
HOW COMBINATORICS AND ANALYSIS INTERACT

1. Loomis-Whitney Inequality

Let X be a set of unit cubes in the unit cubical lattice in R
n, and let |X| be its

volume. Let Πj be the projection onto the x⊥

j hyperplane. The motivating question
is: if Πj is small for all j, what can we say about |X|?

n

Theorem 1.1 (Loomis-Whitney 50’s). If |Πj(X)| ≤ A, then |X| . An−1 .

Remark. The sharp constant in the . is 1. The original proof is by using H older’s
inequality repeatedly.

Define a column to be the set of cubes obtained by starting at any cube and taking
all cubes along a line in the xj-direction.

Lemma 1.2 (Main lemma). If |Πj(X)| ≤ B, then there exists a column of cubes
1

with between 1 and B n−1 cubes o

∑

f X.

1

Proof. Suppose not, so every column has > B n−1 cubes. This means that there are
1 2

> B n−1 cubes in some x1-line. Taking the x2-lines through those, there are > B n−1

cubes in some x1, x2-plane, and so on. Repeating this n− 1 times, we get > B cubes
in the x1, . . . , xn−1-plane, a contradiction. �

∑ n

Corollary 1.3. If j |Πj(X)| ≤ B, then |X| ≤ B n−1 .

Proof. Let X ′ be X with its smallest column removed. Then |Πj(X
′)| ≤ B − 1,

n 1

so by induction we get |X ′| ≤ (B − 1)n−1 , hence |X| ≤ B n−1 +

∑

|X ′|. �

Note that Corollary 1.3 implies Theorem 1.1.

Theorem 1.4 (more general Loomis-Whitney). If U is an open set in Rn with
n

|Πj(U)| ≤ A, then |U | . An−1 .

n

Proof. Take Uε ⊂ U be a union of ε-cubes in ε-lattice. Then |Uε| . An−1 and
|Uε| → |U |. �

Corollary 1.5 (Isoperimetric inequality). If U is a bounded open set in Rn, then
n

Voln(U) . Voln−1(∂U)n−1 .
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Proof. By projection onto translates of each xj-hyperplane, we see that |Πj(U)| ≤
Voln−1(∂U), so we may apply Theorem 1.4. �

Remark. The fact that U was bounded was used to define the projection of U onto
translates of each xj-hyperplane.

2. Sobolev Inequality

Let u ∈ C1 Rn
comp( ) satisfy |∇u| = 1. How big can u be? We would like the find

the right notion of size for u

∫

that answers this question.

Theorem 2.1 (Sobolev inequality). If u ∈ C1
comp

(Rn), then

||u|| n
n−1

. ||∇u||L1.
L

Here, the Lp-norm ||u||Lp is given by
1/p

||u||Lp =

(
∫

|u|p
)

so that ||h · χ || = h · |A|1/p
A p . For some context about Lp-norms, for a function u,

let S(h) := {x ∈ Rn | |u(x)| > h}.

Proposition 2.2. If ||u||p ≤ M , then |S(h)| ≤ Mph−p.

Proof. Just estimate Mp =
∫

|u|p ≥ hp|S(h)|. �

We now prove the Sobolev inequality. A first try is the following bound.

Lemma 2.3. If u ∈ C1
comp

(Rn), |Πj(S(h))| ≤ h−1 · ||∇u||L1.

Proof. For x ∈ S(h), take a line ℓ in the xj-direction. It eventually reaches a point
x′ where u = 0, so

∫

|∇U | ≥ h by the fundamental theorem of calculus. This means
ℓ

that

||∇u||L1 ≥

∫

|∇u| =

∫ ∫

|∇u|dxjdxother ≥ |Πj(S(h))| · h. �
Πj(S(h))×R Πj(S(h)) R

If we apply Theorem 1.4 to the output of Lemma 2.3, we see that
n n

|S(h)| . h−
n−1 · ||∇u||n−1 ,

which looks like the output of Proposition 2.2. So we would like to establish some-
thing like the converse in this case. For this, we require a more detailed analysis.

Lemma 2.4 (Revised version of Lemma 2.3). Let S := {x ∈ Rn | 2k−1
k ≤ |u(x)| ≤

2k}. If u ∈ C1 R
comp

( n), then we have

|ΠjSk| . 2−k

∫

|∇u|.
Sk−1
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Proof. For x ∈ Sk, draw a line ℓ in the xj-direction through x. There is a point x′ on
ℓ with u(x′) = 0. Between x and x′, there is some region on ℓ where |u| is between
2k−2 and 2k−1. Then we see that along each such ℓ, we have

∫

1
|∇u| ≥ 2k.

Sk−1∩ℓ 4

Summing this along all ℓ perpendicular to a translate of the xj-hyperplane yields the
result. �

n

k n n 1

Corollary 2.5. |Sk| . 2− n−1 |∇u|
−

.
Sk−1

Proof. Put Lemma 2.4 into Th

(

eo

∫

rem 1.4.

)

�

Proof of Theorem 2.1. Take the estimate

∞
(

∫

)
n

∫ n−1
∑ ∑

(
∫

n
n−1n

|u|n−1 ∼ 2k n

|Sk| n−1 . |∇u| ≤ |∇u|
Rn

k=−∞
Sk k−1

)

,

where in the last step we move the sum inside the n -
n−

power. �
1

Remark. The sharp constant in Theorem 2.1 is provided by a smooth approximation
to a step function where the width of the region of smoothing is very small.

3. Lp estimates for linear operators

If f, g : Rn → R or C, define the convolution to be

(f ⋆ g)(x) =

∫

f(y)g(x− y)dy.
Rn

We can explain this definition by the following story. Suppose there is a factory at 0
which generates a cloud of pollution centered at 0 described by g(−y). If the density
of factories at x is f(x), then the final observed pollution is f ⋆ g.

We would like to study linear operators like Tαf := f⋆|x|−α, which means explicitly
that

Tαf(x) =

∫

f(y)|x− y|−αdy.

We will take α in the range 0 < α < n, so that if f ∈ C0
comp then the integral converges

for each x. Operators like these occur frequently in PDE. Another example is the
initial value problem for the wave equation.

Example. Let us first see how Tα behaves on some examples for f .
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1. χB1
, where Br is the ball of radius r. We see that

1 |x| ≤ 1
|TαχB1

(x)| ∼

{

|x|−α |x| > 1.

2. χBr
. We see that

rn · r−α |x| ≤ r
|TαχBr

(x)| ∼

{

rn · |x|−α |x| > r.

2.1 δ, the delta function. Morally, this is given by lim −
n→∞ r nχBr

.

A question we would like to ask about Tα is the following. Fix α and n. For which
p, q is there an inequality

(1) ||Tαf ||q . ||f ||p

for all choices of f?
In some sense, this measures how much bigger Tα can make f . First, we determine

the answer in Examples 1 and 2. For Example 1, ||χB1
||p ∼ 1, and

||TαχB1
||11 ∼

∫

(1 + |x|)−αqdx,
Rn

which is finite if and only if αq > n. So (1) holds in Example 1 if and only if αq > n.
Let us assume this from now on.

For Example 2, ||χBr
|| n/p

p ∼ r . For ||TαχBr
||q, the value is given by two terms,

one coming from the ball |x| ≤ r and the outside tail. The condition αq > n says
that the contribution of the tail is finite, so we get the estimate

||Tαχ n−α
Br
||q ∼ ||r χBr

||q ∼ rn−α+n/q.

Thus, we conclude that (1) holds in Example 2 if and only if α · q > n and rn/p .
rn−α+n/q for all r > 0. The latter condition is equivalent to n/p = n − α + n/q.

For a general linear operator T , we would like to ask whether

||Tf ||q . ||f ||p

under the conditions that α · q > n and n/p = n − α + n/q. If the answer is yes, we
conclude that the characteristic functions of balls are in some sense typical for the
action of T ; otherwise, we would like to understand which functions f this fails for.



MIT OpenCourseWare
http://ocw.mit.edu

18.S997 The Polynomial Method
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



