## HARDY-LITTLEWOOD-SOBOLEV INEQUALITY

Consider a kernel $K_{\alpha}(x):=|x|^{-\alpha}$ and convolution $T_{\alpha} f:=f * K_{\alpha}$. Last time, we looked at how $T_{\alpha}$ works when $f=\chi_{B_{r}}$ is the characteristic function on a ball of radius $r$.

Proposition 0.1. $\left\|T_{\alpha} \chi_{B_{r}}\right\|_{q} \lesssim\left\|\chi_{B_{r}}\right\|_{p}$ if and only if $\alpha q>n$ and $n-\alpha+\frac{n}{q}=\frac{n}{p}$. Or equivalently, $p>1$ and $\alpha=n\left(1-\frac{1}{q}+\frac{1}{p}\right)$.

In fact, this result is true for general cases.
Theorem 0.2. (Hardy-Littlewood-Sobolev) If $p>1$ and $\alpha=n\left(1-\frac{1}{q}+\frac{1}{p}\right)$, then $\left\|T_{\alpha} f\right\|_{q} \lesssim\|f\|_{p}$.

Apart from our previous examples, the next simplest example would be $f:=$ $\sum_{j} \chi_{B_{j}}$ where $B_{j}$ are some balls. It is easy to treat nonoverlapping balls, but rather difficult in overlapping cases. So, it might be helpful to know about the geometry of overlapping balls.

## 1. Ball doubling

Lemma 1.1. (Vitali Covering Lemma) If $\left\{B_{i}\right\}_{i \in I}$ is a finite collection of balls, then there exist a subcollection $J \subset I$ such that $\left\{B_{j}\right\}_{j \in J}$ are disjoint but $\bigcup_{i \in I} B_{i} \subset$ $\bigcup_{j \in J} 3 B_{j}$.

What happens if $I$ is infinite? It is no longer true for infinite $I$ : consider $\{B(0, r)$ : $\left.r \in \mathbb{R}^{+}\right\}$. Any two of them are overlapping, so any disjoint subcollection can contain only one ball. You cannot cover whole space by a bounded ball, so the theorem is false for this case. How can we fix it? If we loosen the conclusion to cover only a compact set $K \subset \bigcup_{i \in I} B_{i}$, then we can always find a disjoint subcollection $J(K) \subset I$ such that $K \subset \bigcup_{j \in J(K)} 3 B_{j}$.

From Vitali covering lemma, we get the following:
Lemma 1.2. (Ball doubling) If $\left\{B_{i}\right\}_{i \in I}$ is a finite collection of balls, then $\left|\bigcup 2 B_{i}\right| \leq$ $6^{n}\left|\bigcup B_{i}\right|$.

Proof. From the proof of Vitali Covering Lemma, for each $B_{i}$ we can find some $j \in J$ such that $B_{i} \subset 3 B_{j}$. So, $2 B_{i} \subset 6 B_{j}$. Hence $\left|\bigcup 2 B_{i}\right| \leq\left|\bigcup 6 B_{j}\right| \leq 6^{n} \sum\left|B_{j}\right|=$ $6^{n}\left|\bigcup B_{j}\right|$.

Is it sharp? It seems to be $2^{n}$ instead of $6^{n}$, but I'm not sure and at least hard to prove. This coefficient is not so important for the proof be given later, so let's go over it.

## 2. Hardy-Littlewood maximal function

Denote the average of f on $A$ by $\oint_{A} f:=\frac{1}{\operatorname{Vol} A} \int_{A} f$. The Hardy-Littlewood maximal function of $f$ is defined to be $M f(x):=\sup _{r} \oint_{B(x, r)}|f|$. Let $S_{g}(h):=\left\{x \in \mathbb{R}^{n}:|g|>\right.$ $h\}$. Then,
Lemma 2.1. $\left|S_{M f}(h)\right| \lesssim h^{-1}\|f\|_{1}$.
Proof. For each $x \in S_{M f}(h)$, there exists $r(x)$ such that $\oint_{B(x, r(x))}|f| \geq h$, so $\int_{B(x, r(x))}|f| \geq$ $h|B(x, r(x))|$. These $B(x, r(x))$ cover $S_{M f}(h)$, so by Vitali covering lemma, we can find disjoint $B_{j}$ 's whose multiple cover $S_{M f}(h)$. Hence,

$$
\left|S_{M f}(h)\right| \lesssim \sum_{j}\left|B_{j}\right| \lesssim h^{-1} \oint_{\cup B_{j}}|f| \leq h^{-1}\|f\|_{1} .
$$

Now we can estimate the $L_{p}$-norm of $M f$ by that of $f$.
Proposition 2.2. $\|M f\|_{p} \lesssim\|f\|_{p}$.
One naive approach would be dividing the range and estimate in each range. Namely, let $T_{M f}\left(2^{k}\right):=\left\{x \in \mathbb{R}^{n}: 2^{k}<|M f| \leq 2^{k+1}\right\} \subset S_{M f}\left(2^{k}\right)$ and we have

$$
\int|M f|^{p} \sim \sum_{k=-\infty}^{\infty}\left|T_{M f}\left(2^{k}\right)\right| 2^{k p} \lesssim \sum_{k} 2^{-k} 2^{k p}\|f\|_{1}
$$

but the summation in the righthand side diverges. We need a slight modification of the previous lemma.
Lemma 2.3. $\left|S_{M f}(h)\right| \lesssim h^{-1} \int_{S_{f}(h / 2)}|f|$.
Proof. In the previous proof, we found disjoint $B_{j}$ which covering $S_{M f}(h)$ such that $\int_{B_{j}}|f| \geq h\left|B_{j}\right|$. However, we also have $\int_{B_{j} \backslash S_{f}(h / 2)}|f| \leq \frac{h}{2}\left|B_{j}\right|$, so $\int_{B_{j} \cap S_{f}(h / 2)}|f| \geq$ $\frac{h}{2}\left|B_{j}\right|$. Do the same estimate with $B_{j} \cap S_{f}(h / 2)$ instead of $B_{j}$ and get the desired result.

Now we can prove the proposition.
Proof. Use the same approach above with our modified lemma.

$$
\int|M f|^{p} \lesssim \sum_{k=-\infty}^{\infty}\left|S_{M f}\left(2^{k}\right)\right| 2^{k p} \lesssim \sum_{k} 2^{k(p-1)} \int_{S_{f}\left(2^{k-1}\right)}|f|
$$

By interchanging summation and integral, we have

$$
\int|f| \sum_{2^{k-1} \leq|f|} 2^{k(p-1)} \sim \int|f| \cdot|f|^{p-1}=\|f\|_{p}^{p}
$$

So, $\|M f\|_{p} \lesssim\|f\|_{p}$.

## 3. Proof of HLS Inequality

Step 1. $T_{\alpha} f(x)$ can be written in terms of $\oint_{B(x, r)} f$.

## Lemma 3.1.

$$
T_{\alpha} f(x)=\int_{0}^{\infty} r^{n-\alpha-1}\left(\oint_{B(x, r)} f\right) d r .
$$

Proof. Just a computation.
Step 2. Upper bounds of $\oint_{B(x, r)} f$. One trivial upper bound is $M f(x)$ by definition. Also, we can get

$$
\oint_{B(x, r)} f \lesssim r^{-n} \int_{B(x, r)}|f| \lesssim r^{-n}\|f\|_{p} r^{n(p-1) / p}=r^{-n / p}\|f\|_{p}
$$

by Hölder. We would fail if we only use one of them. Rather, fix $r_{\text {crit }}(x)$ and use $M f(x)$ for $r \leq r_{\text {crit }}$, $L^{p}$ bound for $r \geq r_{\text {crit }}$. This approximation always gives us $\left|T_{\alpha} f(x)\right| \lesssim(M f)^{A}\|f\|_{p}^{B}$ for some $A, B$ with $A+B=1$.

Step 3. $\int\left|T_{\alpha} f\right|^{q} \lesssim\|f\|_{p}^{B q} \int(M f)^{A q} \lesssim\|f\|_{p}^{B q}\|f\|_{A q}^{A q}$ as long as $A q>1$. If $p=A q$, then we have $\int\left|T_{\alpha} f\right|^{q} \lesssim\|f\|_{p}^{q}$, so $\left\|T_{\alpha} f\right\|_{q} \lesssim\|f\|_{p}$. This case together with $A q>1$ is exactly the hypothesis condition in the theorem. Also, we already know that this condition is the only possible case, so we are done. You may calculate $r_{\text {crit }}, A, B$ to check.

MIT OpenCourseWare
http://ocw.mit.edu

## 18.S997 The Polynomial Method

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

