## CROSSING NUMBERS AND THE SZEMERÉDI-TROTTER THEOREM

In this lecture we study the crossing numbers of graphs and apply the results to prove the Szemeredi-Trotter theorem. These ideas follow the paper "Crossing numbers and hard Erds problems in discrete geometry" by László A Székely (Combin. Probab. Comput. 6 (1997), no. 3, 353-358).

## 1. Crossing number estimates

Proposition 1.1. If $G$ is a planar graph with $E$ edges and $V$ vertices, then $E-3 V \leq$ 0 .

Proof. We can reduce to the case that $G$ is connected.
Suppose that $G$ is planar and consider an embedding of $G$ into $S^{2}$. This embedding cuts $S^{2}$ into faces, and we get a polyhedral structure on $S^{2}$ with $V$ vertices, $E$ edges, and some number $F$ of faces. By the Euler formula, $V-E+F=2$. The number of faces cannot easily be read from the graph $G$, but we can estimate it as follows. Each face has at least three edges in its boundary, whereas each edge borders exactly two faces. Therefore $F \leq(2 / 3) E$. Plugging in we get

$$
2=V-E+F \leq V-(1 / 3) E
$$

Rearranging gives $E-3 V \leq-6$, and we're done.
Technical details: Why did we assume $G$ connected? Consider a graph homeomorphic to two circles, embedded in $S^{2}$ as two concentric circles. This gives three "faces" - two disks and an annulus. The Euler formula is false for this configuration because annular faces are not allowed. In class, we discussed some other configurations that require thought, like a single edge, and a tree. There is an interesting book by Lakatos that describes of difficulty of correctly formulating the hypotheses of the Euler formula.

If $E-3 V$ is positive, then we see that $G$ is not planar, and if $E-3 V$ is large then we may expect that $G$ has a large crossing number. We prove a simple bound for this now.

Proposition 1.2. The crossing number of $G$ is at least $E-3 V$.
Proof. Let $k(G)$ be the crossing number of $G$. Embed $G$ in the plane with $k(G)$ crossings. By removing at most $k(G)$ edges, we get a planar graph $G^{\prime}$ with $E^{\prime}=E-k$ edges and $V^{\prime} \leq V$ vertices. We see $0 \geq E^{\prime}-3 V^{\prime} \geq E-k-3 V$.

For perspective, consider the complete graph $K_{n}$. It has $n$ vertices and $\binom{n}{2}$ edges. For large $n$, this proposition shows that the crossing number of $K_{n}$ is $\gtrsim n^{2}$. On the other hand, the only upper bound we have so far is the trivial bound that the crossing number of $K_{n}$ is $\lesssim n^{4}$.

What may we hope to improve in this proposition? When we remove an edge of $G$, it's in our interest to remove the edge with the most crossings, and when we do this, the crossing number of $G$ can decrease by more than 1 . For example, for the complete graph $K_{n}$, it looks plausible that there is always an edge with $\sim n^{2}$ crossings. How may we estimate this?

This seems to be a tricky problem, and Székely found a very clever solution. Instead of trying to prove that one edge intersects many other edges, he considered a small random subgraph $G^{\prime} \subset G$ and proved that two edges of $G^{\prime}$ must cross. Since $G^{\prime}$ is only a small piece of $G$, it follows that many pairs of edges in $G$ must cross.

Theorem 1.3. If $G$ is a graph with $E$ edges and $V$ vertices, and $E \geq 4 V$, then the crossing number of $G$ is at least $(1 / 64) E^{3} V^{-2}$.

This theorem was proven by several authors before Székely, but we give his proof. It shows that the crossing number of the complete graph $K_{n}$ is $\gtrsim n^{4}$ as a special case.

Proof. Let $p$ be a number between 0 and 1 which we choose below. Let $G^{\prime}$ be a random subgraph of $G$ formed by including each vertex of $G$ independently with probability $p$. We include an edge of $G$ in $G^{\prime}$ if its endpoints are in $G^{\prime}$.

We consider the expected values for the number of vertices and edges in $G^{\prime}$. The expected value of $V^{\prime}$ is $p V$. The expected value of $E^{\prime}$ is $p^{2} E$. For every subgraph $G^{\prime} \subset G$, the crossing number of $G^{\prime}$ is at least $E^{\prime}-3 V^{\prime}$. Therefore, the expected value of the crossing number of $G^{\prime}$ is at least $p^{2} E-3 p V$.

On the other hand, we give an upper bound on the expected crossing number of $G^{\prime}$ as follows. Let $k=k(G)$ be the crossing number of $G$. Let $F: G \rightarrow \mathbb{R}^{2}$ be a legal embedding with $k$ crossings. We claim that each crossing of $F$ involves two disjoint edges. In other words, two edges that share a vertex don't cross. We come back to the claim at the end. By restricting $F$ to $G^{\prime}$, we get an embedding of $G^{\prime}$ with $p^{4} k$ crossings on average. This is because each crossing involves four vertices, and it appears as a crossing of $F\left(G^{\prime}\right)$ only if all four vertices are included in $G^{\prime}$. (If $F$ had a crossing involving two edges containing a common vertex, then it would appear with the much higher probability $p^{3}$.) Therefore, the expected value of the crossing number of $G^{\prime}$ is at most $p^{4} k$.

Comparing our upper and lower bounds, we see that $p^{4} k \geq p^{2} E-3 p V$, and so we get the following lower bound for $k$.

$$
k \geq p^{-2} E-3 p^{-3} V
$$

We can now choose $p$ to optimize the right-hand side. We choose $p=4 V / E$, and we have $p \leq 1$ since we assumed $4 V \leq E$. Plugging in we get $k \geq(1 / 64) E^{3} V-2$.

To finish the proof, we just have to check the claim that $F$ has no crossings of edges that share a vertex. Given any map with such a crossing, we explain how to modify it to reduce the crossing number. Say that $F\left(e_{1}\right)$ and $F\left(e_{2}\right)$ each leave $F(v)$ and cross at $x$. (If they cross several times, then let $x$ be the last crossing.) We modify $F$ as follows. Suppose that $F\left(e_{1}\right)$ crosses $k_{1}$ other edges on the way from $F(v)$ to $x$ and that $F\left(e_{2}\right)$ crosses $k_{2}$ other edges on the way from $F(v)$ to $x$. We choose the labelling so that $k_{1} \leq k_{2}$. Then we modify $F$ on the edge $e_{2}$, making $F\left(e_{2}\right)$ follow parallel to $F\left(e_{1}\right)$ until $x$ and then rejoin its original course at $x$, so that $F\left(e_{1}\right)$ and $F\left(e_{2}\right)$ never cross. This operation reduces the crossing number of $x$, and so a minimal map $F$ has no such crossings.

## 2. The Szemerédi-Trotter theorem

Theorem 2.1. Let $\mathfrak{L}$ be a set of $L$ lines in the plane. Let $P_{k}$ be the set of points that lie on at least $k$ lines of $\mathfrak{L}$. Then the number of points in $P_{k}$ is at most $\max \left(2 L k^{-1}, 2^{9} L^{2} k^{-3}\right)$.
Proof. Using the lines and points, we make a graph mapped into the plane. The vertices of our graph $G$ are the points of $P_{k}$. We join two vertices with an edge of $G$ if the two points are two consecutive points of $P_{k}$ on a line $l \in \mathfrak{L}$. This graph is not embedded, but the crossing number of our map is at most $\binom{L}{2} \leq L^{2}$, since each crossing of the graph $G$ must correspond to an intersection of two lines of $\mathfrak{L}$.

We will count the vertices and edges of the graph $G$ and apply the crossing number theorem. The number of vertices of our graph is $V=\left|P_{k}\right|$. The number of edges of our graph is $k V-L$. (At first sight, each vertex should be adjacent to $2 k$ edges which would give $k V$ edges. But on each line $l \in \mathfrak{L}$, the first and last vertices are adjacent to one less edge than this initial count.) As long as $E \geq 4 V$, we can apply the crossing number theorem and it gives

$$
L^{2} \geq(1 / 64)(k V-L)^{3} V^{-2}
$$

Either $V \leq 2 L / k$, or else $k V-L \geq(1 / 2) k V$. In the former case, we are done. In the latter case, we have $L^{2} \geq 2^{-9} k^{3} V$, which means $V \leq 2^{9} L^{2} k^{-3}$.

On the other hand, if $E<4 V$, we have $k V-L \leq 4 V$, and hence $V \leq \frac{L}{k-4}$. As long as $k \geq 8$, this implies $V \leq 2 L / k$, and we are done. Finally, for $k<8$, the trivial bound $\left|P_{k}\right| \leq\binom{ L}{2} /\binom{k}{2} \leq 2 L^{2} k^{-2} \leq 2^{9} L^{2} k^{-3}$.

MIT OpenCourseWare
http://ocw.mit.edu

## 18.S997 The Polynomial Method

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

