PROOF OF THUE'S THEOREM - PART II

1. POLYNOMIALS THAT VANISH TO HIGH ORDER AT A RATIONAL POINT Suppose that $P \in \mathbb{Z}[x_1, x_2]$ has the special form

$$P(x_1, x_2) = P_1(x_1)x_2 + P_0(x_1).$$

Suppose that $r \in \mathbb{Q}^2$. If P vanishes to high order at a complicated point r, how big do the coefficients of P have to be? More precisely, we suppose that $\partial_1^j P(r) = 0$ for $0 \le j \le l-1$. Last time we gave two examples. The polynomial $q_2x_2 - p_2$ which has size $||r_2||$, and the polynomial $(q_1x_1 - p_1)^l$, which has size $||r_1||^l$.

By parameter counting it is possible to do somewhat better.

Proposition 1.1. For any $r \in \mathbb{Q}^2$, and any $l \geq 0$, there is a polynomial $P \in \mathbb{Z}[x_1, x_2]$ with the form $P(x_1, x_2) = P_1(x_1)x_2 + P_0(x_1)$ obeying the following conditions.

- $\partial_1^j P(r) = 0$ for j = 0, ..., l 1.
- $|P| \le C(\epsilon)^l ||r_1||^{\frac{l}{2} + \epsilon}$, for any $\epsilon > 0$.
- The degree of P is $\lesssim \epsilon^{-1} (l + \log_{||r_1||} ||r_2||)$.

Proof. We will find our solution by counting parameters. We will choose a degree D, and let P_0, P_1 be polynomials of degree $\leq D$. The coefficients of P_0 and P_1 are $\geq 2D$ integer variables at our disposal. We wish to satisfy the l equations

$$\partial_1^j P(r) = 0, j = 0, ..., l - 1.$$
 (1)

After a minor rewriting, each of these equations is a linear equation in the coefficients of P with integer coefficients. If we write $P_1(x_1) = \sum_i b_i x_1^i$ and $P_0(x_1) = \sum_i a_i x^i$, then

$$0 = q_1^D q_2(1/j!) \partial_1^j P(r) = q_2(\sum_i b_i \binom{i}{j} p_1^{i-j} q_1^{D-i+j}) + (\sum_i a_i \binom{i}{j} p_1^{i-j} q_1^{D-i+j} p_2).$$

The size of the coefficients in the equations is $\leq 2^{D} ||r_1||^{D} ||r_2||$.

By Siegel's lemma on integer solutions of linear integer equations (in the last lecture), we find a non-zero integer solution of these equations with

$$|P| \le \left[3D \cdot 2^D \|r_1\|^D \|r_2\|\right]^{\frac{l}{2D-l}} \le C^l \|r_1\|^{l\frac{D}{2D-l}} \|r_2\|^{\frac{l}{2D-l}}.$$

We choose $D = 1000\epsilon^{-1}l + 1000\epsilon^{-1}\log_{\|r_1\|}\|r_2\|$. With this value of D, $\frac{D}{2D-l} \leq \epsilon/10$, and so the exponent of $\|r_1\|$ is almost l/2. Also, the term $\|r_2\|^{\frac{l}{2D-l}} \leq \|r_1\|^{\epsilon/10}$.

Combining our parameter counting with the elementary example $q_2x_2 - p_2$, we can find P vanishing to order l at r with |P| on the order of $\min(||r_1||^{l/2}, ||r_2||)$. The following result shows that these examples are quite sharp. I believe it is a special case of a lemma of Schneider.

Proposition 1.2. (Schneider) If $P(x_1, x_2) = P_1(x_1)x_2 + P_0(x_1) \in \mathbb{Z}[x_1, x_2]$, and $r \in \mathbb{Q}^2$, and $\partial_j^j P(r) = 0$ for j = 0, ..., l - 1, and if $l \ge 2$, then

$$|P| \ge \min((2DegP)^{-1}||r_1||^{\frac{l-1}{2}}, ||r_2||).$$

Remark. We need to assume that $l \geq 2$ to get any estimate. If we have vanishing only to order 1, then we could have $P(x_1, x_2) = 2x_1 - x_2$, which vanishes at $(r_1, 2r_1)$ for any rational number r_1 . As soon as $l \geq 2$, the size of |P| constrains the complexity of r. It can still happen that one component of r is very complicated, but they can't both be very complicated.

Proof. Our assumption is that

$$\partial^{j} P_{1}(r_{1})r_{2} + \partial^{j} P_{0}(r_{1}) = 0, 0 \le j \le l - 1.$$

Let V(x) be the vector $(P_1(x), P_0(x))$. Our assumption is that for $0 \le j \le l-1$, the derivatives $\partial^j V(r_1)$ all lie on the line $V \cdot (r_2, 1) = 0$. In particular, any two of these derivatives are linearly dependent. This tells us that many determinants vanish. If V and W are two vectors in \mathbb{R}^2 , we write [V, W] for the 2×2 matrix with first column V and second column W. Therefore,

$$det[\partial^{j_1}V, \partial^{j_2}V](r_1) = 0$$
, for any $0 \le j_1, j_2 \le l - 1$.

Now it follows by the Liebniz rule that

$$\partial_j det[V, \partial V](r_1) = 0$$
, for any $0 \le j \le l - 2$.

Remark: Because the determinant is multilinear, we have the Leibniz rule $\partial det[V, W] = det[\partial V, W] + det[V, \partial W]$, which holds for any vector-valued functions $V, W : \mathbb{R} \to \mathbb{R}^2$.

Now $det[V, \partial V]$ is a polynomial in one variable with integer coefficients. If this polynomial is non-zero, then by Gauss's lemma (see last lecture) we conclude that

$$|det[V, \partial V]| \ge ||r_1||^{l-1}.$$

Expanding out in terms of P, we have $|det[V, \partial V]| = |\partial P_0 P_1 - \partial P_1 P_0| \le 2(Deg P)^2 |P|^2$. Therefore, we have $|P| \ge (2Deg P)^{-1} ||r_1||^{\frac{l-1}{2}}$.

The polynomial $det[V, \partial V]$ may also be identically zero. This is a degenerate case, and the polynomial must simplify dramatically. One possibility is that P_1 is identically zero. In this case $P(x_1, x_2) = P_0(x_1)$, and by the Gauss lemma we have that $|P| \geq ||r_1||^l$. If P_1 is not identically zero, then the derivative of the ratio P_0/P_1 is identically zero. (The numerator of this derivative is $det[V, \partial V]$.) In this case, the polynomial P factors as $(q_2x_2 - p_2)\tilde{P}(x_1)$, where $\tilde{P}(x_1)$ has integer coefficients. (compare proof of Gauss lemma) In this case, $|P| \geq ||r_2||$.

The lower bounds on |P| in this lemma are pretty close to the upper bounds on |P| in the examples above. Speaking informally, both bounds are pretty close to $\min(\|r_1\|^{l/2}, \|r_2\|).$

2. Polynomials that vanish at algebraic points

Our whole discussion can be generalized in a straightforward way to algebraic points instead of rational points. In the proof of Thue's theorem, we have an algebraic number β , and r_1 and r_2 are rational numbers that approximate β with very large heights. The point (r_1, r_2) is close to (β, β) . We are going to compare finding an integral polynomial that vanishes to high order at (β, β) and finding an integral polynomial that vanishes to high order at (r_1, r_2) .

By using parameter counting, we will see that there is an integral polynomial vanishing to high order at (β, β) whose coefficients are much smaller than what we could find for a polynomial vanishing to high order at (r_1, r_2) .

Proposition 2.1. Let $\beta \in \mathbb{R}$ be an algebraic number. For any natural number l, and any $\epsilon > 0$, there is a polynomial $P \in \mathbb{Z}[x_1, x_2]$ with the form $P(x_1, x_2) =$ $P_1(x_1)x_2 + P_0(x_1)$ with the following properties.

- $\partial_1^j P(\beta, \beta) = 0$ for $0 \le j \le l 1$. $|P| \le C(\beta)^{l/\epsilon}$.
- The degree of P is $< (1+\epsilon)(1/2)deg(\beta)l + 1$.

Proof. This Proposition follows by the same parameter counting argument as above. There is one significant new idea in order to deal with algebraic numbers. We let D a degree to choose later. As above, we write $P_1(x) = \sum_{i=0}^{D} b_i x^i$ and $P_0(x) = \sum_{i=0}^{D} a_i x^i$. The coefficients a_i and b_i are $\geq 2D$ integer variables at our disposal. For each $0 \leq 2D$ $j \leq l-1$, our vanishing equation is

$$0 = (1/j!)\partial_1^j P(\beta, \beta) = \sum_i b_i \binom{i}{j} \beta^{i-j+1} + \sum_i a_i \binom{i}{j} \beta^{i-j}. \tag{1}$$

This is a linear equation in a_i, b_i with coefficients in $\mathbb{Z}[\beta]$. We will see that it is equivalent to $deq(\beta)$ linear equations with coefficients in \mathbb{Z} . Since β is an algebraic number, we will check that $1, \beta, ..., \beta^{deg(\beta)-1}$ form a basis for the vector space $\mathbb{Q}[\beta]$ over the field \mathbb{Q} . In particular, any power β^i can be expanded as a rational combination of $1, \beta, ..., \beta^{deg(\beta)-1}$. Substituting in, we can rewrite equation (1) in the form:

$$0 = \sum_{k=0}^{\deg(\beta)-1} \beta^k \left[\sum_i b_i B_{ik} + \sum_i a_i A_{ik} \right] = 0,$$

where A_{ik} and B_{ik} are rational numbers. Since $1, \beta, ..., \beta^{deg(\beta)-1}$ are linearly independent over \mathbb{Q} , this list of equations is equivalent to the $deg(\beta)$ equations

$$\sum_{i} b_{i} B_{ik} + \sum_{i} a_{i} A_{ik} = 0, \text{ for all } 0 \le k \le \deg(\beta) - 1.$$
 (2)

After multiplying by a large constant to clear the denominators, we get $deg(\beta)$ equations with integer coefficients. In total, our original l equations $\partial_1^j P(r) = 0$ for j = 0, ..., l-1 are equivalent to $deg(\beta)l$ integer linear equations in the coefficients of P. Since we have > 2D coefficients, we can find a non-trivial integer solution as long as $D \ge (1/2)deg(\beta)l$.

Our next task is to estimate the size of the solution. To do this, we need to estimate the heights of the coefficients A_{ik} , B_{ik} . Also we get a much better estimate by taking D slightly larger than $(1/2)deg(\beta)l$, and for this reason we choose D to be the least integer $\geq (1 + \epsilon)(1/2)deg(\beta)l$. To estimate the heights of A_{ik} , B_{ik} , we consider more carefully how to expand β^d in terms of $1, \beta, ..., \beta^{d-1}$.

Lemma 2.2. Suppose $Q(\beta) = 0$, where $Q \in \mathbb{Z}[x]$ with degree $deg(Q) = deg(\beta)$ and leading coefficient $q_{deg(beta)}$. Then for any $d \geq 0$, we can write

$$q_{deg(\beta)}^d \beta^d = \sum_{k=0}^{deg(\beta)-1} A_{kd} \beta^k,$$

where $A_{kd} \in \mathbb{Z}$ and $|A_{kd}| \leq [2|Q|]^d$.

Proof. We have $0 = Q(\beta) = \sum_{k=0}^{\deg(\beta)} q_k \beta^k$. We do the proof by induction on d, starting with $d = \deg(\beta)$. For $d = \deg(\beta)$, the equation $Q(\beta) = 0$ directly gives

$$q_{deg(beta)}^{deg(\beta)} \beta^{deg(\beta)} = \sum_{k=0}^{deg(\beta)-1} (-q_k) \beta^k. \tag{*}$$

If we multiply both sides by $q_{deg(\beta)}^{deg(\beta)-1}$, we get a good expansion for the case $d = deg(\beta)$. Now we proceed by induction. Suppose that $q_{deg(\beta)}^d \beta^d = \sum_{k=0}^{deg(\beta)-1} A_{kd}\beta^k$. Multiplying by $q_{deg(\beta)}\beta$, we get

$$q_{\deg(\beta)}^{\deg(\beta)+1}\beta^{\deg(\beta)+1} = \sum_{k=0}^{\deg(\beta)-1} A_{kd}q_{\deg(\beta)}\beta^{k+1} = \sum_{k=1}^{\deg(\beta)-1} A_{k-1,d}q_{\deg(\beta)}\beta^k + \sum_{k=0}^{\deg(\beta)-1} A_{\deg(\beta)-1,d}(-q_k)\beta^k.$$

Plugging in this lemma, we see that $q_{deg(\beta)}^D A_{ik}$, $q_{deg(\beta)}^D B_{ik}$ are integers of size $\leq D[2|Q|]^D$. The integer matrix that we are solving has coefficients of size $\leq D[2|Q|]^D$. It is a matrix with dimensions $(2D+2) \times deg(\beta)l$, and so it has operator norm $\leq (2D+2)D[2|Q|]^D \leq C(\beta)^D$.

Now applying Siegel's lemma, we see that we can find an integer solution P with |P| bounded by

$$C(\beta)^{D\frac{deg(\beta)l}{2D-deg(\beta)l}} \le C(\beta)^{D/\epsilon}.$$

Since $D \leq C(\beta)l$, we can redefine $C(\beta)$ so that $|P| \leq C(\beta)^{l/\epsilon}$.

3. Summary

Suppose that β is an algebraic number, and that r_1, r_2 are two very good rational approximations of β . We may suppose that $||r_1||$ is very large and $||r_2||$ is (much) larger. Say $||r_2|| \sim ||r_1||^m$.

We consider polynomials $P \in \mathbb{Z}[x_1, x_2]$ of the simple form $P(x_1, x_2) = P_1(x_1)x_2 + P_0(x_1)$. We can arrange that $\partial_1^j P(\beta, \beta) = 0$ for $0 \le j \le m-1$ with $|P| \le C(\beta)^m$. On the other hand, if $\partial_1^j P(r) = 0$ for $0 \le j \le l-1$, then we must have $|P| \gtrsim ||r_1||^{l/2}$. Since $||r_1||$ is much larger than $C(\beta)$, it follows that l must be much smaller than m. This creates a certain tension.

As we will see, if r was too close to (β, β) , than P would have to vanish too much at r, giving a contradiction.

MIT OpenCourseWare http://ocw.mit.edu

18.S997 The Polynomial Method Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.