ≥ 4V , then the 
crossing number of G is at least (1/64)E3V −2 . 

This theorem was proven by several authors before Székely, but we give his proof. 
It shows that the crossing number of the complete graph Kn is � n4 as a special 
case. 

Proof. Let p be a number between 0 and 1 which we choose below. Let G′ be a 
random subgraph of G formed by including each vertex of G independently with 
probability p. We include an edge of G in G′ if its endpoints are in G′ . 

We consider the expected values for the number of vertices and edges in G′ . The 
′expected value of V ′ is pV . The expected value of E is p2E. For every subgraph 

G′ ⊂ G, the crossing number of G′ is at least E ′ −3V ′ . Therefore, the expected value 
of the crossing number of G′ is at least p2E − 3pV . 

On the other hand, we give an upper bound on the expected crossing number of 
G′ as follows. Let k = k(G) be the crossing number of G. Let F : G → R2 be a legal 
embedding with k crossings. We claim that each crossing of F involves two disjoint 
edges. In other words, two edges that share a vertex don’t cross. We come back 
to the claim at the end. By restricting F to G′, we get an embedding of G′ with 
p4k crossings on average. This is because each crossing involves four vertices, and it 
appears as a crossing of F (G′) only if all four vertices are included in G′ . (If F had 
a crossing involving two edges containing a common vertex, then it would appear 
with the much higher probability p3.) Therefore, the expected value of the crossing 
number of G′ is at most p4k. 

Comparing our upper and lower bounds, we see that p4k ≥ p2E − 3pV , and so we 
get the following lower bound for k. 
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k ≥ p −2E − 3p −3V. 
We can now choose p to optimize the right-hand side. We choose p = 4V/E, and 

we have p ≤ 1 since we assumed 4V ≤ E. Plugging in we get k ≥ (1/64)E3V −2. 
To finish the proof, we just have to check the claim that F has no crossings of 

edges that share a vertex. Given any map with such a crossing, we explain how to 
modify it to reduce the crossing number. Say that F (e1) and F (e2) each leave F (v) 
and cross at x. (If they cross several times, then let x be the last crossing.) We 
modify F as follows. Suppose that F (e1) crosses k1 other edges on the way from 
F (v) to x and that F (e2) crosses k2 other edges on the way from F (v) to x. We 
choose the labelling so that k1 ≤ k2. Then we modify F on the edge e2, making 
F (e2) follow parallel to F (e1) until x and then rejoin its original course at x, so that 
F (e1) and F (e2) never cross. This operation reduces the crossing number of x, and 
so a minimal map F has no such crossings. D 

2. The Szemerédi-Trotter theorem 

Theorem 2.1. Let L be a set of L lines in the plane. Let Pk be the set of points 
that lie on at least k lines of L. Then the number of points in Pk is at most 
max(2Lk−1 , 29L2k−3). 

Proof. Using the lines and points, we make a graph mapped into the plane. The 
vertices of our graph G are the points of Pk. We join two vertices with an edge of 
G if the two points are two consecutive points of Pk on a line l ∈ L. This graph is 

G

L
)

not embedded, but the crossing number of our map is at most 
2

≤ L2, since each 
crossing of the graph G must correspond to an intersection of two lines of L. 

We will count the vertices and edges of the graph G and apply the crossing number 
theorem. The number of vertices of our graph is V = |Pk|. The number of edges 
of our graph is kV − L. (At first sight, each vertex should be adjacent to 2k edges 
which would give kV edges. But on each line l ∈ L, the first and last vertices are 
adjacent to one less edge than this initial count.) As long as E ≥ 4V , we can apply 
the crossing number theorem and it gives 

L2 ≥ (1/64)(kV − L)3V −2 . 
Either V ≤ 2L/k, or else kV − L ≥ (1/2)kV . In the former case, we are done. In 

the latter case, we have L2 ≥ 2−9k3V , which means V ≤ 29L2k−3 . 
LOn the other hand, if E < 4V , we have kV − L ≤ 4V , and hence V ≤ 

k−4 . As 
long as k ≥ 8, this implies V ≤ 2L/k, and we are done. Finally, for k < 8, the trivial 

G

L
) G

k
)

bound |Pk| ≤ 
2

/ 
2

≤ 2L2k−2 ≤ 29L2k−3 . D 
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