Polynomial Method

Theorem 0.1 (3D Szemerédi-Trotter). Given S points and L lines in \mathbb{R}^{3} with at most B lines in any plane, the number of incidences $I(S, L)$ is at most $S^{\frac{1}{2}} L^{\frac{3}{4}}+B^{\frac{1}{3}} L^{\frac{1}{3}} S^{\frac{2}{3}}+S+L$.

The four terms of that sum are tight for, respectively, a 3-D grid, L / B planes with B lines in each with the 2-D Szemerédi-Trotter arrangement, all points collinear, and all lines concurrent, respectively.

We already know that $I(S, L) \leq S^{2}+L$ and $I(S, L) \leq L^{2}+S$ by counting, and $I(S, L) \leq$ $C\left[L^{\frac{2}{3}} S^{\frac{2}{3}}+L+S\right]$ by Szemerédi-Trotter. So we're already done unless $S \leq L^{2} \leq S^{4}$ (ignoring constants).
Claim 1 (Cell Estimate). In a polynomial cell decomposition of degree $d, I(S, L) \leq C\left[d^{-\frac{1}{3}} S^{\frac{2}{3}} L^{\frac{2}{3}}+\right.$ $\left.d L+S_{\text {cell }}\right]+I\left(S_{\text {alg }}, L_{\text {alg }}\right)$.

Proof. Let the cells be O_{i}, and let S_{i} and L_{i} be the number of points and lines that intersect O_{i}. Then $\sum S_{i}=S_{\text {cell }} \leq S, \sum L_{i} \leq d L$, and $S_{i} \leq d^{-3} S$. (Here and henceforth, we drop constants.) Then $I\left(S_{\text {cell }}, L\right)=\sum_{i} I\left(S_{i}, L_{i}\right) \leq \sum_{i} S_{i}^{\frac{2}{3}} L_{i}^{\frac{2}{3}}+L_{i}+S_{i} \leq\left(d^{-1} S^{\frac{1}{3}} \sum_{i} S_{i}^{\frac{1}{3}} L_{i}^{\frac{2}{3}}\right)+\sum_{i} L_{i}+S_{i}$. By Hölder's inequality, that's at most $\left(d^{-1} S^{\frac{1}{3}}\left(\sum_{i} S_{i}\right)^{\frac{1}{3}}\left(\sum L_{i}\right)^{\frac{2}{3}}\right)+\sum_{i} L_{i}+S_{i}=d^{-\frac{1}{3}} S^{\frac{2}{3}} L^{\frac{2}{3}}+d L+S_{\text {cell }}$.

Finally, $I\left(S_{\text {alg }}, L_{\text {cell }}\right) \leq d L$ by degree bounding, so we've counted everything but $I\left(S_{\text {alg }}, L_{\text {alg }}\right)$, as desired.

Let L_{p}, L_{m} and L_{u} ("planar," "multiplanar," and "uniplanar") be the sets of lines in at least one, at least two, and exactly one plane of $Z(P)$, respectively, and let S_{p}, S_{m}, and S_{u} be the same for points.
Claim 2 (Planar Estimate). $I\left(S_{\text {alg }}, L_{p}\right) \leq C\left[B^{\frac{1}{3}} L^{\frac{1}{3}} S^{\frac{2}{3}}+d L+S_{u}\right]+I\left(S_{m}, L_{m}\right)$.
Also, $\left|L_{m}\right| \leq d^{2}$; we'll choose d small enough that the last term is handleable by induction.
Proof. $I\left(S_{a l g}, L_{p}\right) \leq I\left(S_{a l g}, L_{u}\right)+I\left(S_{m}, L_{m}\right)$, since a line in multiple planes only hits points in multiple planes. Let Π be the set of planes in $Z(P)$.
$I\left(S_{a l g}, L_{u}\right) \leq \sum_{\pi \in \Pi} I\left(S_{\pi}, L_{u: \pi}\right) \leq \sum_{\pi} d L_{u: \pi}+I\left(S_{u: \pi}, L_{u: \pi}\right)$. By the same application of Hölder's Inequality as before, that's at most $d L+B^{\frac{1}{3}} L^{\frac{1}{3}} S^{\frac{2}{3}}+S_{u}$.

That leaves the nonplanar algebraic lines (and multiplanar lines) to bound. We'll use special points, that is, flat or critical points, that is, points at which $S P$ (which has degree at most $3 d$) is 0 and special lines, on which every point is special.

Let S_{s} and S_{n} be the sets of special and nonspecial points, respectively, in $S_{a l g}$, and define L_{s} and L_{n} similarly.
Claim 3 (Algebraic Estimate). $I\left(S_{a l g}, L_{a l g} \backslash L_{p}\right) \leq C\left[d L+S_{n}\right]+I\left(S_{s}, L_{s} \backslash L_{p}\right)$, and $\left|L_{s} \backslash L_{p}\right| \leq 10 d^{2}$
Proof. Recall that

1. If x is in three lines of $Z(P)$ then x is special,
2. x is special iff $S P(x)$ is 0 , where $\operatorname{deg}(S P) \leq 3 d$, and
3. The number of lines that are special but not planar is at most $10 d^{2}$.

Now, $I\left(S_{\text {alg }}, L_{a l g} \backslash L_{p}\right) \leq I\left(S_{n}, L_{a l g}+I\left(S_{s}, L_{n}\right)+I\left(S_{s}, L_{s} \backslash L_{p}\right)\right.$. The first term is at most $2 S_{n}$ by the first recalled property and the second term is at most $3 d L$ by the second recalled property.

That leaves $I\left(S_{s}, L_{s} \backslash L_{p}\right)$ and $I\left(S_{m}, L_{m}\right)$ to bound; those contain at most $11 d^{2}$ lines. Let $S^{\prime}=$ $S \backslash\left(S_{s} \cup S_{m}\right)$. We already have $I(S, L) \leq d^{-\frac{1}{3}} L^{\frac{2}{3}} S^{\frac{2}{3}}+d L+B^{\frac{1}{3}} L^{\frac{1}{3}} S^{\frac{2}{3}}+S^{\prime}+I\left(S_{s}, L_{s} \backslash L_{p}\right) I\left(S_{m}, L_{m}\right)$. Lemma 1. The minimum value of $d^{-\frac{1}{3}} L^{\frac{2}{3}} S^{\frac{2}{3}}+d L+B^{\frac{1}{3}} L^{\frac{1}{3}} S^{\frac{2}{3}}+S$ with $d \in\left[1, \frac{1}{9} L^{\frac{1}{2}}\right]$ (and $B \geq L^{\frac{1}{2}}$ is about $S^{\frac{1}{2}} L^{\frac{3}{4}}+B^{\frac{1}{3}} L^{\frac{1}{3}} S^{\frac{2}{3}}+S^{\prime}$

Proof. Just do it.
So $I(S, L) \leq C\left[S^{\frac{1}{2}} L^{\frac{3}{4}}+B^{\frac{1}{3}} L^{\frac{1}{3}} S^{\frac{2}{3}}+S^{\prime}\right]+C_{0}\left[S^{\frac{1}{2}}\left(\frac{L}{2}\right)^{\frac{3}{4}}+B^{\frac{1}{3}}\left(\frac{L}{2}\right)^{\frac{1}{3}} S^{\frac{2}{3}}+\left(S-S^{\prime}\right)\right]$, and we can choose C_{0} arbitrarily and bigger than, say, $100 C$, so that's at most $C_{0}\left[S^{\frac{1}{2}} L^{\frac{3}{4}}+B^{\frac{1}{3}} L^{\frac{1}{3}} S^{\frac{2}{3}}+S+L\right]$, as desired.

0.1 Efficiency of Polynomials

Theorem 0.2 ("Efficiency of Polynomials"). If $P: \mathbb{C} \rightarrow \mathbb{C}$ is a polynomial and $F: \mathbb{C} \rightarrow \mathbb{C}$ is smooth (not necessarily holomorphic), and $F=P$ outside some bounded domain Ω, and 0 is a regular value of P and F, then P has at most as many zeros in Ω as F does.
(If $F: M^{m} \rightarrow N^{n}$ is a function, then $x \in M$ is a critical point iff $d F_{x}$ isn't surjective, and a regular point otherwise. $y \in N$ is regular iff all its preimages are regular. In our case, if $x \in Z(F)$, that 0 is a regular value implies that $d F_{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an isomorphism. Call $\sigma(x) 1$ if $d F_{x}$ preserves orientation and -1 otherwise.)

If P is a complex polynomial, then $\sigma_{P}(x)=+1$ for all $x \in Z(P)$.
Theorem 0.3. The winding number of $F: \partial \Omega \rightarrow \mathbb{C} \backslash\{0\}$ is $\sum_{x \in Z(F) \cap \Omega} \sigma_{F}(x)=\sum_{x \in Z(P) \cap \Omega} \sigma_{P}(x)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.S997 The Polynomial Method

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

