PROOF OF THUE'S THEOREM - PART III

1. Outline of the proof of Thue's theorem

Theorem 1.1. (Thue) If β is an irrational algebraic number, and $\gamma>\frac{\operatorname{deg}(\beta)+2}{2}$, then there are only finitely many integer solutions to the inequality

$$
\left|\beta-\frac{p}{q}\right| \leq|q|^{-\gamma} .
$$

By using parameter counting, we constructed polynomials P with integer coefficients that vanish to high order at (β, β). The degree of P and the size of P are controlled.

If r_{1}, r_{2} are rational numbers with large height, then we proved that P cannot vanish to such a high order at $r=\left(r_{1}, r_{2}\right)$. For some j of controlled size, we have $\partial_{1}^{j} P(r) \neq 0$. Since P has integer coefficients, and r is rational, $\left|\partial_{1}^{j} P(r)\right|$ is bounded below.

Since P vanishes to high order at (β, β), we can use Taylor's theorem to bound $\left|\partial_{1}^{j} P(r)\right|$ from above in terms of $\left|\beta-r_{1}\right|$ and $\left|\beta-r_{2}\right|$. So we see that $\left|\beta-r_{1}\right|$ or $\left|\beta-r_{2}\right|$ needs to be large.

Here is the framework of the proof. We suppose that there are infinitely many rational solutions to the inequality $|\beta-r| \leq\|r\|^{-\gamma}$. Let $\epsilon>0$ be a small parameter we will play with. We let r_{1} be a solution with very large height, and we let r_{2} be a solution with much larger height. Using these, we will prove that $\gamma \leq \frac{\operatorname{deg}(\beta)+2}{2}+C(\beta) \epsilon$.

2. The polynomials

For each integer $m \geq 1$, we proved that there exists a polynomial $P=P_{m} \in$ $\mathbb{Z}\left[x_{1}, x_{2}\right]$ with the following properties:
(1) We have $\partial_{1}^{j} P(\beta, \beta)=0$ for $j=0, \ldots, m-1$.
(2) We have $D e g_{2} P \leq 1$ and $D e g_{1} P \leq(1+\epsilon) \frac{\operatorname{deg}(\beta)}{2} m$.
(3) We have $|P| \leq C(\beta, \epsilon)^{m}$.

3. The rational point

Suppose that r_{1}, r_{2} are good rational approximations to β in the sense that

$$
\left\|\beta-r_{i}\right\| \underset{1}{\leq}\left\|r_{1}\right\|^{-\gamma}
$$

Also, we will suppose that $\left\|r_{1}\right\|$ is sufficiently large in terms of β, ϵ, and that $\left\|r_{2}\right\|$ is sufficiently large in terms of β, ϵ, and $\left\|r_{1}\right\|$.

If $l \geq 2$ and $\partial_{1}^{j} P(r)=0$ for $j=0, \ldots, l-1$, then we proved the following estimate:

$$
|P| \geq \min \left((2 \operatorname{deg} P)^{-1}\left\|r_{1}\right\|^{\frac{l-1}{2}},\left\|r_{2}\right\|\right)
$$

Given our bound for $|P|$, we get

$$
C(\beta, \epsilon)^{m} \geq \min \left(\left\|r_{1}\right\|^{\frac{l-1}{2}},\left\|r_{2}\right\|\right)
$$

From now on, we only work with m small enough so that

$$
C(\beta, \epsilon)^{m}<\left\|r_{2}\right\| .
$$

Assumption
Therefore, $\left\|r_{1}\right\|^{\frac{l-1}{2}} \leq C(\beta, \epsilon)^{m}$. We assume that $\left\|r_{1}\right\|$ is large enough so that $\left\|r_{1}\right\|^{\epsilon}>C(\beta, \epsilon)$, and this implies that $l \leq \epsilon m$. Therefore, there exists some $j \leq \epsilon m$ so that $\partial_{1}^{j} P(r) \neq 0$.

Let $\tilde{P}=(1 / j!) \partial_{1}^{j} P$. The polynomial \tilde{P} has integer coefficients, and $|\tilde{P}| \leq 2^{\text {deg } P}|P|$. Therefore, \tilde{P} obeys essentially all the good properties of P above:
(1) We have $\partial_{1}^{j} \tilde{P}(\beta, \beta)=0$ for $j=0, \ldots,(1-\epsilon) m-1$.
(2) We have $\operatorname{Deg}_{2} \tilde{P} \leq 1$ and $D e g_{1} \tilde{P} \leq(1+\epsilon) \frac{\operatorname{deg}(\beta)}{2} m$.
(3) We have $|\tilde{P}| \leq C(\beta, \epsilon)^{m}$.
(4) We also have $\tilde{P}(r) \neq 0$.

Since \tilde{P} has integer coefficients, we can write $\tilde{P}(r)$ as a fraction with a known denominator: $q_{1}^{\text {Deg }}{ }_{1} \tilde{P} q_{2}^{\text {Deg }_{2} \tilde{P}}$. Therefore,

$$
|\tilde{P}(r)| \geq\left\|r_{1}\right\|^{-\operatorname{Deg}_{1} \tilde{P}}\left\|r_{2}\right\|^{-\operatorname{Deg}_{2} \tilde{P}} \geq\left\|r_{1}\right\|^{-(1+\epsilon) \frac{\operatorname{deg}(\beta)}{2} m}\left\|r_{2}\right\|^{-1} .
$$

We make some notation to help us focus on what's important. In our problem, terms like $\left\|r_{1}\right\|^{m}$ or $\left\|r_{2}\right\|$ are substantial, but terms like $\left\|r_{1}\right\|^{\epsilon m}$ or $\left\|r_{1}\right\|$ are minor in comparison. Therefore, we write $A \lesssim B$ to mean
$A \leq\left\|r_{1}\right\|^{a \epsilon m}\left\|r_{1}\right\|^{b}$, for some constants a, b depending only on β.
Recall that $\left\|r_{1}\right\|^{\epsilon}$ is bigger than $C(\beta, \epsilon)$, so $C(\beta, \epsilon)^{m} \lesssim 1$. Our main inequality for this section is

$$
\begin{equation*}
|\tilde{P}(r)| \gtrsim\left\|r_{1}\right\|^{-\frac{\operatorname{deg}(\beta)}{2} m}\left\|r_{2}\right\|^{-1} . \tag{1}
\end{equation*}
$$

4. TAYLOR'S THEOREM ESTIMATES

We recall Taylor's theorem.

Theorem 4.1. If f is a smooth function on an interval, then $f(x+h)$ can be approximated by its Taylor expansion around x :
$f(x+h)=\sum_{j=0}^{m-1}(1 / j!) \partial_{j} f(x) h^{j}+E$,
where the error term E is bounded by
$|E| \leq(1 / m!) \sup _{y \in[x, x+h]}\left|\partial_{m} f(y)\right|$.
In particular, if f vanishes to high order at x, then $f(x+h)$ will be very close to $f(x)$.

Corollary 4.2. If Q is a polynomial, and Q vanishes at x to order $m \geq 1$, and if $|h| \leq 1$, then

$$
|Q(x+h)| \leq C(x)^{\operatorname{deg} Q}|Q| h^{m}
$$

Proof. We see that $(1 / m!) \partial^{m} Q$ is a polynomial with coefficients of size $\leq 2^{\operatorname{deg} Q}|Q|$. We evaluate it at a point y with $|y| \leq|x|+1$. Each monomial has norm \leq $2^{\operatorname{deg} Q}|Q|(|x|+1)^{\operatorname{deg} Q}$, and there are $\operatorname{deg} Q$ monomials.

Let $Q(x)=\tilde{P}(x, \beta)$. The polynomial Q vanishes to high order $(1-\epsilon) m$ at $x=\beta$, and $|Q| \leq C(\beta, \epsilon)^{m}$.

From the corollary we see that

$$
\left|\tilde{P}\left(r_{1}, \beta\right)\right| \leq C(\beta, \epsilon)^{m}\left|\beta-r_{1}\right|^{(1-\epsilon) m} .
$$

On the other hand, $\partial_{2} \tilde{P}$ is bounded by $C(\beta, \epsilon)^{m}$ in a unit disk around (β, β), and so

$$
\left|\tilde{P}\left(r_{1}, r_{2}\right)-\tilde{P}\left(r_{1}, \beta\right)\right| \leq C(\beta, \epsilon)^{m}\left|\beta-r_{2}\right|
$$

Combining these, we see that

$$
\begin{equation*}
|\tilde{P}(r)| \lesssim\left|\beta-r_{1}\right|^{(1-\epsilon) m}+\left|\beta-r_{2}\right| \lesssim\left\|r_{1}\right\|^{-\gamma m}+\left\|r_{2}\right\|^{-\gamma} \tag{2}
\end{equation*}
$$

5. Putting it together

As long as $\left\|r_{1}\right\|^{\epsilon}>C(\beta, \epsilon)$ and $\left\|r_{2}\right\|>C(\beta, \epsilon)^{m}$, we have proven the following inequality:

$$
\left\|r_{1}\right\|^{-\frac{\operatorname{deg}(\beta)}{2} m}\left\|r_{2}\right\|^{-1} \lesssim\left\|r_{1}\right\|^{-\gamma m}+\left\|r_{2}\right\|^{-\gamma}
$$

Now we can choose m. As m increases, the right-hand side decreases until $\left\|r_{1}\right\|^{m} \sim$ $\left\|r_{2}\right\|$, and then the $\left\|r_{2}\right\|^{-\gamma}$ term becomes dominant. Therefore, we choose m so that

$$
\left\|r_{1}\right\|^{m} \leq\left\|r_{2}\right\| \leq\left\|r_{1}\right\|^{m+1}
$$

We see that $\left\|r_{2}\right\| \geq\left\|r_{1}\right\|^{m}>C(\beta, \epsilon)^{m}$, so the assumption about r_{2} and m above is satisfied. The inequality becomes

$$
\left\|r_{1}\right\|^{-\frac{d e g(\beta)}{2} m-m} \lesssim\left\|r_{1}\right\|^{-\gamma m}
$$

Multiplying through to make everything positive, we get

$$
\left\|r_{1}\right\|^{\gamma m} \lesssim\left\|r_{1}\right\|^{\frac{\operatorname{deg}(\beta)+2^{2}}{2} m} .
$$

Unwinding the \lesssim, this actually means

$$
\left\|r_{1}\right\|^{\gamma m} \leq\left\|r_{1}\right\|^{b+a \epsilon m+\frac{\operatorname{deg}(\beta)+2}{2} m} .
$$

(If we had been more explicit, we could have gotten specific values for a, b, but it doesn't matter much.)

Taking the logarithm to base $\left\|r_{1}\right\|$ and dividing by m, we get

$$
\gamma \leq(b / m)+a \epsilon+\frac{\operatorname{deg}(\beta)+2}{2}
$$

If $\left\|r_{2}\right\|$ is large enough compared to $\left\|r_{1}\right\|$, then $(1 / m) \leq \epsilon$, and we have $\gamma \leq$ $(a+b) \epsilon+\frac{\operatorname{deg}(\beta)+2}{2}$. Taking $\epsilon \rightarrow 0$ finishes the proof.

MIT OpenCourseWare
http://ocw.mit.edu

18.S997 The Polynomial Method

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

