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Preface

These lecture notes were written for the course 18.S997: High Dimensional
Statistics at MIT. They build on a set of notes that was prepared at Princeton
University in 2013-14.

Over the past decade, statistics have undergone drastic changes with the
development of high-dimensional statistical inference. Indeed, on each indi-
vidual, more and more features are measured to a point that it usually far
exceeds the number of observations. This is the case in biology and specifically
genetics where millions of (or combinations of) genes are measured for a single
individual. High resolution imaging, finance, online advertising, climate stud-
ies . . . the list of intensive data producing fields is too long to be established
exhaustively. Clearly not all measured features are relevant for a given task
and most of them are simply noise. But which ones? What can be done with
so little data and so much noise? Surprisingly, the situation is not that bad
and on some simple models we can assess to which extent meaningful statistical
methods can be applied. Regression is one such simple model.

Regression analysis can be traced back to 1632 when Galileo Galilei used
a procedure to infer a linear relationship from noisy data. It was not until
the early 19th century that Gauss and Legendre developed a systematic pro-
cedure: the least-squares method. Since then, regression has been studied
in so many forms that much insight has been gained and recent advances on
high-dimensional statistics would not have been possible without standing on
the shoulders of giants. In these notes, we will explore one, obviously sub-
jective giant whose shoulders high-dimensional statistics stand: nonparametric
statistics.

The works of Ibragimov and Has’minskii in the seventies followed by many
researchers from the Russian school have contributed to developing a large
toolkit to understand regression with an infinite number of parameters. Much
insight from this work can be gained to understand high-dimensional or sparse
regression and it comes as no surprise that Donoho and Johnstone have made
the first contributions on this topic in the early nineties.
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Introduction 

This course is mainly about learning a regression function from a collection 
of observations. In this chapter, after defining this task formally, we give 
an overview of the course and the questions around regression. We adopt 
the statistical learning point of view where the task of prediction prevails. 
Nevertheless many interesting questions will remain unanswered when the last 
page comes: testing, model selection, implementation,. . . 

REGRESSION ANALYSIS AND PREDICTION RISK 

Model and definitions 

Let (X, Y ) ∈ X ×Y where X is called feature and lives in a topological space X 
and Y ∈ Y ⊂ IR is called response or sometimes label when Y is a discrete set, 
e.g., Y = {0, 1}. Often X ⊂ IRd, in which case X is called vector of covariates 
or simply covariate. Our goal will be to predict Y given X and for our problem 
to be meaningful, we need Y to depend nontrivially on X . Our task would be 
done if we had access to the conditional distribution of Y given X . This is the 
world of the probabilist. The statistician does not have access to this valuable 
information but rather, has to estimate it, at least partially. The regression 
function gives a simple summary of this conditional distribution, namely, the 
conditional expectation. 

Formally, the regression function of Y onto X is defined by: 

f(x) = IE[Y |X = x] , x ∈ X . 

As we will see, it arises naturally in the context of prediction. 

Best prediction and prediction risk 

Suppose for a moment that you know the conditional distribution of Y given 
X . Given the realization of X = x, your goal is to predict the realization of 
Y . Intuitively, we would like to find a measurable1 function g : X → Y such 
that g(X) is close to Y , in other words, such that |Y − g(X)| is small. But 
|Y − g(X)| is a random variable so it not clear what “small” means in this 
context. A somewhat arbitrary answer can be given by declaring a random 

1all topological spaces are equipped with their Borel σ-algebra 

1 
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variable Z small if IE[Z2] = [IEZ]2 + var[Z] is small. Indeed in this case, the 
expectation of Z is small and the fluctuations of Z around this value are also 
small. The function R(g) = IE[Y − g(X)]2 is called the L2 risk of g defined for 
IEY 2 < ∞. 

For any measurable function g : X → IR, the L2 risk of g can be decom
posed as 

IE[Y − g(X)]2 = IE[Y − f(X) + f(X)− g(X)]2 

= IE[Y − f(X)]2 + IE[f(X)− g(X)]2 + 2IE[Y − f(X)][f(X)− g(X)] 

The cross-product term satisfies 

IE[Y − f(X)][f(X)− g(X)] = IE
[
IE
(
[Y − f(X)][f(X)− g(X)]

  X
)] 

= IE
[
[IE(Y |X)− f(X)][f(X)− g(X)]

] 

= IE
[
[f(X)− f(X)][f(X)− g(X)]

]
= 0 . 

The above two equations yield 

IE[Y − g(X)]2 = IE[Y − f(X)]2 + IE[f(X)− g(X)]2 ≥ IE[Y − f(X)]2 , 

with equality iff f(X) = g(X) almost surely. 
We have proved that the regression function f(x) = IE[Y |X = x], x ∈ X , 

enjoys the best prediction property, that is 

IE[Y − f(X)]2 = inf IE[Y − g(X)]2 , 
g 

where the infimum is taken over all measurable functions g : X → IR. 

Prediction and estimation 

As we said before, in a statistical problem, we do not have access to the condi
tional distribution of Y given X or even to the regression function f of Y onto 
X . Instead, we observe a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} that consists 
of independent copies of (X, Y ). The goal of regression function estimation is 

to use this data to construct an estimator f̂  n : X → Y that has small L2 risk 
R(f̂  n). 

Let PX denote the marginal distribution of X and for any h : X → IR, 
define 1

IhI2 = h2dPX .2 
X 

Note that IhI22 is the Hilbert norm associated to the inner product 

1
(h, h ′ )2 = hh ′ dPX . 

X 

When the reference measure is clear from the context, we will simply write 
IhI2L = IhIL2(PX ) and (h, h ′ )2 := (h, h ′)L2(PX ). 
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It follows from the proof of the best prediction property above that 

R(f̂  n) = IE[Y − f(X)]2 + If̂  n − fI2 2 
= inf IE[Y − g(X)]2 + If̂  n − fI2 2 g 

In particular, the prediction risk will always be at least equal to the positive 
constant IE[Y − f(X)]2 . Since we tend to prefer a measure of accuracy to be 
able to go to zero (as the sample size increases), it is equivalent to study the 

estimation error If̂  n − fI22. Note that if f̂  n is random, then If̂  n − fI22 and 
R(f̂  n) are random quantities and we need deterministic summaries to quantify 
their size. It is customary to use one of the two following options. Let {φn}n 

be a sequence of positive numbers that tends to zero as n goes to infinity. 

1. Bounds in expectation. They are of the form: 

IEIf̂  n − fI22 ≤ φn , 

where the expectation is taken with respect to the sample Dn. They 
indicate the average behavior of the estimator over multiple realizations 
of the sample. Such bounds have been established in nonparametric 
statistics where typically φn = O(n−α) for some α ∈ (1/2, 1) for example. 

Note that such bounds do not characterize the size of the deviation of the 
random variable If̂  n − fI22 around its expectation. As a result, it may be 
therefore appropriate to accompany such a bound with the second option 
below. 

2. Bounds with high-probability. They are of the form: 

IP
[
If̂  n − fI22 > φn(δ)

]
≤ δ , ∀δ ∈ (0, 1/3) . 

Here 1/3 is arbitrary and can be replaced by another positive constant. 

Such bounds control the tail of the distribution of If̂  n − fI22. They show 
how large the quantiles of the random variable If − f̂  nI22 can be. Such 
bounds are favored in learning theory, and are sometimes called PAC
bounds (for Probably Approximately Correct). 

Often, bounds with high probability follow from a bound in expectation and a 
concentration inequality that bounds the following probability 

IP
[
If̂  n − fI22 − IEIf̂  n − fI22 > t

]

by a quantity that decays to zero exponentially fast. Concentration of measure 
is a fascinating but wide topic and we will only briefly touch it. We recommend 
the reading of [BLM13] to the interested reader. This book presents many 
aspects of concentration that are particularly well suited to the applications 
covered in these notes. 
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Other measures of error 

We have chosen the L2 risk somewhat arbitrarily. Why not the Lp risk defined 
by g  → IE|Y − g(X)|p for some p ≥ 1? The main reason for choosing the L2 

risk is that it greatly simplifies the mathematics of our problem: it is a Hilbert 
space! In particular, for any estimator f̂  n, we have the remarkable identity: 

R(f̂  n) = IE[Y − f(X)]2 + If̂  n − fI2 .2 

This equality allowed us to consider only the part If̂  n − fI22 as a measure of 
error. While this decomposition may not hold for other risk measures, it may 
be desirable to explore other distances (or pseudo-distances). This leads to two 

distinct ways to measure error. Either by bounding a pseudo-distance d(f̂  n, f) 

(estimation error) or by bounding the risk R(f̂  n) for choices other than the L2 

risk. These two measures coincide up to the additive constant IE[Y − f(X)]2 

in the case described above. However, we show below that these two quantities 
may live independent lives. Bounding the estimation error is more customary 
in statistics whereas, risk bounds are preferred in learning theory. 

Here is a list of choices for the pseudo-distance employed in the estimation 
error. 

• Pointwise error. Given a point x0, the pointwise error measures only 
the error at this point. It uses the pseudo-distance: 

d0(f̂  n, f) = |f̂  n(x0)− f(x0)| . 

• Sup-norm error. Also known as the L∞-error and defined by 

d∞(f̂  n, f) = sup |f̂  n(x) − f(x)| . 
x∈X 

It controls the worst possible pointwise error. 

• Lp-error. It generalizes both the L2 distance and the sup-norm error by 
taking for any p ≥ 1, the pseudo distance 

1 
dp(f̂  n, f) = |f̂  n − f |pdPX . 

X 

The choice of p is somewhat arbitrary and mostly employed as a mathe
matical exercise. 

Note that these three examples can be split into two families: global (Sup-norm 
and Lp) and local (pointwise). 

For specific problems, other considerations come into play. For example, 
if Y ∈ {0, 1} is a label, one may be interested in the classification risk of a 
classifier h : X → {0, 1}. It is defined by 

R(h) = IP(Y  h(X))= . 
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We will not cover this problem in this course. 
Finally, we will devote a large part of these notes to the study of linear 

models. For such models, X = IRd and f is linear (or affine), i.e., f(x) = x⊤θ 
for some unknown θ ∈ IRd . In this case, it is traditional to measure error 
directly on the coefficient θ. For example, if f̂  n(x) = x⊤θ̂n is a candidate 

linear estimator, it is customary to measure the distance of f̂  n to f using a 
ˆ(pseudo-)distance between θn and θ as long as θ is identifiable. 

MODELS AND METHODS 

Empirical risk minimization 

In our considerations on measuring the performance of an estimator f̂  n, we 
have carefully avoided the question of how to construct f̂  n. This is of course 
one of the most important task of statistics. As we will see, it can be carried 
out in a fairly mechanical way by following one simple principle: Empirical 
Risk Minimization (ERM2). Indeed, an overwhelming proportion of statistical 
methods consist in replacing an (unknown) expected value (IE) by a (known) 
empirical mean ( 1 

�n 
). For example, it is well known that a good candidate n i=1 

to estimate the expected value IEX of a random variable X from a sequence of 
i.i.d copies X1, . . . , Xn of X , is their empirical average 

n
1

X̄ = 
n

Xi . 
n 
i=1 

In many instances, it corresponds the maximum likelihood estimator of IEX .
 
Another example is the sample variance where IE(X − IE(X))2 is estimated by
 

n
1 n

(Xi − X̄)2 . 
n 
i=1 

It turns out that this principle can be extended even if an optimization follows 
the substitution. Recall that the L2 risk is defined by R(g) = IE[Y −g(X)]2 . See 
the expectation? Well, it can be replaced by an average to from the empirical 
risk of g defined by 

n
1 

Rn(g) = 
n(

Yi − g(Xi)
)2 
. 

n 
i=1 

We can now proceed to minimizing this risk. However, we have to be careful. 
Indeed, Rn(g) ≥ 0 for all g. Therefore any function g such that Yi = g(Xi) for 
all i = 1, . . . , n is a minimizer of the empirical risk. Yet, it may not be the best 
choice (Cf. Figure 1). To overcome this limitation, we need to leverage some 
prior knowledge on f : either it may belong to a certain class G of functions (e.g., 
linear functions) or it is smooth (e.g., the L2-norm of its second derivative is 

2ERM may also mean Empirical Risk Minimizer 
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Figure 1. It may not be the best choice idea to have f̂n(Xi) = Yi for all i = 1, . . . , n. 

small). In both cases, this extra knowledge can be incorporated to ERM using 
either a constraint : 

min Rn(g) 
g∈G 

or a penalty: 

min 
{
Rn(g) + pen(g)

}
, 

g 

or both {
Rn

}
min (g) + pen(g) , 
g∈G 

These schemes belong to the general idea of regularization. We will see many 
variants of regularization throughout the course. 

Unlike traditional (low dimensional) statistics, computation plays a key role 
in high-dimensional statistics. Indeed, what is the point of describing an esti
mator with good prediction properties if it takes years to compute it on large 
datasets? As a result of this observation, much of the modern estimators, such 
as the Lasso estimator for sparse linear regression can be computed efficiently 
using simple tools from convex optimization. We will not describe such algo
rithms for this problem but will comment on the computability of estimators 
when relevant. 

In particular computational considerations have driven the field of com
pressed sensing that is closely connected to the problem of sparse linear regres
sion studied in these notes. We will only briefly mention some of the results and 
refer the interested reader to the book [FR13] for a comprehensive treatment. 



7 Introduction 

Linear models 

When X = IRd, an all time favorite constraint G is the class of linear functions 
that are of the form g(x) = x⊤θ, that is parametrized by θ ∈ IRd . Under 
this constraint, the estimator obtained by ERM is usually called least squares 
estimator and is defined by f̂  n(x) = x⊤θ̂, where 

n 
1 

θ̂ ∈ argmin 
n

(Yi −Xi 
⊤θ)2 . 

nθ∈IRd 
i=1 

Note that θ̂ may not be unique. In the case of a linear model, where we assume 
⊤θ∗that the regression function is of the form f(x) = x for some unknown 

θ∗ ∈ IRd, we will need assumptions to ensure identifiability if we want to prove 
bounds on d(ˆ ·). Nevertheless, in θ, θ∗) for some specific pseudo-distance d(· , 
other instances such as regression with fixed design, we can prove bounds on 
the prediction error that are valid for any θ̂ in the argmin. In the latter case, 
we will not even require that f satisfies the linear model but our bound will 
be meaningful only if f can be well approximated by a linear function. In this 
case, we talk about misspecified model, i.e., we try to fit a linear model to data 
that may not come from a linear model. Since linear models can have good 
approximation properties especially when the dimension d is large, our hope is 
that the linear model is never too far from the truth. 

In the case of a misspecified model, there is no hope to drive the estimation 
error d(f̂  n, f) down to zero even with a sample size that tends to infinity. 
Rather, we will pay a systematic approximation error. When G is a linear 
subspace as above, and the pseudo distance is given by the squared L2 norm 
d(f̂  n, f) = If̂  n − fI22, it follows from the Pythagorean theorem that 

If̂  n − fI2 = If̂  n − f̄I22 + If̄ − fI22 ,2 

where f̄ is the projection of f onto the linear subspace G. The systematic 
¯approximation error is entirely contained in the deterministic term If − fI2 2 

and one can proceed to bound If̂  n − f̄I22 by a quantity that goes to zero as n 
goes to infinity. In this case, bounds (e.g., in expectation) on the estimation 
error take the form 

¯IEIf̂  n − fI22 ≤ If − fI22 + φn . 

The above inequality is called an oracle inequality. Indeed, it says that if φn 
¯is small enough, then f̂  n the estimator mimics the oracle f . It is called “oracle” 

because it cannot be constructed without the knowledge of the unknown f . It 
is clearly the best we can do when we restrict our attentions to estimator in the 
class G. Going back to the gap in knowledge between a probabilist who knows 
the whole joint distribution of (X, Y ) and a statistician who only see the data, 
the oracle sits somewhere in-between: it can only see the whole distribution 
through the lens provided by the statistician. In the case, above, the lens is 
that of linear regression functions. Different oracles are more or less powerful 
and there is a tradeoff to be achieved. On the one hand, if the oracle is weak, 



 

8 Introduction 

then it’s easy for the statistician to mimic it but it may be very far from the 
true regression function; on the other hand, if the oracle is strong, then it is 
harder to mimic but it is much closer to the truth. 

Oracle inequalities were originally developed as analytic tools to prove adap
tation of some nonparametric estimators. With the development of aggregation 
[Nem00, Tsy03, Rig06] and high dimensional statistics [CT07, BRT09, RT11], 
they have become important finite sample results that characterize the inter
play between the important parameters of the problem. 

In some favorable instances, that is when the Xis enjoy specific properties, 
it is even possible to estimate the vector θ accurately, as is done in parametric 
statistics. The techniques employed for this goal will essentially be the same 
as the ones employed to minimize the prediction risk. The extra assumptions 
on the Xis will then translate in interesting properties on θ̂ itself, including 
uniqueness on top of the prediction properties of the function f̂  n(x) = x⊤θ̂. 

High dimension and sparsity 

These lecture notes are about high dimensional statistics and it is time they 
enter the picture. By high dimension, we informally mean that the model has 
more “parameters” than there are observations. The word “parameter” is used 
here loosely and a more accurate description is perhaps degrees of freedom. For 
example, the linear model f(x) = x⊤θ∗ has one parameter θ∗ but effectively d 
degrees of freedom when θ∗ ∈ IRd . The notion of degrees of freedom is actually 
well defined in the statistical literature but the formal definition does not help 
our informal discussion here. 

⊤θ∗As we will see in Chapter 2, if the regression function is linear f(x) = x , 
θ∗ ∈ IRd, and under some assumptions on the marginal distribution of X , then 
the least squares estimator f̂  n(x) = x⊤θ̂n satisfies 

IEIf̂  n − fI22 ≤ C d 
, (1) 

n 

where C > 0 is a constant and in Chapter 5, we will show that this cannot 
be improved apart perhaps for a smaller multiplicative constant. Clearly such 
a bound is uninformative if d ≫ n and actually, in view of its optimality, 
we can even conclude that the problem is too difficult statistically. However, 
the situation is not hopeless if we assume that the problem has actually less 
degrees of freedom than it seems. In particular, it is now standard to resort to 
the sparsity assumption to overcome this limitation. 

A vector θ ∈ IRd is said to be k-sparse for some k ∈ {0, . . . , d} if it has 
at most k non-zero coordinates. We denote by |θ|0 the number of nonzero 
coordinates of θ is also known as sparsity or “ℓ0-norm” though it is clearly not 
a norm (see footnote 3). Formally, it is defined as 

d 

|θ|0 = 
n

1I(θj = 0) . 
j=1 

6=



�  
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Sparsity is just one of many ways to limit the size of the set of potential 
θ vectors to consider. One could consider vectors θ that have the following 
structure for example (see Figure 2): 

• Monotonic: θ1 ≥ θ2 ≥ · · · ≥ θd 

• Smooth: |θi − θj | ≤ C|i − j|α for some α > 0 

d−1• Piecewise constant: j=1 1I(θj+1 = θj ) ≤ k 

• Structured in another basis: θ = Ψµ, for some orthogonal matrix and µ 
is in one of the structured classes described above. 

Sparsity plays a significant role in statistics because, often, structure translate 
into sparsity in a certain basis. For example a smooth function is sparse in the 
trigonometric basis and a piecewise constant function has sparse increments. 
Moreover, as we will real images for example are approximately sparse in certain 
bases such as wavelet or Fourier bases. This is precisely the feature exploited 
in compression schemes such as JPEG or JPEG-2000: only a few coefficients 
in these images are necessary to retain the main features of the image. 

We say that θ is approximately sparse if |θ|0 may be as large as d but many 
coefficients |θj | are small rather than exactly equal to zero. There are several 
mathematical ways to capture this phenomena, including ℓq -“balls” for q ≤ 1. 
For q > 0, the unit ℓq-ball of IRd is defined as 

d 

Bq (R) = 
{
θ ∈ IRd : |θ|q = 

n
|θj |q ≤ 1

}
q 

j=1 

3where |θ|q is often called ℓq-norm . As we will see, the smaller q is, the better 
vectors in the unit ℓq ball can be approximated by sparse vectors. 

k
Note that the set of k-sparse vectors of IRd is a union of 

(
d
)
linear j=0 j

subspaces with dimension at most k and that are spanned by at most k vectors 
in the canonical basis of IRd . If we knew that θ∗ belongs to one of these 
subspaces, we could simply drop irrelevant coordinates and obtain an oracle 
inequality such as (1), with d replaced by k. Since we do not know what 
subspace θ∗ lives exactly, we will have to pay an extra term to find in which 
subspace θ∗ lives. This it turns out that this term is exactly of the the order 
of 

log 
( 

k
j=0 

(
d
j

)) 
k log 

(
ed 
)

k≃ C 
n n 

Therefore, the price to pay for not knowing which subspace to look at is only 
a logarithmic factor. 

3Strictly speaking, |θ|q is a norm and the ℓq ball is a ball only for q ≥ 1. 

∑ 6=

∑

∑
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∈ IR50 Figure 2. Examples of structures vectors θ 

Nonparametric regression 

Nonparametric does not mean that there is no parameter to estimate (the 
regression function is a parameter) but rather that the parameter to estimate 
is infinite dimensional (this is the case of a function). In some instances, this 
parameter can be identified to an infinite sequence of real numbers, so that we 
are still in the realm of countable infinity. Indeed, observe that since L2(PX ) 
equipped with the inner product (· , ·)2 is a separable Hilbert space, it admits an 
orthonormal basis {ϕk}k∈Z and any function f ∈ L2(PX ) can be decomposed 
as 

f = 
n

αkϕk , 
k∈Z 

where αk = (f, ϕk)2. 
Therefore estimating a regression function f amounts to estimating the 

infinite sequence {αk}k∈Z ∈ ℓ2. You may argue (correctly) that the basis 
{ϕk}k∈Z is also unknown as it depends on the unknown PX . This is absolutely 

θj θj

θj θj

jj

jj

Monotone Smooth

Piecewise constant Smooth in a different basis
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correct but we will make the convenient assumption that PX is (essentially) 
known whenever this is needed. 

Even if infinity is countable, we still have to estimate an infinite number 
of coefficients using a finite number of observations. It does not require much 
statistical intuition to realize that this task is impossible in general. What if 
we know something about the sequence {αk}k? For example, if we know that 
αk = 0 for |k| > k0, then there are only 2k0 + 1 parameters to estimate (in 
general, one would also have to “estimate” k0). In practice, we will not exactly 
see αk = 0 for |k| > k0, but rather that the sequence {αk}k decays to 0 at 
a certain polynomial rate. For example |αk| ≤ C|k|−γ for some γ > 1/2 (we 
need this sequence to be in ℓ2). It corresponds to a smoothness assumption on 
the function f . In this case, the sequence {αk}k can be well approximated by 
a sequence with only a finite number of non-zero terms. 

We can view this problem as a misspecified model. Indeed, for any cut-off 
k0, define the oracle 

f̄k0 = 
n 

αkϕk . 
|k|≤k0 

Note that it depends on the unknown αk and define the estimator 

f̂  n = 
n 

α̂kϕk , 
|k|≤k0 

where α̂k are some data-driven coefficients (obtained by least-squares for ex
ample). Then by the Pythagorean theorem and Parseval’s identity, we have 

¯ ¯If̂  n − fI2 = If − fI22 + If̂  n − fI2 2 2 

= 
n 

αk 
2 + 

n 
(α̂k − αk)

2 

|k|>k0 |k|≤k0 

We can even work further on this oracle inequality using the fact that |αk| ≤ 
C|k|−γ . Indeed, we have4 

1−2γ
n 

α2 
k ≤ C2 

n 
k−2γ ≤ Ck .0 

|k|>k0 |k|>k0 

The so called stochastic term IE (α̂k − αk)
2 clearly increases with k0|k|≤k0

(more parameters to estimate) whereas the approximation term Ck1−2γ de0 

creases with k0 (less terms discarded). We will see that we can strike a com
promise called bias-variance tradeoff. 

The main difference here with oracle inequalities is that we make assump
tions on the regression function (here in terms of smoothness) in order to 

4Here we illustrate a convenient notational convention that we will be using through
out these notes: a constant C may be different from line to line. This will not affect the 
interpretation of our results since we are interested in the order of magnitude of the error 
bounds. Nevertheless we will, as much as possible, try to make such constants explicit. As 
an exercise, try to find an expression of the second C as a function of the first one and of γ. 

∑
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control the approximation error. Therefore oracle inequalities are more general 
but can be seen on the one hand as less quantitative. On the other hand, if 
one is willing to accept the fact that approximation error is inevitable then 
there is no reason to focus on it. This is not the final answer to this rather 
philosophical question. Indeed, choosing the right k0 can only be done with 
a control of the approximation error. Indeed, the best k0 will depend on γ. 
We will see that even if the smoothness index γ is unknown, we can select k0 
in a data-driven way that achieves almost the same performance as if γ were 
known. This phenomenon is called adaptation (to γ). 

It is important to notice the main difference between the approach taken 
in nonparametric regression and the one in sparse linear regression. It is not 
so much about linear vs. nonlinear model as we can always first take nonlinear 
transformations of the xj ’s in linear regression. Instead, sparsity or approx
imate sparsity is a much weaker notion than the decay of coefficients {αk}k 

presented above. In a way, sparsity only imposes that after ordering the coef
ficients present a certain decay, whereas in nonparametric statistics, the order 
is set ahead of time: we assume that we have found a basis that is ordered in 
such a way that coefficients decay at a certain rate. 

Matrix models 

In the previous examples, the response variable is always assumed to be a scalar. 
What if it is a higher dimensional signal? In Chapter 4, we consider various 
problems of this form: matrix completion a.k.a. the Netflix problem, structured 
graph estimation and covariance matrix estimation. All these problems can be 
described as follows. 

Let M, S and N be three matrices, respectively called observation, signal 
and noise, and that satisfy 

M = S + N . 

Here N is a random matrix such that IE[N ] = 0, the all-zero matrix. The goal 
is to estimate the signal matrix S from the observation of M . 

The structure of S can also be chosen in various ways. We will consider the 
case where S is sparse in the sense that it has many zero coefficients. In a way, 
this assumption does not leverage much of the matrix structure and essentially 
treats matrices as vectors arranged in the form of an array. This is not the case 
of low rank structures where one assumes that the matrix S has either low rank 
or can be well approximated by a low rank matrix. This assumption makes 
sense in the case where S represents user preferences as in the Netflix example. 
In this example, the (i, j)th coefficient Sij of S corresponds to the rating (on a 
scale from 1 to 5) that user i gave to movie j. The low rank assumption simply 
materializes the idea that there are a few canonical profiles of users and that 
each user can be represented as a linear combination of these users. 

At first glance, this problem seems much more difficult than sparse linear 
regression. Indeed, one needs to learn not only the sparse coefficients in a given 
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basis, but also the basis of eigenvectors. Fortunately, it turns out that the latter 
task is much easier and is dominated by the former in terms of statistical price. 

Another important example of matrix estimation is high-dimensional co
variance estimation, where the goal is to estimate the covariance matrix of a 
random vector X ∈ IRd, or its leading eigenvectors, based on n observations. 
Such a problem has many applications including principal component analysis, 
linear discriminant analysis and portfolio optimization. The main difficulty is 
that n may be much smaller than the number of degrees of freedom in the 
covariance matrix, which can be of order d2 . To overcome this limitation, 
assumptions on the rank or the sparsity of the matrix can be leveraged. 

Optimality and minimax lower bounds 

So far, we have only talked about upper bounds. For a linear model, where 
f(x) = x⊤θ∗, we will prove in Chapter 2 the following bound for a modified 

least squares estimator f̂  n = x⊤θ̂

IEIf̂  n − fI22 ≤ C d 
. 

n 

Is this the right dependence in p and n? Would it be possible to obtain as √ 
an upper bound: C(log d)/n, C/n or d/n2, by either improving our proof 
technique or using another estimator altogether? It turns out that the answer 
to this question is negative. More precisely, we can prove that for any estimator 
f̃  n, there exists a function f of the form f(x) = x⊤θ∗ such that 

IEIf̂  n − fI22 > c 
d 
n 

for some positive constant c. Here we used a different notation for the constant 
to emphasize the fact that lower bounds guarantee optimality only up to a 
constant factor. Such a lower bound on the risk is called minimax lower bound 
for reasons that will become clearer in chapter 5. 

How is this possible? How can we make a statement for all estimators? 
We will see that these statements borrow from the theory of tests where we 
know that it is impossible to drive both the type I and the type II error to 
zero simultaneously (with a fixed sample size). Intuitively this phenomenon 
is related to the following observation: Given n observations X1, . . . , Xn, it is 
hard to tell if they are distributed according to N (θ, 1) or to N (θ ′ , 1) for a 
Euclidean distance |θ − θ ′ |2 is small enough. We will see that it is the case for 
example if |θ − θ ′ |2 ≤ C

�
d/n, which will yield our lower bound. 
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