The Polynomial Method, Fall 2012, Problem Set 3

1. Reconstruct the proof of the crossing number theorem and the Szemerédi-Trotter theorem from your outline on the last problem set.
2. Summarize the proofs for the 3 -rich point bound (Lecture 15) and the 3 -dimensional incidence bound for lines in space with not too many lines in a plane (Lecture 20). These proofs are getting longer. Obviously there's a trade-off between having a short summary and including useful information for reconstructing the proof. I think a summary with $4-6$ steps is probably good for these.
3. Behrend example. Let n be an integer. For any $R \geq 10$, find an integer $A \leq R^{2}$ so that the equation $\sum_{i=1}^{n} x_{i}^{2}=A$ has $\gtrsim R^{n-2}$ integer solutions with $\left|x_{i}\right| \leq R$ for each i. Let $S_{0} \subset \mathbb{Z}^{n}$ be the set of solutions of $\sum_{i=1}^{n} x_{i}^{2}=A$.

Prove that S_{0} has no three term arithmetic progression. (A 3-term arithmetic progression in \mathbb{Z}^{n} is a sequence $a, a+d, a+2 d$, with $a, d \in$ \mathbb{Z}^{n}.)

Let Q_{R}^{n} denote the cube of integer points $x \in \mathbb{Z}^{n}$ with $\left|x_{i}\right| \leq R$. Notice that $S_{0} \subset Q_{R}^{n}$, and $\left|S_{0}\right| \gtrsim\left|Q_{R}^{n}\right|^{\frac{n-2}{n}}$. (You don't have to write anything for this step.)

Find a nice map from Q_{R}^{n} to Q_{N}^{1} for some N, and let S be the image of S_{0}. Prove that S has no 3-term arithmetic progression and that $|S| \gtrsim N^{\frac{n-2}{n}}$.
4. Incidences of algebraic curves in the plane. Suppose that \mathfrak{L} is a set of L irreducible degree d curves in \mathbb{R}^{2}, and \mathfrak{S} is a set of S points in \mathbb{R}^{2}. We write $A \lesssim B$ for $A \leq C(d) B$.
a.) Just by counting prove the following estimates on the number of incidences:

- $|I(\mathfrak{S}, \mathfrak{L})| \lesssim L+S^{d^{2}+1}$.
- $|I(\mathfrak{S}, \mathfrak{L})| \lesssim L^{2}+S$.
b.) Using a polynomial cell decomposition, prove a better estimate on the number of incidences. Suppose \mathfrak{L} is a set of L irreducible degree d curves in the plane, and let \mathfrak{S}_{r} be the set of points in $\geq r$ curves of \mathfrak{L}. Using your incidence bound prove that

$$
\left|\mathfrak{S}_{r}\right| \lesssim L^{2} r^{-2-\frac{1}{d^{2}}}+L r^{-1}
$$

c.) (optional) What's the best example you can find with $d=2$?

Remarks. This theorem was first proven by Pach and Sharir using the crossing number theorem.
5. Suppose that \mathfrak{L} is a set of N^{2} lines in \mathbb{R}^{3}, with $\leq N$ lines in any plane. Suppose that \mathfrak{S} is a set of points containing at least N points on each line of \mathfrak{L}. Prove that $|\mathfrak{S}| \gtrsim N^{3}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.S997 The Polynomial Method

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

