
18.S997: High Dimensional Statistics

Lecture Notes

(This version: July 14, 2015)

Philippe Rigollet

Spring 2015



Preface

These lecture notes were written for the course 18.S997: High Dimensional
Statistics at MIT. They build on a set of notes that was prepared at Princeton
University in 2013-14.

Over the past decade, statistics have undergone drastic changes with the
development of high-dimensional statistical inference. Indeed, on each indi-
vidual, more and more features are measured to a point that it usually far
exceeds the number of observations. This is the case in biology and specifically
genetics where millions of (or combinations of) genes are measured for a single
individual. High resolution imaging, finance, online advertising, climate stud-
ies . . . the list of intensive data producing fields is too long to be established
exhaustively. Clearly not all measured features are relevant for a given task
and most of them are simply noise. But which ones? What can be done with
so little data and so much noise? Surprisingly, the situation is not that bad
and on some simple models we can assess to which extent meaningful statistical
methods can be applied. Regression is one such simple model.

Regression analysis can be traced back to 1632 when Galileo Galilei used
a procedure to infer a linear relationship from noisy data. It was not until
the early 19th century that Gauss and Legendre developed a systematic pro-
cedure: the least-squares method. Since then, regression has been studied
in so many forms that much insight has been gained and recent advances on
high-dimensional statistics would not have been possible without standing on
the shoulders of giants. In these notes, we will explore one, obviously sub-
jective giant whose shoulders high-dimensional statistics stand: nonparametric
statistics.

The works of Ibragimov and Has’minskii in the seventies followed by many
researchers from the Russian school have contributed to developing a large
toolkit to understand regression with an infinite number of parameters. Much
insight from this work can be gained to understand high-dimensional or sparse
regression and it comes as no surprise that Donoho and Johnstone have made
the first contributions on this topic in the early nineties.
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linear algebra, especially spectral decomposition of matrices is required for the
latter chapters.



Notation

Functions, sets, vectors

[n] Set of integers [n] = {1, . . . , n}
Sd−1 Unit sphere in dimension d

1I( · ) Indicator function
1

|x|q ℓ q
q norm of x defined by |x|q =

(∑
i |xi|

)
q for q > 0

|x|0 ℓ0 norm of x defined to be the number of nonzero coordinates of x

f (k) k-th derivative of f

ej j-th vector of the canonical basis

Ac complement of set A

conv(S) Convex hull of set S.

an . bn an ≤ Cbn for a numerical constant C > 0

Matrices

Ip Identity matrix of IRp

Tr(A) trace of a square matrix A

M † Moore-Penrose pseudoinverse of M

∇xf(x) Gradient of f at x

∇xf(x)|x=x0 Gradient of f at x0

Distributions

iii
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N (µ, σ2) Univariate Gaussian distribution with mean µ ∈ IR and variance σ2 > 0

Nd(µ,Σ) d-variate distribution with mean µ ∈ IRd and covariance matrix Σ ∈ IRd×d

subG(σ2) Univariate sub-Gaussian distributions with variance proxy σ2 > 0

subGd(σ
2) d-variate sub-Gaussian distributions with variance proxy σ2 > 0

subE(σ2) sub-Exponential distributions with variance proxy σ2 > 0

Ber(p) Bernoulli distribution with parameter p ∈ [0, 1]

Bin(n, p) Binomial distribution with parameters n ≥ 1, p ∈ [0, 1]

Lap(λ) Double exponential (or Laplace) distribution with parameter λ > 0

PX Marginal distribution of X

Function spaces

W (β, L) Sobolev class of functions

Θ(β,Q) Sobolev ellipsoid of ℓ2(IN)
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Introduction 

This course is mainly about learning a regression function from a collection 
of observations. In this chapter, after defining this task formally, we give 
an overview of the course and the questions around regression. We adopt 
the statistical learning point of view where the task of prediction prevails. 
Nevertheless many interesting questions will remain unanswered when the last 
page comes: testing, model selection, implementation,. . . 

REGRESSION ANALYSIS AND PREDICTION RISK 

Model and definitions 

Let (X, Y ) ∈ X ×Y where X is called feature and lives in a topological space X 
and Y ∈ Y ⊂ IR is called response or sometimes label when Y is a discrete set, 
e.g., Y = {0, 1}. Often X ⊂ IRd, in which case X is called vector of covariates 
or simply covariate. Our goal will be to predict Y given X and for our problem 
to be meaningful, we need Y to depend nontrivially on X . Our task would be 
done if we had access to the conditional distribution of Y given X . This is the 
world of the probabilist. The statistician does not have access to this valuable 
information but rather, has to estimate it, at least partially. The regression 
function gives a simple summary of this conditional distribution, namely, the 
conditional expectation. 

Formally, the regression function of Y onto X is defined by: 

f(x) = IE[Y |X = x] , x ∈ X . 

As we will see, it arises naturally in the context of prediction. 

Best prediction and prediction risk 

Suppose for a moment that you know the conditional distribution of Y given 
X . Given the realization of X = x, your goal is to predict the realization of 
Y . Intuitively, we would like to find a measurable1 function g : X → Y such 
that g(X) is close to Y , in other words, such that |Y − g(X)| is small. But 
|Y − g(X)| is a random variable so it not clear what “small” means in this 
context. A somewhat arbitrary answer can be given by declaring a random 

1all topological spaces are equipped with their Borel σ-algebra 

1 



2 Introduction 

variable Z small if IE[Z2] = [IEZ]2 + var[Z] is small. Indeed in this case, the 
expectation of Z is small and the fluctuations of Z around this value are also 
small. The function R(g) = IE[Y − g(X)]2 is called the L2 risk of g defined for 
IEY 2 < ∞. 

For any measurable function g : X → IR, the L2 risk of g can be decom
posed as 

IE[Y − g(X)]2 = IE[Y − f(X) + f(X)− g(X)]2 

= IE[Y − f(X)]2 + IE[f(X)− g(X)]2 + 2IE[Y − f(X)][f(X)− g(X)] 

The cross-product term satisfies 

IE[Y − f(X)][f(X)− g(X)] = IE
[
IE
(
[Y − f(X)][f(X)− g(X)]

  X
)] 

= IE
[
[IE(Y |X)− f(X)][f(X)− g(X)]

] 

= IE
[
[f(X)− f(X)][f(X)− g(X)]

]
= 0 . 

The above two equations yield 

IE[Y − g(X)]2 = IE[Y − f(X)]2 + IE[f(X)− g(X)]2 ≥ IE[Y − f(X)]2 , 

with equality iff f(X) = g(X) almost surely. 
We have proved that the regression function f(x) = IE[Y |X = x], x ∈ X , 

enjoys the best prediction property, that is 

IE[Y − f(X)]2 = inf IE[Y − g(X)]2 , 
g 

where the infimum is taken over all measurable functions g : X → IR. 

Prediction and estimation 

As we said before, in a statistical problem, we do not have access to the condi
tional distribution of Y given X or even to the regression function f of Y onto 
X . Instead, we observe a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} that consists 
of independent copies of (X, Y ). The goal of regression function estimation is 

to use this data to construct an estimator f̂  n : X → Y that has small L2 risk 
R(f̂  n). 

Let PX denote the marginal distribution of X and for any h : X → IR, 
define 1

IhI2 = h2dPX .2 
X 

Note that IhI22 is the Hilbert norm associated to the inner product 

1
(h, h ′ )2 = hh ′ dPX . 

X 

When the reference measure is clear from the context, we will simply write 
IhI2L = IhIL2(PX ) and (h, h ′ )2 := (h, h ′)L2(PX ). 
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It follows from the proof of the best prediction property above that 

R(f̂  n) = IE[Y − f(X)]2 + If̂  n − fI2 2 
= inf IE[Y − g(X)]2 + If̂  n − fI2 2 g 

In particular, the prediction risk will always be at least equal to the positive 
constant IE[Y − f(X)]2 . Since we tend to prefer a measure of accuracy to be 
able to go to zero (as the sample size increases), it is equivalent to study the 

estimation error If̂  n − fI22. Note that if f̂  n is random, then If̂  n − fI22 and 
R(f̂  n) are random quantities and we need deterministic summaries to quantify 
their size. It is customary to use one of the two following options. Let {φn}n 

be a sequence of positive numbers that tends to zero as n goes to infinity. 

1. Bounds in expectation. They are of the form: 

IEIf̂  n − fI22 ≤ φn , 

where the expectation is taken with respect to the sample Dn. They 
indicate the average behavior of the estimator over multiple realizations 
of the sample. Such bounds have been established in nonparametric 
statistics where typically φn = O(n−α) for some α ∈ (1/2, 1) for example. 

Note that such bounds do not characterize the size of the deviation of the 
random variable If̂  n − fI22 around its expectation. As a result, it may be 
therefore appropriate to accompany such a bound with the second option 
below. 

2. Bounds with high-probability. They are of the form: 

IP
[
If̂  n − fI22 > φn(δ)

]
≤ δ , ∀δ ∈ (0, 1/3) . 

Here 1/3 is arbitrary and can be replaced by another positive constant. 

Such bounds control the tail of the distribution of If̂  n − fI22. They show 
how large the quantiles of the random variable If − f̂  nI22 can be. Such 
bounds are favored in learning theory, and are sometimes called PAC
bounds (for Probably Approximately Correct). 

Often, bounds with high probability follow from a bound in expectation and a 
concentration inequality that bounds the following probability 

IP
[
If̂  n − fI22 − IEIf̂  n − fI22 > t

]

by a quantity that decays to zero exponentially fast. Concentration of measure 
is a fascinating but wide topic and we will only briefly touch it. We recommend 
the reading of [BLM13] to the interested reader. This book presents many 
aspects of concentration that are particularly well suited to the applications 
covered in these notes. 
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Other measures of error 

We have chosen the L2 risk somewhat arbitrarily. Why not the Lp risk defined 
by g  → IE|Y − g(X)|p for some p ≥ 1? The main reason for choosing the L2 

risk is that it greatly simplifies the mathematics of our problem: it is a Hilbert 
space! In particular, for any estimator f̂  n, we have the remarkable identity: 

R(f̂  n) = IE[Y − f(X)]2 + If̂  n − fI2 .2 

This equality allowed us to consider only the part If̂  n − fI22 as a measure of 
error. While this decomposition may not hold for other risk measures, it may 
be desirable to explore other distances (or pseudo-distances). This leads to two 

distinct ways to measure error. Either by bounding a pseudo-distance d(f̂  n, f) 

(estimation error) or by bounding the risk R(f̂  n) for choices other than the L2 

risk. These two measures coincide up to the additive constant IE[Y − f(X)]2 

in the case described above. However, we show below that these two quantities 
may live independent lives. Bounding the estimation error is more customary 
in statistics whereas, risk bounds are preferred in learning theory. 

Here is a list of choices for the pseudo-distance employed in the estimation 
error. 

• Pointwise error. Given a point x0, the pointwise error measures only 
the error at this point. It uses the pseudo-distance: 

d0(f̂  n, f) = |f̂  n(x0)− f(x0)| . 

• Sup-norm error. Also known as the L∞-error and defined by 

d∞(f̂  n, f) = sup |f̂  n(x) − f(x)| . 
x∈X 

It controls the worst possible pointwise error. 

• Lp-error. It generalizes both the L2 distance and the sup-norm error by 
taking for any p ≥ 1, the pseudo distance 

1 
dp(f̂  n, f) = |f̂  n − f |pdPX . 

X 

The choice of p is somewhat arbitrary and mostly employed as a mathe
matical exercise. 

Note that these three examples can be split into two families: global (Sup-norm 
and Lp) and local (pointwise). 

For specific problems, other considerations come into play. For example, 
if Y ∈ {0, 1} is a label, one may be interested in the classification risk of a 
classifier h : X → {0, 1}. It is defined by 

R(h) = IP(Y  h(X))= . 
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We will not cover this problem in this course. 
Finally, we will devote a large part of these notes to the study of linear 

models. For such models, X = IRd and f is linear (or affine), i.e., f(x) = x⊤θ 
for some unknown θ ∈ IRd . In this case, it is traditional to measure error 
directly on the coefficient θ. For example, if f̂  n(x) = x⊤θ̂n is a candidate 

linear estimator, it is customary to measure the distance of f̂  n to f using a 
ˆ(pseudo-)distance between θn and θ as long as θ is identifiable. 

MODELS AND METHODS 

Empirical risk minimization 

In our considerations on measuring the performance of an estimator f̂  n, we 
have carefully avoided the question of how to construct f̂  n. This is of course 
one of the most important task of statistics. As we will see, it can be carried 
out in a fairly mechanical way by following one simple principle: Empirical 
Risk Minimization (ERM2). Indeed, an overwhelming proportion of statistical 
methods consist in replacing an (unknown) expected value (IE) by a (known) 
empirical mean ( 1 

�n 
). For example, it is well known that a good candidate n i=1 

to estimate the expected value IEX of a random variable X from a sequence of 
i.i.d copies X1, . . . , Xn of X , is their empirical average 

n
1

X̄ = 
n

Xi . 
n 
i=1 

In many instances, it corresponds the maximum likelihood estimator of IEX .
 
Another example is the sample variance where IE(X − IE(X))2 is estimated by
 

n
1 n

(Xi − X̄)2 . 
n 
i=1 

It turns out that this principle can be extended even if an optimization follows 
the substitution. Recall that the L2 risk is defined by R(g) = IE[Y −g(X)]2 . See 
the expectation? Well, it can be replaced by an average to from the empirical 
risk of g defined by 

n
1 

Rn(g) = 
n(

Yi − g(Xi)
)2 
. 

n 
i=1 

We can now proceed to minimizing this risk. However, we have to be careful. 
Indeed, Rn(g) ≥ 0 for all g. Therefore any function g such that Yi = g(Xi) for 
all i = 1, . . . , n is a minimizer of the empirical risk. Yet, it may not be the best 
choice (Cf. Figure 1). To overcome this limitation, we need to leverage some 
prior knowledge on f : either it may belong to a certain class G of functions (e.g., 
linear functions) or it is smooth (e.g., the L2-norm of its second derivative is 

2ERM may also mean Empirical Risk Minimizer 
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Figure 1. It may not be the best choice idea to have f̂n(Xi) = Yi for all i = 1, . . . , n. 

small). In both cases, this extra knowledge can be incorporated to ERM using 
either a constraint : 

min Rn(g) 
g∈G 

or a penalty: 

min 
{
Rn(g) + pen(g)

}
, 

g 

or both {
Rn

}
min (g) + pen(g) , 
g∈G 

These schemes belong to the general idea of regularization. We will see many 
variants of regularization throughout the course. 

Unlike traditional (low dimensional) statistics, computation plays a key role 
in high-dimensional statistics. Indeed, what is the point of describing an esti
mator with good prediction properties if it takes years to compute it on large 
datasets? As a result of this observation, much of the modern estimators, such 
as the Lasso estimator for sparse linear regression can be computed efficiently 
using simple tools from convex optimization. We will not describe such algo
rithms for this problem but will comment on the computability of estimators 
when relevant. 

In particular computational considerations have driven the field of com
pressed sensing that is closely connected to the problem of sparse linear regres
sion studied in these notes. We will only briefly mention some of the results and 
refer the interested reader to the book [FR13] for a comprehensive treatment. 
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Linear models 

When X = IRd, an all time favorite constraint G is the class of linear functions 
that are of the form g(x) = x⊤θ, that is parametrized by θ ∈ IRd . Under 
this constraint, the estimator obtained by ERM is usually called least squares 
estimator and is defined by f̂  n(x) = x⊤θ̂, where 

n 
1 

θ̂ ∈ argmin 
n

(Yi −Xi 
⊤θ)2 . 

nθ∈IRd 
i=1 

Note that θ̂ may not be unique. In the case of a linear model, where we assume 
⊤θ∗that the regression function is of the form f(x) = x for some unknown 

θ∗ ∈ IRd, we will need assumptions to ensure identifiability if we want to prove 
bounds on d(ˆ ·). Nevertheless, in θ, θ∗) for some specific pseudo-distance d(· , 
other instances such as regression with fixed design, we can prove bounds on 
the prediction error that are valid for any θ̂ in the argmin. In the latter case, 
we will not even require that f satisfies the linear model but our bound will 
be meaningful only if f can be well approximated by a linear function. In this 
case, we talk about misspecified model, i.e., we try to fit a linear model to data 
that may not come from a linear model. Since linear models can have good 
approximation properties especially when the dimension d is large, our hope is 
that the linear model is never too far from the truth. 

In the case of a misspecified model, there is no hope to drive the estimation 
error d(f̂  n, f) down to zero even with a sample size that tends to infinity. 
Rather, we will pay a systematic approximation error. When G is a linear 
subspace as above, and the pseudo distance is given by the squared L2 norm 
d(f̂  n, f) = If̂  n − fI22, it follows from the Pythagorean theorem that 

If̂  n − fI2 = If̂  n − f̄I22 + If̄ − fI22 ,2 

where f̄ is the projection of f onto the linear subspace G. The systematic 
¯approximation error is entirely contained in the deterministic term If − fI2 2 

and one can proceed to bound If̂  n − f̄I22 by a quantity that goes to zero as n 
goes to infinity. In this case, bounds (e.g., in expectation) on the estimation 
error take the form 

¯IEIf̂  n − fI22 ≤ If − fI22 + φn . 

The above inequality is called an oracle inequality. Indeed, it says that if φn 
¯is small enough, then f̂  n the estimator mimics the oracle f . It is called “oracle” 

because it cannot be constructed without the knowledge of the unknown f . It 
is clearly the best we can do when we restrict our attentions to estimator in the 
class G. Going back to the gap in knowledge between a probabilist who knows 
the whole joint distribution of (X, Y ) and a statistician who only see the data, 
the oracle sits somewhere in-between: it can only see the whole distribution 
through the lens provided by the statistician. In the case, above, the lens is 
that of linear regression functions. Different oracles are more or less powerful 
and there is a tradeoff to be achieved. On the one hand, if the oracle is weak, 
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then it’s easy for the statistician to mimic it but it may be very far from the 
true regression function; on the other hand, if the oracle is strong, then it is 
harder to mimic but it is much closer to the truth. 

Oracle inequalities were originally developed as analytic tools to prove adap
tation of some nonparametric estimators. With the development of aggregation 
[Nem00, Tsy03, Rig06] and high dimensional statistics [CT07, BRT09, RT11], 
they have become important finite sample results that characterize the inter
play between the important parameters of the problem. 

In some favorable instances, that is when the Xis enjoy specific properties, 
it is even possible to estimate the vector θ accurately, as is done in parametric 
statistics. The techniques employed for this goal will essentially be the same 
as the ones employed to minimize the prediction risk. The extra assumptions 
on the Xis will then translate in interesting properties on θ̂ itself, including 
uniqueness on top of the prediction properties of the function f̂  n(x) = x⊤θ̂. 

High dimension and sparsity 

These lecture notes are about high dimensional statistics and it is time they 
enter the picture. By high dimension, we informally mean that the model has 
more “parameters” than there are observations. The word “parameter” is used 
here loosely and a more accurate description is perhaps degrees of freedom. For 
example, the linear model f(x) = x⊤θ∗ has one parameter θ∗ but effectively d 
degrees of freedom when θ∗ ∈ IRd . The notion of degrees of freedom is actually 
well defined in the statistical literature but the formal definition does not help 
our informal discussion here. 

⊤θ∗As we will see in Chapter 2, if the regression function is linear f(x) = x , 
θ∗ ∈ IRd, and under some assumptions on the marginal distribution of X , then 
the least squares estimator f̂  n(x) = x⊤θ̂n satisfies 

IEIf̂  n − fI22 ≤ C d 
, (1) 

n 

where C > 0 is a constant and in Chapter 5, we will show that this cannot 
be improved apart perhaps for a smaller multiplicative constant. Clearly such 
a bound is uninformative if d ≫ n and actually, in view of its optimality, 
we can even conclude that the problem is too difficult statistically. However, 
the situation is not hopeless if we assume that the problem has actually less 
degrees of freedom than it seems. In particular, it is now standard to resort to 
the sparsity assumption to overcome this limitation. 

A vector θ ∈ IRd is said to be k-sparse for some k ∈ {0, . . . , d} if it has 
at most k non-zero coordinates. We denote by |θ|0 the number of nonzero 
coordinates of θ is also known as sparsity or “ℓ0-norm” though it is clearly not 
a norm (see footnote 3). Formally, it is defined as 

d 

|θ|0 = 
n

1I(θj = 0) . 
j=1 

6=



�  

�
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Sparsity is just one of many ways to limit the size of the set of potential 
θ vectors to consider. One could consider vectors θ that have the following 
structure for example (see Figure 2): 

• Monotonic: θ1 ≥ θ2 ≥ · · · ≥ θd 

• Smooth: |θi − θj | ≤ C|i − j|α for some α > 0 

d−1• Piecewise constant: j=1 1I(θj+1 = θj ) ≤ k 

• Structured in another basis: θ = Ψµ, for some orthogonal matrix and µ 
is in one of the structured classes described above. 

Sparsity plays a significant role in statistics because, often, structure translate 
into sparsity in a certain basis. For example a smooth function is sparse in the 
trigonometric basis and a piecewise constant function has sparse increments. 
Moreover, as we will real images for example are approximately sparse in certain 
bases such as wavelet or Fourier bases. This is precisely the feature exploited 
in compression schemes such as JPEG or JPEG-2000: only a few coefficients 
in these images are necessary to retain the main features of the image. 

We say that θ is approximately sparse if |θ|0 may be as large as d but many 
coefficients |θj | are small rather than exactly equal to zero. There are several 
mathematical ways to capture this phenomena, including ℓq -“balls” for q ≤ 1. 
For q > 0, the unit ℓq-ball of IRd is defined as 

d 

Bq (R) = 
{
θ ∈ IRd : |θ|q = 

n
|θj |q ≤ 1

}
q 

j=1 

3where |θ|q is often called ℓq-norm . As we will see, the smaller q is, the better 
vectors in the unit ℓq ball can be approximated by sparse vectors. 

k
Note that the set of k-sparse vectors of IRd is a union of 

(
d
)
linear j=0 j

subspaces with dimension at most k and that are spanned by at most k vectors 
in the canonical basis of IRd . If we knew that θ∗ belongs to one of these 
subspaces, we could simply drop irrelevant coordinates and obtain an oracle 
inequality such as (1), with d replaced by k. Since we do not know what 
subspace θ∗ lives exactly, we will have to pay an extra term to find in which 
subspace θ∗ lives. This it turns out that this term is exactly of the the order 
of 

log 
( 

k
j=0 

(
d
j

)) 
k log 

(
ed 
)

k≃ C 
n n 

Therefore, the price to pay for not knowing which subspace to look at is only 
a logarithmic factor. 

3Strictly speaking, |θ|q is a norm and the ℓq ball is a ball only for q ≥ 1. 

∑ 6=

∑

∑
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∈ IR50 Figure 2. Examples of structures vectors θ 

Nonparametric regression 

Nonparametric does not mean that there is no parameter to estimate (the 
regression function is a parameter) but rather that the parameter to estimate 
is infinite dimensional (this is the case of a function). In some instances, this 
parameter can be identified to an infinite sequence of real numbers, so that we 
are still in the realm of countable infinity. Indeed, observe that since L2(PX ) 
equipped with the inner product (· , ·)2 is a separable Hilbert space, it admits an 
orthonormal basis {ϕk}k∈Z and any function f ∈ L2(PX ) can be decomposed 
as 

f = 
n

αkϕk , 
k∈Z 

where αk = (f, ϕk)2. 
Therefore estimating a regression function f amounts to estimating the 

infinite sequence {αk}k∈Z ∈ ℓ2. You may argue (correctly) that the basis 
{ϕk}k∈Z is also unknown as it depends on the unknown PX . This is absolutely 

θj θj

θj θj

jj

jj

Monotone Smooth

Piecewise constant Smooth in a different basis



�

11 Introduction 

correct but we will make the convenient assumption that PX is (essentially) 
known whenever this is needed. 

Even if infinity is countable, we still have to estimate an infinite number 
of coefficients using a finite number of observations. It does not require much 
statistical intuition to realize that this task is impossible in general. What if 
we know something about the sequence {αk}k? For example, if we know that 
αk = 0 for |k| > k0, then there are only 2k0 + 1 parameters to estimate (in 
general, one would also have to “estimate” k0). In practice, we will not exactly 
see αk = 0 for |k| > k0, but rather that the sequence {αk}k decays to 0 at 
a certain polynomial rate. For example |αk| ≤ C|k|−γ for some γ > 1/2 (we 
need this sequence to be in ℓ2). It corresponds to a smoothness assumption on 
the function f . In this case, the sequence {αk}k can be well approximated by 
a sequence with only a finite number of non-zero terms. 

We can view this problem as a misspecified model. Indeed, for any cut-off 
k0, define the oracle 

f̄k0 = 
n 

αkϕk . 
|k|≤k0 

Note that it depends on the unknown αk and define the estimator 

f̂  n = 
n 

α̂kϕk , 
|k|≤k0 

where α̂k are some data-driven coefficients (obtained by least-squares for ex
ample). Then by the Pythagorean theorem and Parseval’s identity, we have 

¯ ¯If̂  n − fI2 = If − fI22 + If̂  n − fI2 2 2 

= 
n 

αk 
2 + 

n 
(α̂k − αk)

2 

|k|>k0 |k|≤k0 

We can even work further on this oracle inequality using the fact that |αk| ≤ 
C|k|−γ . Indeed, we have4 

1−2γ
n 

α2 
k ≤ C2 

n 
k−2γ ≤ Ck .0 

|k|>k0 |k|>k0 

The so called stochastic term IE (α̂k − αk)
2 clearly increases with k0|k|≤k0

(more parameters to estimate) whereas the approximation term Ck1−2γ de0 

creases with k0 (less terms discarded). We will see that we can strike a com
promise called bias-variance tradeoff. 

The main difference here with oracle inequalities is that we make assump
tions on the regression function (here in terms of smoothness) in order to 

4Here we illustrate a convenient notational convention that we will be using through
out these notes: a constant C may be different from line to line. This will not affect the 
interpretation of our results since we are interested in the order of magnitude of the error 
bounds. Nevertheless we will, as much as possible, try to make such constants explicit. As 
an exercise, try to find an expression of the second C as a function of the first one and of γ. 

∑
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control the approximation error. Therefore oracle inequalities are more general 
but can be seen on the one hand as less quantitative. On the other hand, if 
one is willing to accept the fact that approximation error is inevitable then 
there is no reason to focus on it. This is not the final answer to this rather 
philosophical question. Indeed, choosing the right k0 can only be done with 
a control of the approximation error. Indeed, the best k0 will depend on γ. 
We will see that even if the smoothness index γ is unknown, we can select k0 
in a data-driven way that achieves almost the same performance as if γ were 
known. This phenomenon is called adaptation (to γ). 

It is important to notice the main difference between the approach taken 
in nonparametric regression and the one in sparse linear regression. It is not 
so much about linear vs. nonlinear model as we can always first take nonlinear 
transformations of the xj ’s in linear regression. Instead, sparsity or approx
imate sparsity is a much weaker notion than the decay of coefficients {αk}k 

presented above. In a way, sparsity only imposes that after ordering the coef
ficients present a certain decay, whereas in nonparametric statistics, the order 
is set ahead of time: we assume that we have found a basis that is ordered in 
such a way that coefficients decay at a certain rate. 

Matrix models 

In the previous examples, the response variable is always assumed to be a scalar. 
What if it is a higher dimensional signal? In Chapter 4, we consider various 
problems of this form: matrix completion a.k.a. the Netflix problem, structured 
graph estimation and covariance matrix estimation. All these problems can be 
described as follows. 

Let M, S and N be three matrices, respectively called observation, signal 
and noise, and that satisfy 

M = S + N . 

Here N is a random matrix such that IE[N ] = 0, the all-zero matrix. The goal 
is to estimate the signal matrix S from the observation of M . 

The structure of S can also be chosen in various ways. We will consider the 
case where S is sparse in the sense that it has many zero coefficients. In a way, 
this assumption does not leverage much of the matrix structure and essentially 
treats matrices as vectors arranged in the form of an array. This is not the case 
of low rank structures where one assumes that the matrix S has either low rank 
or can be well approximated by a low rank matrix. This assumption makes 
sense in the case where S represents user preferences as in the Netflix example. 
In this example, the (i, j)th coefficient Sij of S corresponds to the rating (on a 
scale from 1 to 5) that user i gave to movie j. The low rank assumption simply 
materializes the idea that there are a few canonical profiles of users and that 
each user can be represented as a linear combination of these users. 

At first glance, this problem seems much more difficult than sparse linear 
regression. Indeed, one needs to learn not only the sparse coefficients in a given 
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basis, but also the basis of eigenvectors. Fortunately, it turns out that the latter 
task is much easier and is dominated by the former in terms of statistical price. 

Another important example of matrix estimation is high-dimensional co
variance estimation, where the goal is to estimate the covariance matrix of a 
random vector X ∈ IRd, or its leading eigenvectors, based on n observations. 
Such a problem has many applications including principal component analysis, 
linear discriminant analysis and portfolio optimization. The main difficulty is 
that n may be much smaller than the number of degrees of freedom in the 
covariance matrix, which can be of order d2 . To overcome this limitation, 
assumptions on the rank or the sparsity of the matrix can be leveraged. 

Optimality and minimax lower bounds 

So far, we have only talked about upper bounds. For a linear model, where 
f(x) = x⊤θ∗, we will prove in Chapter 2 the following bound for a modified 

least squares estimator f̂  n = x⊤θ̂

IEIf̂  n − fI22 ≤ C d 
. 

n 

Is this the right dependence in p and n? Would it be possible to obtain as √ 
an upper bound: C(log d)/n, C/n or d/n2, by either improving our proof 
technique or using another estimator altogether? It turns out that the answer 
to this question is negative. More precisely, we can prove that for any estimator 
f̃  n, there exists a function f of the form f(x) = x⊤θ∗ such that 

IEIf̂  n − fI22 > c 
d 
n 

for some positive constant c. Here we used a different notation for the constant 
to emphasize the fact that lower bounds guarantee optimality only up to a 
constant factor. Such a lower bound on the risk is called minimax lower bound 
for reasons that will become clearer in chapter 5. 

How is this possible? How can we make a statement for all estimators? 
We will see that these statements borrow from the theory of tests where we 
know that it is impossible to drive both the type I and the type II error to 
zero simultaneously (with a fixed sample size). Intuitively this phenomenon 
is related to the following observation: Given n observations X1, . . . , Xn, it is 
hard to tell if they are distributed according to N (θ, 1) or to N (θ ′ , 1) for a 
Euclidean distance |θ − θ ′ |2 is small enough. We will see that it is the case for 
example if |θ − θ ′ |2 ≤ C

�
d/n, which will yield our lower bound. 
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Sub-Gaussian Random Variables 

1.1 GAUSSIAN TAILS AND MGF 

Recall that a random variable X ∈ IR has Gaussian distribution iff it has a 
density p with respect to the Lebesgue measure on IR given by 

1 (x − µ)2 
p(x) = √ exp

(
− 

)
, x ∈ IR ,

2σ22πσ2 

where µ = IE(X) ∈ IR and σ2 = var(X) > 0 are the mean and variance of 
X . We write X ∼ N (µ, σ2). Note that X = σZ + µ for Z ∼ N (0, 1) (called 
standard Gaussian) and where the equality holds in distribution. Clearly, this 
distribution has unbounded support but it is well known that it has almost 
bounded support in the following sense: IP(|X −µ| ≤ 3σ) ≃ 0.997. This is due 
to the fast decay of the tails of p as |x| → ∞ (see Figure 1.1). This decay can 
be quantified using the following proposition (Mills inequality). 

Proposition 1.1. Let X be a Gaussian random variable with mean µ and 
variance σ2 then for any t > 0, it holds 

− t2 
2σ21 e 

IP(X − µ > t) ≤ √ . 
2π t 

By symmetry we also have 

− t2 
2σ21 e 

IP(X − µ < −t) ≤ √ . 
2π t 

14 



15 1.1. Gaussian tails and MGF 

Figure 1.1. Probabilities of falling within 1, 2, and 3 standard deviations close to the 

mean in a Gaussian distribution. Source http://www.openintro.org/ 

and 
2σ2

 
2 e − t2 

IP(|X − µ| > t) ≤ . 
π t 

Proof. Note that it is sufficient to prove the theorem for µ = 0 and σ2 = 1 by 
simple translation and rescaling. We get for Z ∼ N (0, 1), 

2 

IP(Z > t) = √	 1 
1 ∞ 

exp
(
− x

)
dx 

2π t 2 
2 

≤ √ 1 
1 ∞ x 

exp
(
− x

)
dx 

2π t t 2 
2 

= √ 1 
1 ∞ 

− ∂ 
exp
(
− x

)
dx 

t 2π t ∂x 2 

= √ 1 exp(−t2/2) . 
t 2π 

The second inequality follows from symmetry and the last one using the union 
bound: 

IP(|Z| > t) = IP({Z > t}∪ {Z < −t}) ≤ IP(Z > t) + IP(Z < −t) = 2IP(Z > t) . 

The fact that a Gaussian random variable Z has tails that decay to zero 
exponentially fast can also be seen in the moment generating function (MGF) 

M : s  → M(s) = IE[exp(sZ)] . 

http://www.openintro.org/
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Indeed in the case of a standard Gaussian random variable, we have 

21 
1 

−sz M(s) = IE[exp(sZ)] = √ e e 
z 
2 dz 

2π 
1 
1 

+ s 2(z−s)2 −= √ e 2 2 dz 
2π 
2 s 
2= e . 

2σ2 sIt follows that if X ∼ N (µ, σ2), then IE[exp(sX)] = exp
(
sµ + 

)
.2 

1.2 SUB-GAUSSIAN RANDOM VARIABLES AND CHERNOFF BOUNDS 

Definition and first properties 

Gaussian tails are practical when controlling the tail of an average of inde
pendent random variables. Indeed, recall that if X1, . . . , Xn are i.i.d N (µ, σ2), 

¯ 1 
�n

then X = Xi ∼ N (µ, σ2/n). Using Lemma 1.3 below for example, we n i=1 

get 
nt2 ¯IP(|X − µ| > t) ≤ 2 exp

(
− 

)
. 

2σ2

Equating the right-hand side with some confidence level δ > 0, we find that 
with probability at least1 1− δ, 

2 log(2/δ) 2 log(2/δ) 
µ ∈ 
[
X̄ − σ , X̄ + σ 

 
, (1.1) 

n n

This is almost the confidence interval that you used in introductory statistics. 
The only difference is that we used an approximation for the Gaussian tail 
whereas statistical tables or software use a much more accurate computation. 
Figure 1.2 shows the ration of the width of the confidence interval to that of 
the confidence interval computer by the software R. It turns out that intervals 
of the same form can be also derived for non-Gaussian random variables as 
long as they have sub-Gaussian tails. 

Definition 1.2. A random variable X ∈ IR is said to be sub-Gaussian with 
variance proxy σ2 if IE[X ] = 0 and its moment generating function satisfies 

2(σ2s )
IE[exp(sX)] ≤ exp , ∀ s ∈ IR . (1.2) 

2 

In this case we write X ∼ subG(σ2). Note that subG(σ2) denotes a class of 
distributions rather than a distribution. Therefore, we abuse notation when 
writing X ∼ subG(σ2). 

More generally, we can talk about sub-Gaussian random vectors and ma
trices. A random vector X ∈ IRd is said to be sub-Gaussian with variance 

1We will often commit the statement “at least” for brevity 

√ √
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Figure 1.2. Width of confidence intervals from exact computation in R (red dashed) 

and (1.1) (solid black). 

proxy σ2 if IE[X ] = 0 and u⊤X is sub-Gaussian with variance proxy σ2 for 
any unit vector u ∈ Sd−1 . In this case we write X ∼ subGd(σ2). A ran
dom matrix X ∈ IRd×T is said to be sub-Gaussian with variance proxy σ2 

if IE[X ] = 0 and u⊤Xv is sub-Gaussian with variance proxy σ2 for any unit 
vectors u ∈ Sd−1, v ∈ ST −1 . In this case we write X ∼ subGd×T (σ

2). 

This property can equivalently be expressed in terms of bounds on the tail 
of the random variable X . 

Lemma 1.3. Let X ∼ subG(σ2). Then for any t > 0, it holds 

t2 t2 
IP[X > t] ≤ exp

(
− 

)
, and IP[X < −t] ≤ exp

(
− 

)
. (1.3) 

2σ2 2σ2

Proof. Assume first thatX ∼ subG(σ2). We will employ a very useful technique 
called Chernoff bound that allows to to translate a bound on the moment 
generating function into a tail bound. Using Markov’s inequality, we have for 
any s > 0, 

sX
 

IE
 
e

IP(X > t) ≤ IP
(
e sX > est

)
≤ . 

est 

Next we use the fact that X is sub-Gaussian to get 

−st 2IP(X > t) ≤ e 
σ2 s 2 

. 
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The above inequality holds for any s > 0 so to make it the tightest possible, we 
sminimize with respect to s > 0. Solving φ ′ (s) = 0, where φ(s) = σ

2 2 − st, we 2 
2tfind that infs>0 φ(s) = − 2σ2 . This proves the first part of (1.3). The second 

inequality in this equation follows in the same manner (recall that (1.2) holds 
for any s ∈ IR). 

Moments 

Recall that the absolute moments of Z ∼ N (0, σ2) are given by 

IE[|Z|k] = √ 1 (2σ2)k/2Γ
(k + 1 )

π 2 

where Γ(·) denote the Gamma function defined by 

∞1
t−1Γ(t) = x e −xdx , t > 0 . 

0 

The next lemma shows that the tail bounds of Lemma 1.3 are sufficient to 
show that the absolute moments of X ∼ subG(σ2) can be bounded by those of 
Z ∼ N (0, σ2) up to multiplicative constants. 

Lemma 1.4. Let X be a random variable such that 

t2 
IP[|X | > t] ≤ 2 exp

(
− 

)
,

2σ2

then for any positive integer k ≥ 1, 

IE[|X |k] ≤ (2σ2)k/2kΓ(k/2) . 

In particular, √(
IE[|X |k])1/k ≤ σe1/e k , k ≥ 2 . 

√ 
and IE[|X |] ≤ σ 2π . 

Proof. 

∞1
IE[|X |k] = IP(|X |k > t)dt 

0 
∞1

= IP(|X | > t1/k)dt 
0 

∞ 2/k 
1

− t≤ 2 e 2σ2 dt 
0 

∞ t2/k
1

−u = (2σ2)k/2k e uk/2−1du , u = 
0 2σ2 

= (2σ2)k/2kΓ(k/2) 
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The second statement follows from Γ(k/2) ≤ (k/2)k/2 and k1/k ≤ e1/e for any 
k ≥ 2. It yields 

2σ2k √ 
≤ k1/k 1/eσ

(
(2σ2)k/2kΓ(k/2)

)1/k ≤ e k . 
2 

√ √ 
Moreover, for k = 1, we have 2Γ(1/2) = 2π. 

Using moments, we can prove the following reciprocal to Lemma 1.3. 

Lemma 1.5. If (1.3) holds, then for any s > 0, it holds 

24σ2 sIE[exp(sX)] ≤ e . 

As a result, we will sometimes write X ∼ subG(σ2) when it satisfies (1.3). 

Proof. We use the Taylor expansion of the exponential function as follows. 
Observe that by the dominated convergence theorem 

ssX IE e ≤ 1 + 
�∞ kIE[|X |k] 

k! 
k=2 

k! 
k=2 

∞
(2σ2s2)k/2kΓ(k/2) ≤ 1 + 

∞�
1 + 

∞

(2k)! (2k + 1)! 
k=1 k=1 

(2σ2s2)k2kΓ(k) (2σ2s2)k+1/2(2k + 1)Γ(k + 1/2) 
+= 

∞

(2k)! 
k=1 

√ (2σ2s2)kk! ≤ 1 +
(
2 + 2σ2s2

)

∞

k! 
k=1 

(2σ2s2)kσ2s2 ≤ 1 +
(
1 + 

)
2 

2(k!)2 ≤ (2k)! 

σ2s222σ2 s 22σ2 s+ (e − 1) = e 
2 

24σ2 s≤ e . 

From the above Lemma, we see that sub-Gaussian random variables can 
be equivalently defined from their tail bounds and their moment generating 
functions, up to constants. 

Sums of independent sub-Gaussian random variables 

Recall that if X1, . . . , Xn are i.i.d N (0, σ2), then for any a ∈ IRn , 

n�
aiXi ∼ N (0, |a|22σ2). 

i=1 

√

√

√

[ ]
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If we only care about the tails, this property is preserved for sub-Gaussian 
random variables. 

Theorem 1.6. Let X = (X1, . . . , Xn) be a vector of independent sub-Gaussian 
random variables that have variance proxy σ2 . Then, the random vector X is 
sub-Gaussian with variance proxy σ2 . 

Proof. Let u ∈ Sn−1 be a unit vector, then 

n n
σ2 s u σ2 s 2|u|2 2⊤

2 
i 
2

2 σ2 ssu suiXi ] ≤IE[e X ] = 
�

IE[e 
�

e 2 = e 2 = e 2 . 
i=1 i=1 

Using a Chernoff bound, we immediately get the following corollary 

Corollary 1.7. Let X1, . . . , Xn be n independent random variables such that 
Xi ∼ subG(σ2). Then for any a ∈ IRn, we have 

n
t2[� (

− 
)

IP aiXi > t ≤ exp ,
2σ2|a|2 2i=1 

and 
n

t2 
IP
[�

aiXi < −t ≤ exp
(
− 

2σ2|a|2
)

2i=1 

Of special interest is the case where ai = 1/n for all i. Then, we get that 
n

the average X̄ = 1 Xi, satisfies n i=1 

2 2 

¯ −
2σ2 ¯ −

2σ2 
nt nt

IP( X > t) ≤ e and IP( X < −t) ≤ e 

just like for the Gaussian average. 

Hoeffding’s inequality 

The class of subGaussian random variables is actually quite large. Indeed, 
Hoeffding’s lemma below implies that all randdom variables that are bounded 
uniformly are actually subGaussian with a variance proxy that depends on the 
size of their support. 

Lemma 1.8 (Hoeffding’s lemma (1963)). Let X be a random variable such 
that IE(X) = 0 and X ∈ [a, b] almost surely. Then, for any s ∈ IR, it holds 

s 2(b−a)2 sX ] ≤ 8IE[e e . 

(b−a)2 In particular, X ∼ subG( ) .4 

]

]

∑
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Proof. Define ψ(s) = log IE[esX ], and observe that and we can readily compute 

2 22 tn

2

2 

sX ]IE[XesX ] 
ψ ′′ (s)

IE[X2e
�
IE[XesX ]

�2 
ψ ′ (s) = , = − . 

IE[esX ] IE[esX ] IE[esX ] 

Thus ψ ′′ (s) can be interpreted as the variance of the random variable X under 
sX ethe probability measure dQ = sX ]dIP. But since X ∈ [a, b] almost surely, IE[e

we have, under any probability, 

var(X) = var
(
X − a + b ) ≤ IE

[(
X − a + b)2 ≤ (b − a)2 

. 
2 2 4 

The fundamental theorem of calculus yields 

s µ1 1
s2(b − a)2 

ψ(s) = ψ ′′ (ρ) dρ dµ ≤ 
80 0 

using ψ(0) = log 1 = 0 and ψ ′ (0) = IEX = 0. 

Using a Chernoff bound, we get the following (extremely useful) result. 

Theorem 1.9 (Hoeffding’s inequality). Let X1, . . . , Xn be n independent ran
dom variables such that almost surely, 

Xi ∈ [ai, bi] , ∀ i. 
n1Let X̄ = Xi, then for any t > 0,n i=1
 

2t2
2n¯ ¯
(
− 

)
IP( X − IE( X) > t) ≤ exp ,n (bi − ai)2i=1 

and 

¯ ¯
(
− 

)
IP( X − IE( X) < −t) ≤ exp .n 

(bi − ai)2i=1 

Note that Hoeffding’s lemma is for any bounded random variables. For 
example, if one knows that X is a Rademacher random variable. Then 

s 
s −se + esX )IE(e = = cosh(s) ≤ e 

2 

2

2

Note that 2 is the best possible constant in the above approximation. For such 
variables a = −1, b = 1, IE(X) = 0 so Hoeffding’s lemma yields 

ssX ) ≤IE(e e . 

Hoeffding’s inequality is very general but there is a price to pay for this gen
erality. Indeed, if the random variables have small variance, we would like to 
see it reflected in the exponential tail bound (like for the Gaussian case) but 
the variance does not appear in Hoeffding’s inequality. We need a more refined 
inequality. 

∑

∑

]

∑
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1.3 SUB-EXPONENTIAL RANDOM VARIABLES 

What can we say when a centered random variable is not sub-Gaussian? 
A typical example is the double exponential (or Laplace) distribution with 
parameter 1, denoted by Lap(1). Let X ∼ Lap(1) and observe that 

−tIP(|X | > t) = e , t ≥ 0 . 

In particular, the tails of this distribution do not decay as fast as the Gaussian 
−tones (that decay as e

2/2). Such tails are said to be heavier than Gaussian. 
This tail behavior is also captured by the moment generating function of X . 
Indeed, we have 

1sX IE e = if |s| < 1 ,
1− s2 

and is not defined for s ≥ 1. It turns out that a rather week condition on 
the moment generating function is enough to partially reproduce some of the 
bounds that we have proved for sub-Gaussian random variables. Observe that 
for X ∼ Lap(1) 

2sX 2sIE e ≤ e if |s| < 1/2 , 

In particular, the Laplace distribution has its moment generating distribution 
that is bounded by that of a Gaussian in a neighborhood of 0 but does not 
even exist away from zero. It turns out that all distributions that have tails at 
least as heavy as that of a Laplace distribution satisfy such a property. 

Lemma 1.10. Let X be a centered random variable such that IP(|X | > t) ≤ 
2e−2t/λ for some λ > 0. Then, for any positive integer k ≥ 1, 

IE[|X |k] ≤ λk k! . 

Moreover, (
IE[|X |k])1/k ≤ 2λk , 

and the moment generating function of X satisfies 

IE e sX ≤ e 2s 2λ2 

, ∀|s| ≤ 1 
2λ 

. 

Proof. 

IE[|X |k] = 

1 ∞ 

0 

IP(|X |k > t)dt 

= 

1 ∞ 

0 

IP(|X | > t1/k)dt 

≤ 
1 ∞ 

2e −
2t1/k 

λ dt 
0 

= 2(λ/2)kk 
1 ∞ 

e −u u k−1du , u = 
2t1/k 

λ0 

≤ λkkΓ(k) = λkk! 

[ ]

[ ]

[ ]
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23 1.3. Sub-exponential random variables 

The second statement follows from Γ(k) ≤ kk and k1/k ≤ e1/e ≤ 2 for any 
k ≥ 1. It yields (

λk kΓ(k)
)1/k ≤ 2λk . 

To control the MGF of X , we use the Taylor expansion of the exponential 
function as follows. Observe that by the dominated convergence theorem, for 
any s such that |s| ≤ 1/2λ 

∞ |s|kIE[|X |k]sX IE e ≤ 1 + 
k! 

k=2 

∞ 
≤ 1 + (|s|λ)k 

k=2 

∞ 
2λ2 = 1 + s (|s|λ)k 

k=0 

1 ≤ 1 + 2s 2λ2 |s| ≤ 
2λ 

2λ22s≤ e 

This leads to the following definition 

Definition 1.11. A random variable X is said to be sub-exponential with 
parameter λ (denoted X ∼ subE(λ)) if IE[X ] = 0 and its moment generating 
function satisfies 

2sX s /2IE e ≤ e λ2

, ∀|s| ≤ 1 . 
λ 

A simple and useful example of of a sub-exponential random variable is 
given in the next lemma. 

Lemma 1.12. Let X ∼ subG(σ2) then the random variable Z = X2 − IE[X2] 
is sub-exponential: Z ∼ subE(16σ2). 

∑

∑
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∑
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24 1.3. Sub-exponential random variables 

Proof. We have, by the dominated convergence theorem, 

∞ k 
skIE X2 − IE[X2]sZ ]IE[e = 1 + 

k! 
k=2 

∞ 
sk2k−1

(
IE[X2k] + (IE[X2])k

)
≤ 1 + (Jensen) 

k! 
k=2 

∞ 
sk4kIE[X2k]≤ 1 + 

k=2 
2(k!) 

(Jensen again) 

≤ 1 + 

∞ 

k=2 

sk4k2(2σ2)kk! 

2(k!) 
(Lemma 1.4) 

∞ 
= 1 + (8sσ2)2 (8sσ2)k 

k=0 

= 1 + 128s 2σ4 for |s| ≤ 1 

16σ2 

2σ4128s≤ e . 

Sub-exponential random variables also give rise to exponential deviation 
inequalities such as Corollary 1.7 (Chernoff bound) or Theorem 1.9 (Hoeffd
ing’s inequality) for weighted sums of independent sub-exponential random 
variables. The significant difference here is that the larger deviations are con
trolled in by a weaker bound. 

Berstein’s inequality 

Theorem 1.13 (Bernstein’s inequality). Let X1, . . . , Xn be independent ran
dom variables such that IE(Xi) = 0 and Xi ∼ subE(λ). Define 

n
1

X̄ = Xi , 
n 
i=1 

Then for any t > 0 we have 

n t2 t¯ ¯IP( X > t) ∨ IP( X < −t) ≤ exp − ( ∧ ) . 
2 λ2 λ 

Proof. Without loss of generality, assume that λ = 1 (we can always replace 
Xi by Xi/λ and t by t/λ. Next, using a Chernoff bound, we get for any s > 0 

n 

¯ sXi −snt IP( X > t) ≤ IE e e . 
i=1 

∑

∑

∑

∑

∑

∏
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25 1.4. Maximal inequalities 

sXi s 2Next, if |s| ≤ 1, then IE e ≤ e /2 by definition of sub-exponential distri
butions. It yields 

2 −snt ¯ 2IP( X > t) ≤ e ns 

Choosing s = 1 ∧ t yields 
− (t2∧t)¯ 2IP( X > t) ≤ e n 

¯We obtain the same bound for IP( X < −t) which concludes the proof. 

Note that usually, Bernstein’s inequality refers to a slightly more precise 
result that is qualitatively the same as the one above: it exhibits a Gaussian 

−nt /(2λ2 −nt/(2λ)tail e
2 ) and an exponential tail e . See for example Theorem 2.10 

in [BLM13]. 

1.4 MAXIMAL INEQUALITIES 

The exponential inequalities of the previous section are valid for linear com
binations of independent random variables, and in particular, for the average 
X̄ . In many instances, we will be interested in controlling the maximum over 
the parameters of such linear combinations (this is because of empirical risk 
minimization). The purpose of this section is to present such results. 

Maximum over a finite set 

We begin by the simplest case possible: the maximum over a finite set. 

Theorem 1.14. LetX1, . . . , XN be N random variables such that Xi ∼ subG(σ2). 
Then 

IE[ max Xi] ≤ σ
�
2 log(N) , and IE[ max |Xi|] ≤ σ

�
2 log(2N) 

1≤i≤N 1≤i≤N 

Moreover, for any t > 0, 

2σ2 2σ2IP
(
max Xi > t

)
≤ Ne− t2 , and IP

(
max |Xi| > t

)
≤ 2Ne− t2 

1≤i≤N 1≤i≤N 

Note that the random variables in this theorem need not be independent. 
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26 1.4. Maximal inequalities 

s 

Proof. For any s > 0, 

1 s max1≤i≤N XiIE[ max Xi] = IE log e 
1≤i≤N s 

1 s max1≤i≤N Xi≤ log IE e (by Jensen) 
s 
1 

= log IE max e sXi 

s 1≤i≤N 

1 ≤ log IE e sXi 

s 
1≤i≤N 

21 σ2 

2≤ log e 
s 

1≤i≤N 

log N σ2s 
= + 

s 2 

Taking s = 
�
2(logN)/σ2 yields the first inequality in expectation. 

The first inequality in probability is obtained by a simple union bound: 

IP
(

max Xi > t
)
= IP
( 
 

{Xi > t}
)

1≤i≤N 
1≤i≤N

≤ IP(Xi > t) 
1≤i≤N 

2σ2≤ Ne− t2 , 

where we used Lemma 1.3 in the last inequality. 
The remaining two inequalities follow trivially by noting that 

max |Xi| = max Xi , 
1≤i≤N 1≤i≤2N 

where XN+i = −Xi for i = 1, . . . , N . 

Extending these results to a maximum over an infinite set may be impossi
ble. For example, if one is given an infinite sequence of i.i.d N (0, σ2) random 
variables X1, X2, . . . ,, then for any N ≥ 1, we have for any t > 0, 

IP( max Xi < t) = [IP(X1 < t)]N → 0 , N → ∞ . 
1≤i≤N 

On the opposite side of the picture, if all the Xis are equal to the same random 
variable X , we have for any t > 0, 

IP( max Xi < t) = IP(X1 < t) > 0 ∀N ≥ 1 . 
1≤i≤N 

In the Gaussian case, lower bounds are also available. They illustrate the effect 
of the correlation between the Xis 

]

]

]

∑ ]

∑

∑
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Examples from statistics have structure and we encounter many examples 
where a maximum of random variables over an infinite set is in fact finite. 
This is due to the fact that the random variable that we are considering are 
not independent from each other. In the rest of this section, we review some 
of these examples. 

Maximum over a convex polytope 

We use the definition of a polytope from [Gru03]: a convex polytope P is a 
compact set with a finite number of vertices V(P) called extreme points. It 
satisfies P = conv(V(P)), where conv(V(P)) denotes the convex hull of the 
vertices of P. 

LetX ∈ IRd be a random vector and consider the (infinite) family of random 
variables 

F = {θ⊤X : θ ∈ P} , 
where P ⊂ IRd is a polytope with N vertices. While the family F is infinite, the 
maximum over F can be reduced to the a finite maximum using the following 
useful lemma. 

⊤Lemma 1.15. Consider a linear form x  → c x, x, c ∈ IRd . Then for any 
convex polytope P ⊂ IRd , 

⊤ ⊤ max c x = max c x 
x∈P x∈V(P) 

where V(P) denotes the set of vertices of P. 

Proof. Assume that V(P) = {v1, . . . , vN }. For any x ∈ P = conv(V(P)), there 
exist nonnegative numbers λ1, . . . λN that sum up to 1 and such that x = 
λ1v1 + · · · + λN vN . Thus 

N N N 
⊤ ⊤

( )
⊤ ⊤ ⊤ c x = c λivi = λic vi ≤ λi max c x = max c x . 

x∈V(P) x∈V(P)
i=1 i=1 i=1 

It yields 
⊤ ⊤ ⊤ max c x ≤ max c x ≤ max c x 

x∈P x∈V(P) x∈P 

so the two quantities are equal. 

It immediately yields the following theorem 

Theorem 1.16. Let P be a polytope with N vertices v(1), . . . , v(N) ∈ IRd and let 
X ∈ IRd be a random vector such that, [v(i)]⊤X, i = 1, . . . , N are sub-Gaussian 
random variables with variance proxy σ2 . Then 

IE[max θ⊤X ] ≤ σ
�

2 log(N) , and IE[max |θ⊤X |] ≤ σ
�
2 log(2N) . 

θ∈P θ∈P 

Moreover, for any t > 0, 

2σ2 2σ2IP
(
max θ⊤X > t

)
≤ Ne− t2 , and IP

(
max |θ⊤X | > t

)
≤ 2Ne− t2 

θ∈P θ∈P 

∑ ∑ ∑
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Of particular interests are polytopes that have a small number of vertices. 
A primary example is the ℓ1 ball of IR

d defined for any radius R > 0, by 

d 

B1 = 
{
x ∈ IRd : |xi| ≤ 1} . 

i=1 

Indeed, it has exactly 2d vertices. 

Maximum over the ℓ2 ball 

Recall that the unit ℓ2 ball of IR
d is defined by the set of vectors u that have 

Euclidean norm |u|2 at most 1. Formally, it is defined by 

d{
2 

}
B2 = x ∈ IRd : x ≤ 1 .i 

i=1 

Clearly, this ball is not a polytope and yet, we can control the maximum of 
random variables indexed by B2. This is due to the fact that there exists a 
finite subset of B2 such that the maximum over this finite set is of the same 
order as the maximum over the entire ball. 

Definition 1.17. Fix K ⊂ IRd and ε > 0. A set N is called an ε-net of K 
with respect to a distance d(·, ·) on IRd, if N ⊂ K and for any z ∈ K, there 
exists x ∈ N such that d(x, z) ≤ ε. 

Therefore, if N is an ε-net of K with respect to norm 1 ·1, then every point 
of K is at distance at most ε from a point in N . Clearly, every compact set 
admits a finite ε-net. The following lemma gives an upper bound on the size 
of the smallest ε-net of B2. 

Lemma 1.18. Fix ε ∈ (0, 1). Then the unit Euclidean ball B2 has an ε-net N 
with respect to the Euclidean distance of cardinality |N | ≤ (3/ε)d 

Proof. Consider the following iterative construction if the ε-net. Choose x1 = 
0. For any i ≥ 2, take any xi to be any x ∈ B2 such that |x − xj |2 > ε for 
all j < i. If no such x exists, stop the procedure. Clearly, this will create an 
ε-net. We now control its size. 

Observe that since |x−y|2 > ε for all x, y ∈ N , the Euclidean balls centered 
at x ∈ N and with radius ε/2 are disjoint. Moreover, 

ε ε
 
{z + B2} ⊂ (1 + )B2

2 2
z∈N

where {z + εB2} = {z + εx , x ∈ B2}. Thus, measuring volumes, we get 

ε ε ε 
vol
(
(1 + )B2

)
≥ vol

( 
 
{z + B2}

)
= vol

(
{z + B2}

)
2 2 2 

z∈N z∈N 

∑

∑

∑
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This is equivalent to 
ε ε 

)d(1 + )d ≥ |N |( . 
2 2

Therefore, we get the following bound 

|N | ≤
(
1 + 

2)d (3)d 
≤ . 

ε ε 

Theorem 1.19. Let X ∈ IRd be a sub-Gaussian random vector with variance 
proxy σ2 . Then 

√ 
IE[max θ⊤X ] = IE[max |θ⊤X |] ≤ 4σ d . 

θ∈B2 θ∈B2 

Moreover, for any δ > 0, with probability 1− δ, it holds 

√ 
max θ⊤X = max |θ⊤X | ≤ 4σ d + 2σ

�
2 log(1/δ) . 

θ∈B2 θ∈B2 

Proof. Let N be a 1/2-net of B2 with respect to the Euclidean norm that 
satisfies |N | ≤ 6d . Next, observe that for every θ ∈ B2, there exists z ∈ N and 
x such that |x|2 ≤ 1/2 and θ = z + x. Therefore, 

max θ⊤X ≤ max z ⊤X + max x ⊤X 
θ∈B2 z∈N x∈ 1 

2B2 

But 
1⊤X ⊤X 

x∈ 1 2 x∈B2 

max x = max x 
2B2 

Therefore, using Theorem 1.14, we get 

√ 
IE[max θ⊤X ] ≤ 2IE[max z ⊤X ] ≤ 2σ

�
2 log(|N |) ≤ 2σ

�
2(log 6)d ≤ 4σ d . 

θ∈B2 z∈N 

The bound with high probability, follows because 

− t2 − t2 
8σ2 ≤ 6d 

8σ2 

θ∈B2 z∈N 
IP
(
max θ⊤X > t

)
≤ IP
(
2max z ⊤X > t

)
≤ |N |e e . 

To conclude the proof, we find t such that 

2 − t +d log(6) e 8σ2 ≤ δ ⇔ t2 ≥ 8 log(6)σ2d + 8σ2 log(1/δ) . 
√ 

Therefore, it is sufficient to take t = 
�
8 log(6)σ d + 2σ

�
2 log(1/δ) . 
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30 1.5. Problem set 

1.5 PROBLEM SET 

Problem 1.1. Let X1, . . . , Xn be independent random variables such that 
IE(Xi) = 0 and Xi ∼ subE(λ). For any vector a = (a1, . . . , an)

⊤ ∈ IRn, define 
the weighted sum 

n 

S(a) = aiXi , 
i=1 

Show that for any t > 0 we have 

t2 t 
IP(|S(a)| > t) ≤ 2 exp −C

(
λ2|a|2 ∧ λ|a|∞

)
. 

2 

for some positive constant C. 

Problem 1.2. A random variable X has χ2 (chi-squared with n degrees of n 
freedom) if it has the same distribution as Z1

2 + . . . +Z2, where Z1, . . . , Zn are n

iid N (0, 1). 

(a) Let Z ∼ N (0, 1). Show that the moment generating function of Y = 
Z2 − 1 satisfies 

−s
e

sY 
 √ if s < 1/2 

φ(s) := E e = 1− 2s 
∞ otherwise 

 

(b) Show that for all 0 < s < 1/2, 

2s( )
φ(s) ≤ exp . 

1− 2s

(c) Conclude that √ −tIP(Y > 2t + 2 t) ≤ e 
√ 

[Hint: you can use the convexity inequality 1 + u ≤ 1+u/2]. 

(d) Show that if X ∼ χ2 , then, with probability at least 1 − δ, it holds n

X ≤ n + 2
�
n log(1/δ) + 2 log(1/δ) . 

Problem 1.3. Let X1, X2 . . . be an infinite sequence of sub-Gaussian random 
variables with variance proxy σ2 = C(log i)−1/2 . Show that for C large enough, i 
we get 

IE max Xi < ∞ . 
i≥2 

∑

[ ]

[ ]

[ ]
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Problem 1.4. Let A = {Ai,j } 1≤i≤n be a random matrix such that its entries 
1≤j≤m 

are iid sub-Gaussian random variables with variance proxy σ2 . 

(a) Show that the matrix A is sub-Gaussian. What is its variance proxy? 

(b) Let 1A1 denote the operator norm of A defined by
 

|Ax|2
 
max . 
x∈IRm |x|2 

Show that there exits a constant C > 0 such that 
√ √ 

IE1A1 ≤ C( m + n) . 

Problem 1.5. Recall that for any q ≥ 1, the ℓq norm of a vector x ∈ IRn is 
defined by 

|x|q = 

n(
|xi|q 
)

i=1 

1 
q 

. 

Let X = (X1, . . . , Xn) be a vector with independent entries such that Xi is 
sub-Gaussian with variance proxy σ2 and IE(Xi) = 0. 

(a) Show that for any q ≥ 2, and any x ∈ IRd , 

1
2− 1 |x|2 ≤ |x|q n q , 

and prove that the above inequality cannot be improved 

(b) Show that for for any q > 1, 

1√ 
qIE|X |q ≤ 4σn q 

(c) Recover from this bound that 

IE max |Xi| ≤ 4eσ
�
log n . 

1≤i≤n 

Problem 1.6. Let K be a compact subset of the unit sphere of IRp that 
admits an ε-net Nε with respect to the Euclidean distance of IR

p that satisfies 
|Nε| ≤ (C/ε)d for all ε ∈ (0, 1). Here C ≥ 1 and d ≤ p are positive constants. 
Let X ∼ subGp(σ2) be a centered random vector. 

Show that there exists positive constants c1 and c2 to be made explicit such 
that for any δ ∈ (0, 1), it holds 

max θ⊤X ≤ c1σ
�
d log(2p/d) + c2σ

�
log(1/δ) 

θ∈K 

with probability at least 1−δ. Comment on the result in light of Theorem 1.19 . 

∑
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Problem 1.7. For any K ⊂ IRd, distance d on IRd and ε > 0, the ε-covering 
number C(ε) of K is the cardinality of the smallest ε-net of K. The ε-packing 
number P (ε) of K is the cardinality of the largest set P ⊂ K such that 

′ ′ d(z, z ′ ) > ε for all z, z ∈ P , z � z . Show that = 

C(2ε) ≤ P (2ε) ≤ C(ε) . 

Problem 1.8. Let X1, . . . , Xn be n independent and random variables such 
that IE[Xi] = µ and var(Xi) ≤ σ2 . Fix δ ∈ (0, 1) and assume without loss of 
generality that n can be factored into n = K · G where G = 8 log(1/δ) is a 
positive integers. 

For g = 1, . . . , G, let X̄g denote the average over the gth group of k variables. 
Formally 

gk 
1

X̄g = Xi . 
k 
i=(g−1)k+1 

1. Show that for any g = 1, . . . , G, 

IP X̄g − µ > √ 2σ ≤ 1 . 
k 4 

¯ ¯2. Let µ̂ be defined as the median of {X1, . . . , XG}. Show that 

2σ G 
IP µ̂ − µ > √ ≤ IP B ≥ , 

k 2 

where B ∼ Bin(G, 1/4). 

3. Conclude that 
2 log(1/δ)

IP µ̂ − µ > 4σ ≤ δ 
n 

4. Compare this result with 1.7 and Lemma 1.3. Can you conclude that 
µ̂− µ ∼ subG(σ̄2/n) for some σ̄2? Conclude. 

6

∑

6

[ ]
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√
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Linear Regression Model

In this chapter, we consider the following regression model:

Yi = f(Xi) + εi, i = 1, . . . , n , (2.1)

where ε = (ε1, . . . , εn)
⊤ is sub-Gaussian with variance proxy σ2 and such that

IE[ε] = 0. Our goal is to estimate the function f under a linear assumption.
Namely, we assume that x ∈ IRd and f(x) = x⊤θ∗ for some unknown θ∗ ∈ IRd.

2.1 FIXED DESIGN LINEAR REGRESSION

Depending on the nature of the design points X1, . . . , Xn, we will favor a
different measure of risk. In particular, we will focus either on fixed or random
design.

Random design

The case of random design corresponds to the statistical learning setup. Let
(X1, Y1), . . . , (Xn+1, Yn+1) be n+1 i.i.d. random couples. Given (X1, Y1), . . . , (Xn, Yn)

ˆ ˆthe goal is construct a function fn such that fn(Xn+1) is a good predictor of
ˆYn+1. Note that when fn is constructed, Xn+1 is still unknown and we have

to account for what value it is likely to take.
Consider the following example from [HTF01, Section 3.2]. The response

variable Y is the log-volume of a cancerous tumor, and the goal is to predict
it based on X ∈ IR6, a collection of variables that are easier to measure (age
of patient, log-weight of prostate, . . . ). Here the goal is clearly to construct f
for prediction purposes. Indeed, we want to find an automatic mechanism that

33



2.1. Fixed design linear regression 34

outputs a good prediction of the log-weight of the tumor given certain inputs
for a new (unseen) patient.

A natural measure of performance here is the L2-risk employed in the in-
troduction:

ˆR(fn) = IE[Yn+1 − f̂n(Xn+1)]
2 ˆ= IE[Yn+1 − f(Xn+1)]

2 + ‖fn − f‖2L2(PX ) ,

where PX denotes the marginal distribution of Xn+1. It measures how good
the prediction of Yn+1 is in average over realizations of Xn+1. In particular,
it does not put much emphasis on values of Xn+1 that are not very likely to
occur.

Note that if the εi are random variables with variance σ2 then, one simply
ˆ ˆhas R(fn) = σ2 + ‖fn − f‖2 2 . Therefore, for random design, we will focusL (PX )

ˆon the squared L2 norm ‖fn− f‖2 2 as a measure of accuracy. It measuresL (PX )

ˆhow close fn is to the unknown f in average over realizations of Xn+1.

Fixed design

In fixed design, the points (or vectors) X1, . . . , Xn are deterministic. To em-
phasize this fact, we use lowercase letters x1, . . . , xn to denote fixed design. Of
course, we can always think of them as realizations of a random variable but
the distinction between fixed and random design is deeper and significantly
affects our measure of performance. Indeed, recall that for random design, we
look at the performance in average over realizations of Xn+1. Here, there is no
such thing as a marginal distribution of Xn+1. Rather, since the design points
x1, . . . , xn are considered deterministic, our goal is estimate f only at these
points. This problem is sometimes called denoising since our goal is to recover
f(x1), . . . , f(xn) given noisy observations of these values.

In many instances, fixed design can be recognized from their structured
form. A typical example is the regular design on [0, 1], given by xi = i/n, i =
1, . . . , n. Interpolation between these points is possible under smoothness as-
sumptions.

Note that in fixed design, we observe µ∗+ε, where µ∗ =
(
f(x1), . . . , f(xn)

⊤ ∈
IRn and ε = (ε1, . . . , ε)

⊤ ∈ IRn is sub-Gaussian with variance proxy σ2. Instead
of a functional estimation problem, it is often simpler to view this problem a

)

s a
vector problem in IRn. This point of view will allow us to leverage the Euclidean
geometry of IRn.

In the case of fixed design, we will focus on the Mean Squared Error (MSE)
as a measure of performance. It is defined by

n
1 2

MSE ˆ ˆ(fn) =
∑

fn(xi)
n
i=1

− f(xi) .

Equivalently, if we view our problem as

(

a vector proble

)

m, it is defined by

n
1 2 1

MSE(µ̂) =
∑

i=1

(
µ̂i − µ∗

n i

)
=
n
|µ̂− µ∗|22 .
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Often, the design vectors x1, . . . , xn ∈ IRd are stored in a n× d design matrix
X, whose jth row is given by x⊤j . With this notation, the linear regression
model can be written

Y = Xθ∗ + ε , (2.2)

where Y = (Y1, . . . , Yn)
⊤ and ε = (ε1, . . . , εn)

⊤. Moreover,

1 X X
MSE(Xθ̂) = |X ˆ(θ − θ∗)|2

⊤
ˆ ˆ

2 = (θ θ
n

− ∗)⊤ (θ
n

− θ∗) . (2.3)

A natural example of fixed design regression is image denoising. Assume
that µ∗

i , i ∈ 1, . . . , n is the grayscale value of pixel i of an image. We do not
get to observe the image µ∗ but rather a noisy version of it Y = µ∗ + ε. Given
a library of d images {x1, . . . , xd}, xj ∈ IRn, our goal is to recover the original
image µ∗ using linear combinations of the images x1, . . . , xd. This can be done
fairly accurately (see Figure 2.1).

Figure 2.1. Reconstruction of the digit “6”: Original (left), Noisy (middle) and Recon-

struction (right). Here n = 16× 16 = 256 pixels. Source [RT11].

As we will see in Remark 2.3, choosing fixed design properly also ensures
that if MSE ˆ ˆ ˆ ˆ(f) is small for some linear estimator f(x) = x⊤θ, then |θ− θ∗|22 is
also small.

In this chapter we only consider the fixed design case.

2.2 LEAST SQUARES ESTIMATORS

Throughout this section, we consider the regression model (2.2) with fixed
design.

Unconstrained least squares estimator

ˆDefine the (unconstrained) least squares estimator θls to be any vector such
that

θ̂ls ∈ argmin
θ∈IRd

|Y − Xθ|22 .
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Note that we are interested in estimating Xθ∗ and not θ∗ itself, so by exten-
ˆsion, we also call µ̂ls = Xθls least squares estimator. Observe that µ̂ls is the

projection of Y onto the column span of X.
It is not hard to see that least squares estimators of θ∗ and µ∗ = Xθ∗ are

maximum likelihood estimators when ε ∼ N (0, σ2In).

Proposition 2.1. ˆThe least squares estimator µ̂ls = Xθls ∈ IRn satisfies

X⊤µ̂ls = X⊤Y .

ˆMoreover, θls can be chosen to be

θ̂ls = (X⊤X)†X⊤Y ,

where (X⊤X)† denotes the Moore-Penrose pseudoinverse of X⊤X.

Proof. The function θ 7→ |Y − Xθ|22 is convex so any of its minima satisfies

∇θ|Y − Xθ|22 = 0

Where ∇θ is the gradient operator. Using matrix calculus, we find

∇θ|Y − Xθ|22 = ∇θ

{
|Y |22 +−2Y ⊤Xθ + θ⊤X⊤Xθ = −2(Y ⊤X− θ⊤X⊤X)⊤ .

Therefore, solving ∇θ|Y − Xθ|22 = 0 yields

}

X⊤Xθ = X⊤Y .

It concludes the proof of the first statement. The second statement follows
from the definition of the Moore-Penrose pseudoinverse.

We are now going to prove our first result on the finite sample performance
of the least squares estimator for fixed design.

Theorem 2.2. Assume that the linear model (2.2) holds where ε ∼ subGn(σ
2).

ˆThen the least squares estimator θls satisfies

1ˆ ˆIE MSE( θls) = IE| θls − θ∗|2 2 rX X X
n 2 . σ ,

n

where r = rank(X⊤X

[

). Moreove

]

r, for any δ > 0, with probability 1− δ, it holds

ls 2 r + log(1/δ)
MSE(Xθ̂ ) . σ .

n

Proof. Note that by definition

|Y − Xθ̂ls|22 ≤ |Y − Xθ∗|22 = |ε|22 . (2.4)

Moreover,

|Y − Xθ̂ls|2 = | 2Xθ∗ + ε− Xθ̂ls| = |Xθ̂ls − 2 2X X2 θ∗|2 − 2ε⊤ ˆ(θls2 − θ∗) + |ε|2 .
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Therefore, we get

X l̂

|Xθ̂l ε⊤ (θ s
s θ∗)− Xθ∗ 2 ˆ

2 2ε⊤X( ls ∗ = 2 Xˆθ θ ) θls Xθ∗ 2
ls

−| ≤ − | − | (2.5)
|X ˆ(θ − θ∗)|2

Note that it is difficult to control

ε⊤X ˆ(θls − θ∗)

|X ˆ(θls − θ∗)|2
ˆas θls depends on ε and the dependence structure of this term may be com-

ˆplicated. To remove this dependency, a traditional technique is “sup-out” θls.
This is typically where maximal inequalities are needed. Here we have to be a
bit careful.

Let Φ = [φ1, . . . , φr ] ∈ IRn×r be an orthonormal basis of the column span

of X ˆ. In particular, there exists ν ∈ IRr such that X(θls − θ∗) = Φν. It yields

ε⊤X ˆ(θls − θ∗) ε⊤Φν ε⊤Φν ν
= = = ε̃⊤ sup ε̃⊤u ,

|X ˆ(θls |ν|2
≤

− θ∗)|2 |Φν|2 |ν|2 u∈B2

where B2 is the unit ball of IRr and ε̃ = Φ⊤ε. Thus

|Xθ̂ls − Xθ∗|22 ≤ 4 sup (ε̃⊤u)2 ,
u∈B2

Next, note that for any u ∈ Sr−1, it holds |Φu|22 = u⊤Φ⊤Φu = u⊤u = 1 so
that for any s ∈ IR, we have

2 2⊤

IE[esε̃ u] = IE[esε
⊤Φu s σ

] ≤ e 2 .

Therefore, ε̃ ∼ subGr(σ
2).

To conclude the bound in expectation, observe that Lemma 1.4 yields

r

4IE
[
sup (ε̃⊤u)2

]
= 4

∑
IE[ε̃2i ]

u∈B2 i=1

≤ 16σ2r .

Moreover, with probability 1 − δ, it follows from the last step in the proof1 of
Theorem 1.19 that

sup (ε̃⊤u)2 2r +
u

≤ 8 log(6)σ 8σ2 log(1/δ) .
∈B2

Remark 2.3. If d ≤ ⊤

n and B := X X has rank d, then we haven

E| l̂s MS (Xθ̂ls)
θ − θ∗|22 ≤ ,

λmin(B)

ˆand we can use Theorem 2.2 to bound |θls − θ∗|22 directly.

1we could use Theorem 1.19 directly here but at the cost of a factor 2 in the constant.
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Constrained least squares estimator

Let K ⊂ IRd be a symmetric convex set. If we know a priori that θ∗ ∈ K, we
ˆmay prefer a constrained least squares estimator θlsK defined by

θ̂lsK ∈ argmin Y
θ K

| − 2Xθ|2 .
∈

Indeed, the fundamental inequality (2.4) would still hold and the bounds on
the MSE may be smaller. Indeed, (2.5) can be replaced by

|Xˆ ˆθls − Xθ∗|2 ≤ 2ε⊤X(θlsK 2 K − θ∗) ≤ 2 sup (ε⊤Xθ) ,
θ∈K−K

where K −K = {x − y : x, y ∈ K}. It is easy to see that if K is symmetric
(x ∈ K ⇔ −x ∈ K) and convex, then K −K = 2K so that

2 sup (ε⊤Xθ) = 4 sup (ε⊤v)
θ∈K−K v∈XK

where XK = {Xθ : θ ∈ K} ⊂ IRn. This is a measure of the size (width) of
XK. If ε ∼ N (0, Id), the expected value of the above supremum is actually
called Gaussian width of XK. Here, ε is not Gaussian but sub-Gaussian and
similar properties will hold.

ℓ1 constrained least squares

Assume here that K = B1 is the unit ℓ1 ball of IRd. Recall that it is defined by

d

B1 =
{
x ∈ IRd :

∑

i=1

|xi| ≤ 1
}
,

and it has exactly 2d vertices V = {e1,−e1, . . . , ed,−ed}, where ej is the j-th
vector of the canonical basis of IRd and is defined by

ej = (0, . . . , 0, ︸︷1︷ , 0, . . . , 0)⊤ .

jth position

It implies that the set XK = {Xθ, θ ∈ K

︸

} ⊂ IRn is also a polytope with at
most 2d vertices that are in the set XV = {X1,−X1, . . . ,Xd,−Xd} where Xj is
the j-th column of X. Indeed, XK is a obtained by rescaling and embedding
(resp. projecting) the polytope K when d ≤ n (resp., d

X X X

≥ n). Note that some
columns of might not be vertices of K so that V might be a strict superset
of the set of vertices of XK.

Theorem 2.4. Let K = B1 be the unit ℓ1 ball of IRd, d ≥ 2 and assume that
θ∗ ∈ B1. Moreover, assume the conditions of Theorem 2.2 and that the columns
of X are normalized in such a way that maxj |Xj |2

√≤ n. Then the constrained
ˆleast squares estimator θlsB1

satisfies

1 log dˆ ˆIE
[
MSE(Xθls )

]
= IE|Xθls 2X

1 B1
− θ∗|2 . σB n

√
,

n
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Moreover, for any δ > 0, with probability 1− δ, it holds

MSE(Xθ̂lsB1
) . σ

√
log(d/δ)

.
n

Proof. From the considerations preceding the theorem, we got that

|Xθ̂lsB1
− 2Xθ∗|2 ≤ 4 sup (ε⊤v)

v∈XK

Observe now that since ε ∼ subGn(σ
2),then for any column Xj such that

|Xj |2
√≤ n, the random variable ε⊤[Xj ∼ subG(]nσ

2). Therefore, applying
ˆTheorem 1.16, we get the bound on IE MSE(XθlsK) and for any t ≥ 0,

2

ˆ nt

IP
[
MSE(XθlsK) > t ≤ IP sup (ε⊤v) > nt/4 2

v
≤ 2de− 32σ

∈XK

To conclude the proof, we fin

]

d t su

[

ch that

]

2de−
2nt
2 ≤ δ ⇔ t2 ≥ 32σ2 log(2d) 2 log(1/δ)

32σ + 32σ .
n n

ˆNote that the proof of Theorem 2.2 also applies to θls
1
(exercise!) so thatB

θ̂ls
1
benefits from the best of both rates.B

[
ls

] r
√

log dˆIE MSE(Xθ
1
) . min , .B n n

This is called an elbow effect. The elbow t

(

akes place a

)

round r
√≃ n (up to

logarithmic terms).

ℓ0 constrained least squares

We abusively call ℓ0 norm of a vector θ ∈ IRd it number of non-zero coefficient.
It is denoted by

d

|θ|0 = 1I(θj = 0) .
j=1

We call a vector θ with “small” ℓ

∑

0 norm a sparse vector. More precisely, if
|θ|0 ≤ k, we say that θ is a k-sparse vector. We also call support of θ the set

supp(θ) =

so that |θ|0 = card(supp(θ)) =: |

{
j ∈ {1, . . . , d} : θj = 0

supp(θ)| .

}

Remark 2.5. The ℓ0 terminology and notation comes from the fact that

d

lim
q→0+

∑

j=1

|θj |q = |θ|0

Therefore it is really limq 0+ |θ|qq but the notation |θ|00 suggests too much that→
it is always equal to 1.

6

6
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By extension, denote by B0(k) the ℓ0 ball of IRd, i.e., the set of k-sparse
vectors, defined by

B0(k) = {θ ∈ IRd : |θ|0 ≤ k} .
ˆIn this section, our goal is to control the MSE of θlsK whenK = B0(k). Note that

ˆcomputing θls essentially requires computing d least squares estimators,B0(k) k

which is an exponential number in k. In practice this will be hard (or even
impossible) but it is interesting to understand the

(

s

)

tatistical properties of this
estimator and to use them as a benchmark.

Theorem 2.6. Fix a positive integer k ≤ d/2. Let K = B0(k) be set of
k-sparse vectors of IRd and assume that θ∗ ∈ B0(k). Moreover, assume the
conditions of Theorem 2.2. Then, for any δ > 0, with probability 1− δ, it holds

σ2
(
d
)

σ2
ls k σ2

MSE Xˆ( θ (k)) .0
log + + log(1/δ) .B n 2k n n

Proof. We begin as in the proof of Theorem 2.2 to get (2.5):

ˆε⊤X(θls θ∗)| 2Xθ̂lsK − X ∗ ⊤X ˆθ 2ε θls2 K − θ∗) = 2
−| ≤ ( |Xθ̂ls − XK θ∗| K

2 .
|X ˆ(θlsK − θ∗)|2

ˆ ˆWe know that both θlsK and θ∗ are in B0(k) so that θlsK − θ∗ ∈ B0(2k). For
any S ⊂ {1, . . . , d}, let XS denote the n× |S| submatrix of X that is obtained
from the columns of Xj , j ∈ S of X. Denote by rS ≤ |S| the rank of XS and
let ΦS = [φ1, . . . , φrS ] ∈ IRn×rS be an orthonormal basis of the column span
of XS . Moreover, for any θ ∈ IRd, define θ(S) ∈ IR|S| to be the vector with

ˆ ˆ ˆcoordinates θj , j ∈ S. If we denote by S = supp(θlsK − θ∗), we have |S| ≤ 2k
and there exists ν ∈ IRrŜ such that

X ˆ(θls − ˆθ∗) = X (θls ˆ
K ˆ K(S)− θ∗ ˆ(S)) = Φ ˆν .S S

Therefore,

ε⊤X ˆ(θlsK − θ∗) ε⊤Φ ˆν
= S ε⊤Φ

ˆ
≤ max sup [| | S ]u|X(θlsK − θ∗)|2 ν 2 |S|=2k u∈BrS

2

where BrS2 is the unit ball of IRrS . It yields

|Xθ̂lsK − Xθ∗|22 ≤ 4 max sup (ε̃⊤S u)
2 ,

|S|=2k ∈Br
u S

2

ε̃S = Φ⊤
S ε ∼ subGrS (σ

2).
Using a union bound, we get for any t > 0,

IP
(
max sup (ε̃⊤u)2 > t IP sup (ε̃⊤u)2 > t
|S|=2k rS

2

)
≤

∈B |S

∑

|= k

(
u∈ r

u S
2 B2

)

It follows from the proof of Theorem 1.19 that for any |S| ≤ 2k,

IP
(

sup (ε̃⊤u)2 > t
u∈BrS

2

)
≤ 6|S|e−

t
28σ ≤ 62ke−

t
28σ .
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Together, the above three displays yield

IP(|Xˆ t

θls 2 d
XK − θ∗|2 > 4t) ≤

( )
62ke− 28σ . (2.6)

2k

To ensure that the right-hand side of the above inequality is bounded by δ, we
need

t ≥ Cσ2
{
log

(
d
)
+ k log(6) + log(1/δ)

2k

}
.

How large is log
(
d
)
? It turns out that it is not much larger than k.2k

Lemma 2.7. For any integers 1 ≤ k ≤ n, it holds

(
n

k

)
≤

(en
k

)k

Proof. Observe first that if k = 1, since n ≥ 1, it holds,

(
n

1

)
= n ≤ en =

(en
1

)1

Next, we proceed by induction and assume that it holds for some k ≤ n− 1.

(
n
) (en k

k
≤

k

)

Observe that
(

n

k + 1

)
=

(
n n− k en k n− k eknk+1 1 k

= 1 + ,
k

)

k + 1
≤

(
k

)
k + 1 (k + 1)k+1

(
k

)

where we used the induction hypothesis in the first inequality. To conclude, it
suffices to observe that ( 1

1 +
k

)k
≤ e

It immediately leads to the following corollary:

Corollary 2.8. Under the assumptions of Theorem 2.6, for any δ > 0, with
probability 1− δ, it holds

ls σ2k ed σ2k σ2

MSE(Xθ̂
0(k)

) . log loB n

(
2

)
+ log(6) + g(1/δ) .

k n n
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Note that for any fixed δ, there exits a constant Cδ > 0 such that for any
n ≥ 2k,

ls σ2k ed
MSE Xˆ( θB0(k)

) ≤ Cδ log .
n 2k

Comparing this result with Theorem 2.2 with r =

(

k,

)

we see that the price to
pay for not knowing the support of θ∗ but only its size, is a logarithmic factor
in the dimension d.

This result immediately leads the following bound in expectation.

Corollary 2.9. Under the assumptions of Theorem 2.6,

σ2k ed
IE MSE(Xθ̂ls k)) .B0(

log
n

(
k

)
.

Proof. It follows from (

[

2.6) that for an

]

y H ≥ 0,

IE
[
MSE(Xθ̂ls

0(k)
)
]
=

∫ ∞
IP(|Xθ̂lsK − Xθ∗|22 > nu)duB

0

≤ H +

∫ ∞
IP(|Xθ̂lsK − Xθ∗|22 > n(u +H))du

0

2k ∞
≤

∑(
d
) ∫

−n(u+H)

H + 62k e 232σ ,
j 0j=1

2k

= H +
∑ d k − nH

62
32σ2

e 232σ du .
j n

j=1

( )

Next, take H to be such that

∑2k (
d
)
62ke−

nH
232σ = 1 .

j
j=1

In particular, it yields
σ2k ed

H . log ,
n k

which completes the proof.

( )

2.3 THE GAUSSIAN SEQUENCE MODEL

The Gaussian Sequence Model is a toy model that has received a lot of
attention, mostly in the eighties. The main reason for its popularity is that
it carries already most of the insight of nonparametric estimation. While the
model looks very simple it allows to carry deep ideas that extend beyond its
framework and in particular to the linear regression model that we are inter-
ested in. Unfortunately we will only cover a small part of these ideas and
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the interested reader should definitely look at the excellent books by A. Tsy-
bakov [Tsy09, Chapter 3] and I. Johnstone [Joh11]. The model is as follows:

Yi = θi
∗ + εi , i = 1, . . . , d (2.7)

where ε1, . . . , εd are i.i.d N (0, σ2) random variables. Note that often, d is taken
equal to ∞ in this sequence model and we will also discuss this case. Its links
to nonparametric estimation will become clearer in Chapter 3. The goal here
is to estimate the unknown vector θ∗.

The sub-Gaussian Sequence Model

Note first that the model (2.7) is a special case of the linear model with fixed
design (2.1) with n = d, f(x) = x⊤θ∗, x1, . . . , xn form the canonical basis of
IRn and ε has a Gaussian distribution. Therefore, n = d is both the dimension
of the parameter θ and the number of observation and it looks like we have
chosen to index this problem by d rather than n somewhat arbitrarily. We
can bring n back into the picture, by observing that this model encompasses
slightly more general choices for the design matrix X as long as it satisfies the
following assumption.

Assumption ORT The design matrix satisfies

X⊤X
= Id ,

n

where Id denotes the identity matrix of IRd.

Assumption ORT allows for cases where d ≤ n but not d > n (high dimensional
case) because of obvious rank constraints. In particular, it means that the d
columns of X are orthogonal in IRn and all have norm

√
n.

Under this assumption, it follows from the linear regression model (2.2)
that

1 X⊤X 1
y := X⊤Y = θ∗ + X⊤ε

n n n
= θ∗ + ξ ,

where ξ = (ξ1, . . . , ξd) ∼ subG 2
d(σ /n). As a result, under the assumption ORT,

the linear regression model (2.2) is equivalent to the sub-Gaussian Sequence
Model (2.7) up to a transformation of the data Y and a change of variable

ˆfor the variance. Moreover, for any estimator θ ∈ IRd, under ORT, it follows
from (2.3) that

X⊤X
MSE(Xˆ ˆθ) = (θ − ˆ ˆθ∗)⊤ (θ

n
− θ∗) = |θ − θ∗|22 .
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Furthermore, for any θ ∈ IRd, the assumption ORT yields,

|y − θ|2 1
2 = | X⊤Y

n
− θ|22

= |θ|2 2 1
2 − θ⊤X⊤Y + Y ⊤XX⊤Y

n n2

1
= |Xθ|2 2 1

2 − (Xθ)⊤Y + |Y 2

n n n
|2 +Q

1
=
n
|Y − Xθ|22 +Q , (2.8)

where Q is a constant that does not depend on θ and is defined by

1 1
Q = Y ⊤ 2XX⊤Y

n2
−
n
|Y |2

ˆThis implies in particular that the least squares estimator θls is equal to y.

We introduce a sightly more general model called sub-Gaussian sequence
model :

y = θ∗ + ξ ∈ IRd (2.9)

where ξ ∼ subGd(σ
2/n).

In this section, we can actually completely “forget” about our original
model (2.2). In particular we can define this model independently of Assump-
tion ORT and thus for any values of n and d.

The sub-Gaussian sequence model, like the Gaussian sequence model are
called direct (observation) problems as opposed to inverse problems where the
goal is to estimate the parameter θ∗ only from noisy observations of its image
through an operator. The linear regression model one such inverse problem
where the matrix X plays the role of a linear operator. However, in these notes,
we never try to invert the operator. See [Cav11] for an interesting survey on
the statistical theory of inverse problems.

Sparsity adaptive thresholding estimators

If we knew a priori that θ was k sparse, we could employ directly Corollary 2.8
to obtain that with probability 1− δ, we have

ls σ2k ed
MSE(Xθ̂B0(k)

) ≤ Cδ log .
n 2k

As we will see, the assumption ORT gives us the lu

(

xur

)

y to not know k and yet
adapt to its value. Adaptation means that we can construct an estimator that
does not require the knowledge of k (the smallest such that |θ∗

ˆ
|0 ≤ k) and yet,

perform as well as θls , up to a multiplicative constant.B0(k)

Let us begin with some heuristic considerations to gain some intuition.
Assume the sub-Gaussian sequence model (2.9). If nothing is known about θ∗
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ˆit is natural to estimate it using the least squares estimator θls = y. In this
case,

MSE(Xθ̂ls) = |y − θ∗|2 σ2d
2 = |ξ|22 ≤ Cδ ,

n

where the last inequality holds with probability at least 1− δ. This is actually
what we are looking for if k = Cd for some positive constant C ≤ 1. The
problem with this approach is that it does not use the fact that k may be much
smaller than d, which happens when θ∗ has many zero coordinate.

If θj
∗ = 0, then, yj = ξj , which is a sub-Gaussian random variable with vari-

ance proxy σ2/n. In particular, we know from Lemma 1.3 that with probability
at least 1− δ,

2|ξj | ≤ σ

√
log(2/δ)

= τ . (2.10)
n

The consequences of this inequality are interesting. One the one hand, if we
observe |yj | ≫ τ , then it must correspond to θj

∗ = 0. On the other hand, if
|yj | ≤ τ is smaller, then, θj

∗ cannot be very large. In particular, by the triangle
inequality, |θj∗| ≤ |yj |+ |ξj | ≤ 2τ . Therefore, we loose at most 2τ by choosing

θ̂j = 0. It leads us to consider the following estimator.

Definition 2.10. The hard thresholding estimator with threshold 2τ > 0
ˆis denoted by θhrd and has coordinates

θ̂hrd
y if y > 2τ ,

j =

{
j | j|
0 if |yj| ≤ 2τ ,

ˆfor j = 1, . . . , d. In short, we can write θhrdj = yj1I(|yj | > 2τ).

From our above consideration, we are tempted to choose τ as in (2.10).
Yet, this threshold is not large enough. Indeed, we need to choose τ such that
|ξj | ≤ τ simultaneously for all j. This can be done using a maximal inequality.
Namely, Theorem 1.14 ensures that with probability at least 1− δ,

2 log(2d/δ)
max |ξj σ
1≤j≤d

| ≤
√

n

It yields the following theorem.

Theorem 2.11. Consider the linear regression model (2.2) under the assump-
tion ORT or, equivalenty, the sub-Gaussian sequence model (2.9). Then the

ˆhard thresholding estimator θhrd with threshold

lo
2τ 2σ

√
2 g(2d/δ)

= , (2.11)
n

enjoys the following two properties on the same event A such that IP(A) ≥ 1−δ:

6
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(i) If |θ∗|0 = k,

lo
SE( 2 2 k g(2d/δ)

M X ĥrd) = |ˆθ θhrd − θ∗|2 . σ .
n

(ii) if minj∈supp(θ∗) |θj∗| > 3τ , then

ˆsupp(θhrd) = supp(θ∗) .

Proof. Define the event

A = max ,
j

|ξj | ≤ τ

and recall that Theorem 1.14 yie

{

lds IP(

}

A) ≥ 1 − δ. On the event A, the
following holds for any j = 1, . . . , d.

First, observe that

|yj| > 2τ ⇒ |θj∗| ≥ |yj | − |ξj | > τ (2.12)

and
|yj | ≤ 2τ ⇒ |θj∗| ≤ |yj |+ |ξj | ≤ 3τ (2.13)

It yields

|θ̂hrdj − θj
∗| = |yj − θj

∗|1I(|yj | > 2τ) + |θj∗|1I(|yj | ≤ 2τ)

≤ τ1I(|yj | > 2τ) + |θj∗|1I(|yj| ≤ 2τ)

≤ τ1I(|θj∗| > τ) + |θj∗|1I(|θj∗| ≤ 3τ) by (2.12) and (2.13)

≤ 4min(|θj∗|, τ)

It yields

d d

|θ̂hrd − ˆθ∗|22 =
∑

|θhrd 2
j − θj

∗| ≤ 16
j=1

∑
min(

j=1

|θj∗|2, τ2) ≤ 16|θ∗|0τ2 .

This completes the proof of (i).
To prove (ii), note that if θj

∗ = 0, then |θj∗| > 3τ so that

|yj| = |θj∗ + ξj | > 3τ − τ = 2τ .

ˆTherefore, θhrd ˆ
j = 0 so that supp(θ∗) ⊂ supp(θhrd).
ˆ ˆNext, if θhrdj = 0, then |θhrdj | = |yj| > 2τ . It yields

|θj∗| ≥ |yj | − τ > τ

Therefore, |θj∗| ˆ= 0 and supp(θhrd) ⊂ supp(θ∗).

6

6
6

6



2.4. High-dimensional linear regression 47
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Figure 2.2. Transformation applied to yj with 2τ = 1 to obtain the hard (left) and soft

(right) thresholding estimators

ˆSimilar results can be obtained for the soft thresholding estimator θsft

defined by
yj 2τ if yj > 2τ ,

θ̂sftj =


 −

yj + 2τ if yj < −2τ ,
0 if |yj | ≤ 2τ ,

In short, we can write



θ̂sftj =
( 2τ
1− y|yj |

)
j

+

2.4 HIGH-DIMENSIONAL LINEAR REGRESSION

The BIC and Lasso estimators

It can be shown (see Problem 2.5) that the hard and soft thresholding es-
timators are solutions of the following penalized empirical risk minimization
problems:

θ̂hrd = argmin θ
θ∈Rd

|y
I

− |22 + 4τ2|θ|0

θ̂sft

{ }

= argmin
θ∈IRd

{
|y − θ|22 + 4τ |θ|1

}
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In view of (2.8), under the assumption ORT, the above variational definitions
can be written as

θ̂hrd
1

= argmin
{

|Y − 2 + 4τ2Xθ|2 |θ 0
θ∈IRd n

|

ˆ

}

θsft
1

= argmin
{

|Y − Xθ 2

θ∈IRd n
|2 + 4τ |θ|1

}

When the assumption ORT is not satisfied, they no longer correspond to thresh-
olding estimators but can still be defined as above. We change the constant in
the threshold parameters for future convenience.

Definition 2.12. Fix τ > 0 and assume the linear regression model (2.2). The
ˆBIC2 estimator of θ∗ in is defined by any θbic such that

θ̂bic
1∈ argmin

{
|Y − |22 + 2Xθ τ |θ 0

θ∈IRd n
|
}

ˆMoreover the Lasso estimator of θ∗ in is defined by any θL such that

1
θ̂L ∈ argmin Y Xθ 2

2 + 2τ θ 1
θ∈IRd

{
n
| − | | |

}

Remark 2.13. Numerical considerations. Computing the BIC estimator
can be proved to be NP-hard in the worst case. In particular, no computational
method is known to be significantly faster than the brute force search among
all 2d sparsity patterns. Indeed, we can rewrite:

1
min

{ 1|Y − |θ| 2 2Xθ|22 + τ2 0 m
θ

}
= min

∈I 0≤k≤d

{
in Y Xθ + τ k

Rd n θ : |θ|0=k n
| − |2

}

To compute min 1
θ : θ 0=k |Y − Xθ|22, we need to compute d least squares| | n k

estimators on a space of size k. Each costs O(k3) (matrix inversion). Therefore
the total cost of the brute force search is

( )

d

C
∑(

d
)
k3 = Cd32d .

k
k=0

Instead the the Lasso estimator is convex problem and there exists many
efficient algorithms to compute it. We will not describe this optimization prob-
lem in details but only highlight a few of the best known algorithms:

1. Probably the most popular method among statisticians relies on coor-
dinate gradient descent. It is implemented in the glmnet package in R
[FHT10],

2Note that it minimizes the Bayes Information Criterion (BIC) employed in the tradi-

tional literature of asymptotic statistics if τ =
√

log(d)/n. We will use the same value below,
up to multiplicative constants (it’s the price to pay to get non asymptotic results).
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2. An interesting method called LARS [EHJT04] computes the entire reg-
ularization path, i.e., the solution of the convex problem for all values

ˆof τ . It relies on the fact that, as a function of τ , the solution θL is a
piecewise linear function (with values in IRd). Yet this method proved
to be too slow for very large problems and has been replaced by glmnet

which computes solutions for values of τ on a grid much faster.

3. The optimization community has made interesting contribution to this
field by using proximal methods to solve this problem. It exploits the
structure of the form: smooth (sum of squares) + simple (ℓ1 norm).
A good entry point to this literature is perhaps the FISTA algorithm
[BT09].

4. There has been recently a lot of interest around this objective for very
large d and very large n. In this case, even computing |Y − Xθ|22 may
be computationally expensive and solutions based on stochastic gradient
descent are flourishing.

ˆNote that by Lagrange duality computing θL is equivalent to solving an
ℓ1 constrained least squares. Nevertheless, the radius of the ℓ1 constraint is
unknown. In general it is hard to relate Lagrange multipliers to the size con-
straints. The name “Lasso” was given to the constrained version this estimator
in the original paper of Robert Tibshirani [Tib96].

Analysis of the BIC estimator

While computationally hard to implement, the BIC estimator gives us a good
ˆbenchmark for sparse estimation. Its performance is similar to that of θhrd but

without assumption ORT.

Theorem 2.14. Assume that the linear model (2.2) holds where ε ∼ subGn(σ
2).

ˆThen, the BIC estimator θbic with regularization parameter

τ2
σ2 σ2 log(ed)

= 16 log(6) + 32 . (2.14)
n n

satisfies

MSE(Xθ̂bic
1 log(ed/δ)

) =
n
|Xθ̂bic − θ∗|22 . |θ∗|0σ2X

n

with probability at least 1− δ.

Proof. We begin as usual by noting that

1 |Y − θ̂bic|2 1ˆ+ 2X 2 τ |θbic|0 ≤ ∗
n
|Y − Xθ

n
|22 + τ2|θ∗|0 .

It implies

|Xθ̂bic − Xθ∗|22 ≤ nτ2|θ∗|0 + 2ε⊤X ˆ ˆ(θbic − θ∗)− nτ2|θbic|0 .
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First, note that

Xθ̂bic Xθ∗
2ε⊤X ˆ(θbic − θ∗) = 2ε⊤

( − )
|Xθ̂bic − Xθ∗

|Xθ̂bic − Xθ∗|2
|2

[ ( Xθ̂bic Xθ∗ 2 1≤ 2 ε⊤ + Xθ̂bic Xθ∗ 2 ,
| ˆ 2
Xθbic

−
Xθ∗|2

)]
2
| − |

−
where we use the inequality 2ab ≤ 2a2 + 1b2. Together with the previous2
display, it yields

|Xθ̂bic − Xθ∗|22 ≤ 2nτ2|θ∗|0 + 4
[
ε⊤U ˆ 2 ˆ(θbic − θ∗)

]
− 2nτ2|θbic|0 (2.15)

where
Xθ̂bic Xθ∗U ˆ(θbic − θ∗) =

−
|Xθ̂bic − Xθ∗|2

ˆNext, we need to “sup out” θbic. To that end, we decompose the sup into a
max over cardinalities as follows:

sup = max max sup .
1 k d S =kθ∈IRd ≤ ≤ | | supp(θ)=S

Applied to the above inequality, it yields

4
[
ε⊤U ˆ(θbic − θ∗)

]2 − 2nτ2|θ̂bic|0
≤ 2

max
{
max sup 4

≤k≤d |S|=k supp(θ)=S

[
ε⊤U(θ

1
− θ∗)

]
− 2nτ2k

}

≤ max
1≤k≤d

{
max sup 4
|S|=k r∈B S,∗u 2

[
ε⊤

2
ΦS, u

]
− 2nτ2k

}
,∗

where ΦS, = [φ1, . . . , φrS,∗ ] is an orthonormal basis of the set {Xj, j∗ ∈ S ∪
supp(θ∗)} of columns of X and rS,∗ ≤ |S| + |θ∗|0 is the dimension of this
column span.

Using union bounds, we get for any t > 0,

IP
(

max
{ 2
max sup 4 ε⊤ΦS, u 2nτ2k )

1≤k≤d |S|=k r
∗

u

− ≥ t
∈B S,∗

2

d

[ ] }

≤
∑ ∑ t 1

sup ε⊤
2

IP Φ 2
S, u

rS,∗
∗

k=1

≥ + nτ k
4 2

|S|=k

(

u∈B2

[ ] )

Moreover, using the ε-net argument from Theorem 1.19, we get for |S| = k,

IP
(

sup
[
ε⊤Φ u

]2 t 1 t + 1nτ2k≥ + nτ2k
)
≤ 2 · 6r

2
,

∗ S,∗ exp
r 4∈B ∗u 2

(
− 4 2

S,
S 2 8σ

2

)

t
2 exp

( nτ k≤ − − + (k + |θ∗|0) log(6)
32σ2 16σ2

)

≤ exp
( t−

32σ2
− 2k log(ed) + |θ∗|0 log(12)

)
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where, in the last inequality, we used the definition (2.14) of τ .
Putting everything together, we get

IP
(
| θ̂bic − θ∗|2 2X X 2 ≥ 2nτ |θ∗|0 + t

)
≤

∑d ∑ t
exp

(
− − 2k log(ed) + |θ∗|0 log(12)

32σ2
k=1 |S|=k

)

∑d d
=

( )
exp

( t− − 2k log(ed) + θ∗ 0 log(12)
k 32σ2

k=1

| |

d

)

≤
∑

exp
( t− − k log(ed) + θ∗ 0 log(12) by Lemma 2.7

32σ2
k=1

| |

d

)

=
∑

(ed)−k
t

exp
(
− + |θ∗ g

k

|0 lo (12)
32σ2

=1

t

)

≤ exp
(
− + |θ∗|0 log(12) .

32σ2

)

To conclude the proof, choose t = 32σ2|θ∗|0 log(12)+32σ2 log(1/δ) and observe
that combined with (2.15), it yields with probability 1− δ,

|Xθ̂bic − Xθ∗|22 ≤ 2nτ2|θ∗|0 + t

= 64σ2 log(ed)|θ∗|0 + 64 log(12)σ2|θ∗|0 + 32σ2 log(1/δ)

≤ 224|θ∗|0σ2 log(ed) + 32σ2 log(1/δ) .

ˆIt follows from Theorem 2.14 that θbic adapts to the unknown sparsity of
∗ ˆθ , just like θhrd. Moreover, this holds under no assumption on the design
matrix X.

Analysis of the Lasso estimator

Slow rate for the Lasso estimator

The properties of the BIC estimator are quite impressive. It shows that under
no assumption on X, one can mimic two oracles: (i) the oracle that knows the
support of θ∗ (and computes least squares on this support), up to a log(ed)
term and (ii) the oracle that knows the sparsity |θ∗|0 of θ∗, up to a smaller
logarithmic term log(ed/|θ∗|0) is replaced by log(ed). Actually the latter can
even be removed by using a modified BIC estimator (see Problem 2.6).

The Lasso estimator is a bit more difficult because, by construction, it
should more naturally adapt to the unknown ℓ1-norm of θ∗. This can be easily
shown as in the next theorem, analogous to Theorem 2.4.
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Theorem 2.15. Assume that the linear model (2.2) holds where ε ∼ subGn(σ
2).

Moreover, assume that the columns of X are normalized in such a way that
ˆmaxj |Xj |2

√≤ n. Then, the Lasso estimator θL with regularization parameter

√
2 log(2d) 2 log(1/δ)

2τ = 2σ + 2σ
n

√
. (2.16)

n

satisfies

1 2 log(2d) 2 log(1/δ)
MSE Xθ̂ |Xˆ( L) = θL − θ∗ 1σ

n
|2X 2 ≤ 4|θ∗|

√
+ 4 θ∗ 1σ

n
| |

√

n

with probability at least 1 − δ. Moreover, there exists a numerical constant
C > 0 such that

IE MSE(Xθ̂L) ≤ C|θ∗|1σ
√

log(2d)
.

n

ˆProof. From the definit

[

ion of θL, it

]

holds

1 |Y − 2 1 2X L̂
n

|2 + 2τ |ˆθ θL|1 ≤
n
|Y − Xθ∗|2 + 2τ |θ∗|1 .

Using Hölder’s inequality, it implies

|Xθ̂L − Xθ∗|22 ≤ ˆ ˆ2ε⊤X(θL − θ∗) + 2nτ |θ∗|1 − |θL|1
≤ ˆ2|X⊤ε| θL ˆ2nτ θL + 2 ⊤ε θ∗ + 2nτ∞| |1 − |

(

|1 |X |∞

)

| |1 |θ∗|1
|X⊤ | − |ˆ= 2( ε nτ) θL|1 + 2(|X⊤ε| + nτ)|θ∗∞ ∞ |1

Observe now that for any t > 0,

2

IP |X⊤ε| ≥ t

( t) = IP( max X⊤
j ε > t) 2de−∞ 22nσ

1≤j≤d
| | ≤

Therefore, taking t = σ
√

2n log(2d) + σ
√
2n log(1/δ) = nτ , we get that with

probability 1− δ,
|Xθ̂L − Xθ∗|22 ≤ 4nτ |θ∗|1 .

The bound in expectation follows using the same argument as in the proof of
Corollary 2.9.

Notice that the regularization parameter (2.16) depends on the confidence
level δ. This not the case for the BIC estimator (see (2.14)).

The rate in Theorem 2.15 if of order (log d)/n (slow rate), which is
much slower than the rate of order (log d)/n

√

(fast rate) for the BIC estimator.
Hereafter, we show that fast rates can be achieved by the computationally
efficient Lasso estimator but at the cost of a much stronger condition on the
design matrix X.
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Incoherence

Assumption INC(k) We say that the design matrix X has incoherence k for
some integer k > 0 if

X⊤X 1

n
− Id ∞ ≤

14k

where the |A| denotes the la

∣∣

rgest eleme

∣∣

nt of A in absolute value. Equivalently,∞

1. For all j = 1, . . . , d,
|Xj |22 1

n
− 1 ≤ .

14k

2. For all 1 ≤ i, j ≤ d, i = j, w

∣∣

e have

∣∣

∣
X⊤Xi j

∣ 1≤ .
14k

Note that Assumption ORT arises

∣

as the

∣

limiting case of INC(k) as k → ∞.
However, while Assumption ORT requires d ≤ n, here we may have d ≫ n as
illustrated in Proposition 2.16 below. To that end, we simply have to show
that there exists a matrix that satisfies INC(k) even for d > n. We resort
to the probabilistic method [AS08]. The idea of this method is that if we
can find a probability measure that puts a positive probability of objects that
satistify a certain property, then there must exist objects that satisfy said
property. In our case, we consider the following probability distribution on
random matrices with entries in {±1}. Let the design matrix X have entries
that are i.i.d Rademacher (±1) random variables. We are going to show that
most realizations of this random matrix satisfy Assumption INC(k) for large
enough n.

Proposition 2.16. Let X ∈ IRn×d be a random matrix with entries Xij , i =
1, . . . , n, j = 1, . . . , d that are i.i.d Rademacher (±1) random variables. Then,
X has incoherence k with probability 1− δ as soon as

n ≥ 392k2 log(1/δ) + 784k2 log(d) .

It implies that there exists matrices that satisfy Assumption INC(k) for

n & k2 log(d) ,

for some numerical constant C.

Proof. Let εij ∈ {−1, 1} denote the Rademacher random variable that is on
the ith row and jth column of X.

Note first that the jth diagonal entries of X⊤X/n is given by

n
1

n

∑
ε2i,j = 1

i=1

6
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⊤

Moreover, for j = k, the (j, k)th entry of the d× d matrix X X is given byn

n
1 ∑ n

1 (j,k)
εi,jεi,k =

n n
1

∑
ξi ,

i= i=1

(j,k) (j,k) (j,k)
where for each pair, (j, k), ξi = εi,jεi,k so that the random variables ξ1 , . . . , ξn
are iid Rademacher random variables.

Therefore, we get that for any t > 0,

(∣∣X
⊤X −

∣ ( ∣ ∑n∣ )
∣∣ 1 (j,k)

IP Id > t = IP max ξ t
n ∞ i >

j=k n
i=1

∣∣ )

≤
∑

P
∣∣ 1

I

∣

( ∑n
∣ (j,k)

ξi

∣∣∣ > t
)

(Union bound)
n

j=k i=1

≤
∑

2e−
2nt

2 (Hoeffding: Theorem 1.9)
j=k

≤ d2e−
2nt

2

Taking now t = 1/(14k) yields

IP
(∣∣X

⊤X
n

− Id
∣∣ 1

> d2e−
n

2392k δ∞ 14k

)
≤ ≤

for
n ≥ 392k2 log(1/δ) + 784k2 log(d) .

For any θ ∈ IRd, S ⊂ {1, . . . , d} define θS to be the vector with coordinates

{
θj if j

θS,j =
∈ S ,

0 otherwise .

In particular |θ|1 = |θS |1 + |θSc |1.
The following lemma holds

Lemma 2.17. Fix a positive integer k ≤ d and assume that X satisfies as-
sumption INC(k). Then, for any S ∈ {1, . . . , d} such that |S| ≤ k and any
θ ∈ IRd that satisfies the cone condition

|θSc |1 ≤ 3|θS|1 , (2.17)

it holds

|θS |22 ≤ 2
|Xθ|22
n

6

6

6

6
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Proof. We have

|Xθ|2 1 Xθ 2
S X⊤X2 = + 2X
|| θ 2

S XθSc |2
|≥ + 2θS

⊤ θSc

n n n n

If follows now from the incoherence condition that

|XθS |2 X2
⊤X X 2

= θS
⊤ S

θS = |θS |2
⊤X θ

2 + θS
⊤( − Id)θS ≥ |θ 2

S |2
| |

n n n
− 1

14k

and ∣∣∣ X⊤X 1 3
θS
⊤ θSc θ

n

∣∣∣ ≤
14k

| S |1|θSc |1 ≤
14k

|θS |21
Observe now that it follows from the Cauchy-Schwarz inequality that

|θS |21 ≤ |S||θS |22
Thus for |S| ≤ k,

|Xθ|22
n

≥
( 7
1

|S|−
14k

)
|θS |2

1
2 ≥

2
|θS |22

Fast rate for the Lasso

Theorem 2.18. Fix n ≥ 2. Assume that the linear model (2.2) holds where ε
subG

∼
n(σ

2). Moreover, assume that |θ∗|0 ≤ k and that X satisfies assumption

INC ˆ(k). Then the Lasso estimator θL with regularization parameter defined by

√
log(2d)

2τ = 8σ + 8σ
n

√
log(1/δ)

n

satisfies
1 ( )

MSE(Xθ̂L) = |X L̂ − Xθ∗|2 log 2d/δ
θ 2 . kσ2

n n

and
g|θ̂L − θ∗ 1 . kσ

√
lo (2d/δ)| .

n

with probability at least 1− δ. Moreover,

IE
[ log(2d) log(2d/δ)
MSE(Xˆ ˆθL)

]
. kσ2 , and IE |θL − θ∗

n
|1 . kσ

√
.

n

ˆProof. From the definition of θL, it holds

[ ]

1 |Y − Xθ̂L|2 1
X2 ≤ | ˆY − θ∗

n
|22 + 2τ |θ∗|1 − 2τ

n
|θL|1 .

ˆAdding τ |θL − θ∗|1 on each side and multiplying by n, we get

|Xˆ ˆ ˆ ˆ ˆθL−Xθ∗|22+nτ |θL−θ∗|1 ≤ 2ε⊤X(θL−θ∗)+nτ |θL−θ∗|1+2nτ |θ∗|1−2nτ |θL|1 .
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Applying Hölder’s inequality and using the same steps as in the proof of The-
orem 2.15, we get that with probability 1− δ, we get

ε⊤X ˆ(θL − θ∗ ˆ) ≤ |ε⊤X|∞|θL − θ∗|
nτ≤
2
|θ̂L − θ∗|1 ,

where we used the fact that |Xj |22 ≤ n + 1/(14k) ≤ 2n. Therefore, taking
S = supp(θ∗) to be the support of θ∗, we get

|Xθ̂L − Xθ∗|22 + nτ |θ̂L − ˆθ∗|1 ≤ 2nτ |θL − θ∗|1 + 2nτ |θ∗|1 − ˆ2nτ |θL|1
= 2nτ |θ̂SL − θ∗|1 + 2nτ | ˆθ∗|1 − 2nτ |θSL|1
≤ 4nτ |θ̂SL − θ∗|1 (2.18)

In particular, it implies that

|θ̂SLc − θS
∗

c |1 ≤ 3|θ̂SL − θS
∗ |1 .

ˆso that θ = θL − θ∗ satisfies the cone condition (2.17). Using now the Cauchy-
Schwarz inequality and Lemma 2.17 respectively, we get since |S| ≤ k,

2k|θ̂SL − ˆ ˆθ∗|1 ≤
√
|S||θSL − θ∗|2 ≤

√

n
|XθL − Xθ∗|2 .

Combining this result with (2.18), we find

|Xθ̂L − Xθ∗|22 ≤ 32nkτ2 .

Moreover, it yields

2k|θ̂L − ˆθ∗|1 ≤ 4

√
XθL Xθ∗ 2

√ n
| − |

2k≤ 4
√
32nkτ2 ≤ 32kτ

n

The bound in expectation follows using the same argument as in the proof of
Corollary 2.9.

Note that all we required for the proof was not really incoherence but the
conclusion of Lemma 2.17:

inf
|Xθ

inf
|22 ≥ κ (2.19)2|S|≤k θ∈CS n|θS |2

where κ = 1/2 and CS is the cone defined by

CS =
{
|θSc |1 ≤ 3|θS|1

}
.
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Condition (2.19) is sometimes called restricted eigenvalue (RE) condition. Its
name comes from the following observation. Note that all k-sparse vectors θ
are in a cone CS with |S| ≤ k so that the RE condition implies that the smallest
eigenvalue of XS satisfies λmin(XS) ≥ nκ for all S such that |S| ≤ k. Clearly,
the RE condition is weaker than incoherence and it can actually be shown
that a design matrix X of i.i.d Rademacher random variables satisfies the RE
conditions as soon as n ≥ Ck log(d) with positive probability.
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2.5 PROBLEM SET

Problem 2.1. Consider the linear regression model with fixed design with
d ≤ n. The ridge regression estimator is employed when the rank(X⊤X) < d
but we are interested in estimating θ∗. It is defined for a given parameter τ > 0
by

ridge
{ 1

θ̂τ = argmin Xθ|2 2

n
|Y − 2 + τ

θ IRd

|θ|2
∈

}
.

ˆ(a) Show that for any τ , θridgeτ is uniquely defined and give its closed form
expression.

ˆ(b) Compute the bias of θridgeτ and show that it is bounded in absolute value
by |θ∗|2.

Problem 2.2. Let X = (1, Z, . . . , Zd−1)⊤ ∈ IRd be a random vector where Z
is a random variable. Show that the matrix IE(XX⊤) is positive definite if Z
admits a probability density with respect to the Lebesgue measure on IR.

Problem 2.3. In the proof of Theorem 2.11, show that 4min(|θj∗|, τ) can be
replaced by 3min(|θj∗|, τ), i.e., that on the event A, it holds

|θ̂hrdj − θj
∗| ≤ 3min(|θj∗|, τ) .

Problem 2.4. For any q > 0, a vector θ ∈ IRd is said to be in a weak ℓq ball
of radius R if the decreasing rearrangement |θ[1]| ≥ |θ[2]| ≥ . . . satisfies

|θ | ≤ Rj−1/q
[j] .

Moreover, we define the weak ℓq norm of θ by

|θ| = max j1/qwℓq [
1≤ ≤d

|θ j]
j

|

(a) Give examples of θ, θ′ ∈ IRd such that

|θ + θ′|wℓ1 > |θ|wℓ1 + |θ′|wℓ1
What do you conclude?

(b) Show that |θ|wℓq ≤ |θ|q .

(c) Show that if limd |θ|wℓq <∞, then limd |θ|q′ <∞ for all q′ > q.→∞ →∞

(d) Show that, for any q ∈ (0, 2) if limd→∞ |θ|wℓq = C, there exists a con-
stant Cq > 0 that depends on q but not on d and such that under the
assumptions of Theorem 2.11, it holds

|θ̂hrd σ2 log 2d 1− q

−
)

2

θ∗|22 ≤ Cq
n

with probability .99.

(
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Problem 2.5. Show that

θ̂hrd = argmin
{
|y − θ|22 + 4τ2

θ IRd

|θ|0
∈

ˆ

}

θsft = argmin
θ

{
|y − θ|22 + 4τ |θ

IRd

|1
∈

}

Problem 2.6. Assume that the linear model (2.2) with ε ∼ subGn(σ
2) and

ˆθ∗ = 0. Show that the modified BIC estimator θ defined by

1
θ̂ ∈ argmin Y Xθ

θ IRd

{
n
| − |22 + λ|θ|0 log

∈

( ed

|θ|0

)}

satisfies,
log ed

MSE(Xˆ θ∗
θ) . |θ∗| 2 0

0σ

(
| |
n

)
.

with probability .99, for appropriately chosen λ. What do you conclude?

Problem 2.7. Assume that the linear model (2.2) holds where ε ∼ subGn(σ
2).

Moreover, assume the conditions of Theorem 2.2 and that the columns of X
are normalized in such a way that maxj |Xj

√|2 ≤ n. Then the Lasso estimator

θ̂L with regularization parameter

√
2 log(2d)

2τ = 8σ ,
n

satisfies
|θ̂L|1 ≤ C|θ∗|1

with probability 1− (2d)−1 for some constant C to be specified.

6
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3
Misspecified Linear Models

Arguably, the strongest assumption that we made in Chapter 2 is that the
regression function f(x) is of the form f(x) = x⊤θ∗. What if this assumption
is violated? In reality, we do not really believe in the linear model and we hope
that good statistical methods should be robust to deviations from this model.
This is the problem of model misspecified linear models.

Throughout this chapter, we assume the following model:

Yi = f(Xi) + εi, i = 1, . . . , n , (3.1)

where ε = (ε1, . . . , εn)
⊤ is sub-Gaussian with variance proxy σ2. HereXi ∈ IRd.

When dealing with fixed design, it will be convenient to consider the vector
g ∈ IRn defined for any function g : IRd → IR by g = (g(X1), . . . , g(Xn))

⊤. In
ˆthis case, we can write for any estimator f ∈ IRn of f ,

1
MSE ˆ ˆ(f) =

n
|f − f |22 .

Even though the model may not be linear, we are interested in studying the
statistical properties of various linear estimators introduced in the previous

ˆ ˆ ˜ ˆ ˆchapters: θls, θlsK , θ
ls
X , θ

bic, θL. Clearly, even with an infinite number of obser-
vations, we have no chance of finding a consistent estimator of f if we don’t
know the correct model. Nevertheless, as we will see in this chapter something
can still be said about these estimators using oracle inequalities.

60

3
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3.1 ORACLE INEQUALITIES

Oracle inequalities

As mentioned in the introduction, an oracle is a quantity that cannot be con-
structed without the knowledge of the quantity of interest, here: the regression
function. Unlike the regression function itself, an oracle is constrained to take
a specific form. For all matter of purposes, an oracle can be viewed as an
estimator (in a given family) that can be constructed with an infinite amount
of data. This is exactly what we should aim for in misspecified models.

ˆWhen employing the least squares estimator θls, we constrain ourselves to
estimating functions that are of the form x 7→ x⊤θ, even though f itself may

ˆnot be of this form. Therefore, the oracle f is the linear function that is the
closest to f .

Rather than trying to approximate f by a linear function f(x) ≈ θ⊤x, we
make the model a bit more general and consider a dictionaryH = {ϕ1, . . . , ϕM}
of functions where ϕj : IRd → IR. In the case, we can actually remove the
assumption that X ∈ IRd. Indeed, the goal is now to estimate f using a linear
combination of the functions in the dictionary:

M

f ≈ ϕθ :=
∑

θjϕj .
j=1

Remark 3.1. If M = d and ϕ (
j(X) = X j) returns the jth coordinate of

X ∈ IRd then the goal is to approximate f(x) by θ⊤x. Nevertheless, the use of
a dictionary allows for a much more general framework.

Note that the use of a dictionary does not affect the methods that we have
been using so far, namely penalized/constrained least squares. We use the
same notation as before and define

1. The least squares estimator:

n

θ̂ls
1∈ 2

argmin Yi ϕθ(Xi) (3.2)
θ I n∈RM

∑

i=1

(
−

)

2. The least squares estimator constrained to K ⊂ IRM :

1 ∑n
θ̂lsK ∈ 2

argmin
(
Yi (

∈K n
i=

− ϕθ Xi)
θ 1

)

3. The BIC estimator:

{ n
bic 1
θ̂ ∈ argmin i

θ IRM n

∑

i=1

(
Y − 2

ϕθ(Xi)
∈

)
+ τ2|θ|0

}
(3.3)
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4. The Lasso estimator:

{ n
1

θ̂L ∈ 2
argmin

∑
Yi ϕθ(Xi) + 2τ θ 1 (3.4)

θ IRM n∈ i=1

(
−

)
| |

}

Definition 3.2. Let R(·) be a risk function and let H = {ϕ1, . . . , ϕM} be a
dictionary of functions from IRd to IR. Let K be a subset of IRM . The oracle

¯on K with respect to R is defined by ϕθ̄, where θ ∈ K is such that

R(ϕθ̄) ≤ R(ϕθ) , ∀ θ ∈ K .

ˆMoreover, RK = R(ϕθ̄) is called oracle risk on K. An estimator f is said
to satisfy an oracle inequality (over K) with remainder term φ in expectation
(resp. with high probability) if there exists a constant C ≥ 1 such that

ˆIER(f) ≤ C inf R(ϕθ) + φn,M (K) ,
θ∈K

or
IP
{

ˆR(f) ≤ C inf R(ϕθ) + φn,M,δ(K) 1 δ , δ > 0
θ∈K

≥ − ∀

respectively. If C = 1, the oracle inequality is

}

sometimes called exact.

Our goal will be to mimic oracles. The finite sample performance of an
estimator at this task is captured by an oracle inequality.

Oracle inequality for the least squares estimator

While our ultimate goal is to prove sparse oracle inequalities for the BIC and
Lasso estimator in the case of misspecified model, the difficulty of the exten-
sion to this case for linear models, is essentially already captured for the least
squares estimator. In this simple case, can even obtain an exact oracle inequal-
ity.

Theorem 3.3. Assume the general regression model (3.1) with ε ∼ subGn(σ
2).

ˆThen, the least squares estimator θls satisfies for some numerical constant
C > 0,

σ2M
MSE(ϕ l̂s) ≤ inf MSE(ϕθ) + C log(1/δ)θ

θ∈IRM n

with probability at least 1− δ.

Proof. Note that by definition

|Y − ϕθ̂ls |22 ≤ |Y − ϕθ̄|22
where ϕθ̄ denotes the orthogonal projection of f onto the linear spam of
ϕ1, . . . , ϕn. Since Y = f + ε, we get

|f − ϕ l̂s |2 ≤ |f − ϕ 2
¯2 θ|2 + 2ε⊤(ϕˆ ¯θ θls − ϕθ)
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Moreover, by Pythagoras’s theorem, we have

|f − ϕ l̂s |22 − |f − ϕ¯|2θ 2 = |ϕˆ − ϕ 2
¯θ θls θ|2 .

It yields
|ϕ 2
θ̂ls − ϕθ̄|2 ≤ 2ε⊤(ϕθ̂ls − ϕθ̄) .

Using the same steps as the ones following equation (2.5) for the well specified
case, we get

σ2

|ϕ l̂s − ϕθ̄|2
M

2 . log(1/δ)θ n

with probability 1− δ. The result of the lemma follows.

Sparse oracle inequality for the BIC estimator

The techniques that we have developed for the linear model above also allows
to derive oracle inequalities.

Theorem 3.4. Assume the general regression model (3.1) with ε ∼ subGn(σ
2).

ˆThen, the BIC estimator θbic with regularization parameter

16σ2

τ2 = log(6eM) , α ∈ (0, 1) (3.5)
αn

satisfies for some numerical constant C > 0,

{1 + α Cσ2

MSE(ϕˆ ) ≤ inf MSE(ϕθ)+ θ log(eMθbic 0 )
θ∈IRM 1− α α(1

|− α)n
|

Cσ2

}

+ log(1/δ)
α(1− α)n

with probability at least 1− δ.

Proof. Recall the the proof of Theorem 2.14 for the BIC estimator begins as
follows:

1 |Y − ϕ 2 + 2 ˆτ θbic
1

τ2ˆ Y ϕ 2
0 θ + θ 0 .

n θbic |2 | | ≤
n
| − |2 | |

This is true for any θ ∈ IRM . It implies

|f − ˆϕ 2 2 bic 2 2
b̂ic |2 + nτ |θ |0 ≤ |f − ϕθ|2 + 2ε⊤(ϕ b̂ic − ϕθ) + nτ |θ|0 .θ θ

ˆNote that if θbic = θ, the result is trivial. Otherwise,

ϕ
2ε⊤

ˆ
(ϕ θbic ϕθ
θ̂bic ϕ = 2ε⊤

( −− θ)
ϕ b̂ ϕθ 2θ ic

)
|ϕ| b̂i − ϕ |− | θ 2θ c

2 [
ε⊤

( ϕ 2

≤ θ̂bic − ϕθ α
+ ϕ 2

ˆ ϕ ,
α | θ

ϕ θbic 2
θ̂bic − ϕθ|2

)]
2
| − |
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where we use Young’s inequality 2ab ≤ 2 a2 + αb2 valif for a, b ≥ 0, α > 0.α 2
Next, since

α |ϕˆ
2 θbic − ϕθ|2 ≤ α|ϕ 2 2

2 θ̂bic − f |2 + α|ϕθ − f |2 ,

we get for α < 1,

(1− α)|ϕˆ f 2
bic − |2 ≤ (1 + α)|ϕθθ − f |22 + nτ2|θ|0

2
+

[
ε⊤

α
U 2

b
ˆ( − 2

ϕ ϕθ ic θ) − nτ |θbicˆ |0
≤ (1 + α)|ϕ 2

θ − f |22 + 2nτ

]

|θ|0
2 [ ⊤U

]2
+ ε (ϕθ̂bic )
α −θ − n 2 ˆτ |θbic − θ|0

We conclude as in the proof of Theorem 2.14.

A similar oracle can be obtained in expectation (exercise).
The interpretation of this theorem is enlightening. It implies that the

BIC estimator will mimic the best tradeoff between the approximation error
MSE(ϕθ) and the complexity of θ as measured by its sparsity. In particu-
lar this result, sometimes called sparse oracle inequality implies the following

¯oracle inequality. Define the oracle θ to be such that

MSE(ϕθ̄) = min MSE(ϕθ)
θ∈IRM

then, with probability at least 1− δ,

1 + α Cσ2

MSE(ϕ b̂ic) ≤ MSE ¯ ¯(ϕθ) + θθ 1 α α(1 α)n

[
| | g(− 0 lo eM) + log(1/δ)−

]}

If the linear model happens to be correct, then, simply, MSE(ϕθ̄) = 0.

Sparse oracle inequality for the Lasso

To prove an oracle inequality for the Lasso, we need incoherence on the design.
Here the design matrix is given by the n×M matrix Φ with elements Φi,j =
ϕj(Xi).

Theorem 3.5. Assume the general regression model (3.1) with ε ∼ subGn(σ
2).

Moreover, assume that there exists an integer k such that the matrix Φ satisfies
ˆassumption INC(k) holds. Then, the Lasso estimator θL with regularization

parameter given by

√
2 log(2M)

√
2 log(1/δ)

2τ = 8σ + 8σ (3.6)
n n
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satisfies for some numerical constant C,

1 + α Cσ2

MSE(ϕˆL) ≤ inf
{

MSE(ϕθ) + θ 0 log(eM)θ
θ IRM 1 α α(1 α)n

| |
∈

|θ|0≤k
− −

}

Cσ2

+ log(1/δ)
α(1 − α)n

with probability at least 1− δ.

ˆProof. From the definition of θL, it holds for any θ ∈ IRM ,

1 |Y − ϕˆL |2
1

2 ≤
n
|Y − ϕθ|22 + 2τ

n θ |θ| |ˆ1 − 2τ θL|1 .

ˆAdding τ |θL − θ|1 on each side and multiplying by n, we get

|ϕˆL−f |2 2 ˆ ˆ ˆ
2−|ϕθ−f |2+nτ |θL−θ|1 ≤ 2ε⊤(ϕˆL−ϕθ)+nτθ |θL−θ|1+2nτ |θ|1−2nτθ |θL|1 .

(3.7)
Next, note that INC(k) for any k ≥ 1 implies that |ϕj |2 ≤ 2

√
n for all j =

1, . . . ,M . Applying Hölder’s inequality using the same steps as in the proof of
Theorem 2.15, we get that with probability 1− δ, it holds

nτ
2ε⊤ ˆ(ϕˆL − ϕθ) θθ ≤

2
| L − θ|1

Therefore, taking S = supp(θ) to be the support of θ, we get that the right-
hand side of (3.7) is bounded by

≤ |ˆ2nτ θL − θ|1 | | − |ˆ+ 2nτ θ 1 2nτ θL|1
= 2nτ |θ̂SL − θ|1 + 2nτ |θ|1 − |ˆ2nτ θS

L|1
≤ 4nτ |θ̂SL − θ|1 (3.8)

with probability 1− δ.
It implies that either MSE(ϕθ̂L) ≤ MSE(ϕθ) or that

|θ̂SLc − ˆθSc |1 ≤ 3|θSL − θS |1 .

ˆso that θ = θL − θ satisfies the cone condition (2.17). Using now the Cauchy-
Schwarz inequality and Lemma 2.17 respectively, assume that |θ|0 ≤ k, we
get

4nτ |θ̂SL − θ|1 ≤ 4nτ
√

|S||θ̂SL − θ|2 ≤ 4τ 2n|θ|0|ϕˆL − ϕθθ |2 .
Using now the inequality 2ab ≤ 2 a2 + αb2, we geα 2

√

t

16τ2n θ α
4nτ | L̂ 0

θS − θ| 2
1

| |≤ +
α 2

|ϕθ̂L − ϕθ|2
16τ2n|θ|≤ 0

+ α
α

|ϕθ̂L − f |22 + α|ϕθ − f |22



3.1. Oracle inequalities 66

Combining this result with (3.7) and (3.8), we find

16τ2 θ
(1

|− α)MSE(ϕθ̂L)
|≤ 0

(1 + α)MSE(ϕθ) + .
α

To conclude the proof of the bound with high probability, it only remains to
divide by 1−α on both sides of the above inequality. The bound in expectation
follows using the same argument as in the proof of Corollary 2.9.

Maurey’s argument

From the above section, it seems that the Lasso estimator is strictly better
than the BIC estimator as long as incoherence holds. Indeed, if there is no
sparse θ such that MSE(ϕθ) is small, Theorem 3.4 is useless. In reality, no
one really believes in the existence of sparse vectors but rater of approximately
sparse vectors. Zipf’s law would instead favor the existence of vectors θ with
absolute coefficients that decay polynomially when ordered from largest to
smallest in absolute value. This is the case for example if θ has a small ℓ1
norm but is not sparse. For such θ, the Lasso estimator still enjoys slow rates
as in Theorem 2.15, which can be easily extended to the misspecified case (see
Problem 3.2). Fortunately, such vectors can be well approximated by sparse
vectors in the following sense: for any vector θ ∈ IRM such that |θ|1 ≤ 1, there
exists a vector θ′ that is sparse and for which MSE(ϕθ′) is not much larger
than MSE(ϕθ). The following theorem quantifies exactly the tradeoff between
sparsity and MSE. It is often attributed to B. Maurey and was published by
Pisier [Pis81]. This is why it is referred to as Maurey’s argument.

Theorem 3.6. Let {ϕ1, . . . , ϕM} be a dictionary normalized in such a way
that

max ϕj 2 D
√
n .

1≤j≤M
| | ≤

Then for any integer k such that 1 ≤ k ≤M and any positive R, we have

D2R2

min MSE(ϕθ) ≤ min MSE(ϕθ) + .
θ I θ k∈RM IRM

|θ
∈

|0≤2k |θ|1≤R

Proof. Define
θ̄ ∈ argmin |ϕ − f |2θ 2

θ∈IRM

|θ|1≤R

¯ ¯ ¯and assume without loss of generality that |θ1| ≥ |θ2| ≥ . . . θ
¯

≥ | M |.
Now decompose θ = θ(1)+θ(2), where supp(θ(1)) ⊂ {1 . . . , k} and supp(θ(2)) ⊂

{k + 1, . . . ,M}. In particular it holds

ϕθ̄ = ϕθ(1) + ϕθ(2) .
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Moreover, observe that

M

|θ(2)| ¯
1 =

∑
|θj | ≤ R

j=k+1

Let now U ∈ IRn be a random vector with values in {0,±Rϕ1, . . . ,±RϕM}
defined by

(2)
(2) θj

IP(U = Rsign(θj )ϕj) =
| |

, j = k + 1, . . . ,M
R

θ(2) 1
IP(U = 0) = 1

| |− .
R

Note that IE[U ] = ϕθ(2) and U 2 RD
√| | ≤ n. Let now U1, . . . , Uk be k indepen-

dent copies of U define
k

1
Ū =

∑
Ui .

k
i=1

¯ ˜Note that U = ϕ M ˜ ˜
θ̃ for some θ ∈ IR such that |θ|0 ≤ k. Therefore, |θ(1)+θ|0 ≤

2k and

IE|f − ¯ϕ − U |2 = IE|f − ϕ − ϕ 2
θ(1) 2 θ(1) θ(2) + (

¯ϕθ 2) − U |2
= IE|f − ϕ 2

θ(1) − ϕθ(2) |2 + |ϕ 2
θ(2)

¯

2

− U |2
2 IE U IE[U ]

= |f − ϕθ̄|2 +
| − |2

k
(RD

√
n)2≤ |f − ϕθ̄|22 + k

To conclude the proof, note that

IE|f − 2
1

¯ϕθ( ) − U |2 = IE|f − ϕ 2 2
θ(1) ˜+θ|2 ≥ min |f − ϕθ 2

θ∈IRM
|

|θ|0≤2k

and to divide by n.

Maurey’s argument implies the following corollary.

Corollary 3.7. Assume that the assumptions of Theorem 3.4 hold and that
the dictionary {ϕ1, . . . , ϕM} is normalized in such a way that

max ϕj
√

1≤j≤M
| |2 ≤ n .

Then there exists a constant C > 0 such that the BIC estimator satisfies

σ2 θ 0 log(eM) log(eM)
MSE(ϕˆ ) inf 2MSE(ϕθ) + C σ θ 1θbic

| |≤
θ∈IRM

{ [
n

∧ | |
√

n

σ2 log(1/δ)

]}

+ C
n

with probability at least 1− δ.
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Proof. Choosing α = 1/3 in Theorem 3.4 yields

{ σ2 θ 2
0 log(eM) σ log(1/δ)

MSE(ϕ b̂ic) ≤ 2 inf MSE(ϕθ) + C
| |

+θ
θ∈I n

}
C

RM n

For any θ′ ∈ IRM , it follows from Maurey’s argument that there exist θ ∈ IRM

such that |θ|0 ≤ 2|θ′|0 and

2|θ′|2
MSE(ϕθ) ≤ 1MSE(ϕθ′) + |θ|0

It implies that

σ2|θ|0 log(eM) 2|θ′|2 2
1 σ |θ|0 log(eM)

MSE(ϕθ) + C MSE(ϕθ′) + + C
n

≤ |θ|0 n

Taking infimum on both sides, we get

σ2

in
|θ 0 (eM)

f MSE(ϕθ) + C
| log

θ∈IRM

{
n

}

{ θ′ 2 σ2k log(eM)≤ inf MSE(ϕθ )
(

1
′ + Cmin

θ′

|
+ C

∈IRM

|
k k n

)}
.

To control the minimum over k, we need to consider three cases for the quantity

|θ′¯ |1
k

√
logM

=
σ n

1. If 1 ≤ k̄ ≤M , then we get

min
( |θ′|2 σ2

1 k log(eM)) log(eM)
+ C ≤ Cσ θ′ 1

k k n
| |

√

n

¯2. If k ≤ 1, then
σ2 log(eM)|θ′|21 ≤ C ,

n

which yields

|θ′|2 2
1 σ k log(eM) σ2 log(eM)

min + C C
k

(
k n

)
≤

n

¯3. If k ≥M , then
σ2M log(eM)

n
≤ C

|θ′|21 .
M

θTherefore, on the one hand, if M ≥ √ | |1 , we get
σ log(eM)/n

( |θ′|2 σ2
1 k log(eM)) |θ′|21

√
log(eM)

min + C ≤ C Cσ θ′ 1 .
k k n M

≤ | |
n
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On the other hand, if M ≤ √ |θ|1 , then for any Θ ∈ IRM , we have
σ log(eM)/n

σ2|θ| log(eM) σ2
0 M log(eM) log(eM)

n
≤

n
≤ Cσ|θ′|1

√
.

n

Note that this last result holds for any estimator that satisfies an oracle
inequality with respect to the ℓ0 norm such as the result of Theorem 3.4. In
particular, this estimator need not be the BIC estimator. An example is the
Exponential Screening estimator of [RT11].

Maurey’s argument allows us to enjoy the best of both the ℓ0 and the
ℓ1 world. The rate adapts to the sparsity of the problem and can be even
generalized to ℓq-sparsity (see Problem 3.3). However, it is clear from the proof
that this argument is limited to squared ℓ2 norms such as the one appearing
in MSE and extension to other risk measures is non trivial. Some work has
been done for non Hilbert spaces [Pis81, DDGS97] using more sophisticated
arguments.

3.2 NONPARAMETRIC REGRESSION

So far, the oracle inequalities that we have derived do not deal with the
approximation error MSE(ϕθ). We kept it arbitrary and simply hoped that
it was small. Note also that in the case of linear models, we simply assumed
that the approximation error was zero. As we will see in this section, this
error can be quantified under natural smoothness conditions if the dictionary
of functions H = {ϕ1, . . . , ϕM} is chosen appropriately. In what follows, we
assume for simplicity that d = 1 so that f : IR → IR and ϕj : IR → IR.

Fourier decomposition

Historically, nonparametric estimation was developed before high-dimensional
statistics and most results hold for the case where the dictionaryH = {ϕ1, . . . , ϕM}
forms an orthonormal system of L2([0, 1]):

∫ 1 1

ϕ2
j(x)dx = 1 , j

0

∫
ϕj(x)ϕk(x)dx = 0, = k .

0

∀

We will also deal with the case where M = ∞.
When H is an orthonormal system, the coefficients θj

∗ ∈ IR defined by

1

θj
∗ =

∫
f(x)ϕj(x)dx ,

0

are called Fourier coefficients of f .

6
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Assume now that the regression function f admits the following decompo-
sition ∞

f =
∑

θj
∗ϕj .

j=1

There exists many choices for the orthonormal system and we give only two
as examples.

Example 3.8. Trigonometric basis. This is an orthonormal basis of L2([0, 1]).
It is defined by

ϕ1 ≡ 1

ϕ2k(x) =
√
2 cos(2πkx) ,

ϕ2k+1(x) =
√
2 sin(2πkx) ,

for k = 1, 2, . . . and x ∈ [0, 1]. The fact that it is indeed an orthonormal system
can be easily check using trigonometric identities.

The next example has received a lot of attention in the signal (sound, image,
. . . ) processing community.

Example 3.9. Wavelets. Let ψ : IR → IR be a sufficiently smooth and
compactly supported function, called “mother wavelet”. Define the system of
functions

ψ (x) = 2j/2 j
jk ψ(2 x− k) , j, k ∈ Z .

It can be shown that for a suitable ψ, the dictionary {ψj,k, j, k ∈ Z} forms an
orthonormal system of L2([0, 1]) and sometimes a basis. In the latter case, for
any function g ∈ L2([0, 1]), it holds

g
∑∞ ∞ 1

= θjkψjk , θjk = g(x)ψjk(x)dx .
∞ 0j=− k=

∑

−∞

∫

The coefficients θjk are called wavelet coefficients of g.
The simplest example is given by the Haar system obtained by taking ψ to

be the following piecewise constant function (see Figure 3.1). We will not give
more details about wavelets here but refer simply point the interested reader
to [Mal09].

ψ(x) =


 1 0 ≤ x < 1/2

 −1 1/2 ≤ x ≤ 1
0 otherwise

Sobolev classes and ellipsoids

We begin by describing a class of smooth functions where smoothness is under-
stood in terms of its number of derivatives. Recall that f (k) denotes the k-th
derivative of f .
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−
1

0
1

0.0 0.5 1.0

ψ
(x

)

x

Figure 3.1. The Haar mother wavelet

Definition 3.10. Fix parameters β ∈ {1, 2, . . .} and L > 0. The Sobolev class
of functions W (β, L) is defined by

W (β, L) =
{
f : [0, 1] → IR : f ∈ L ([0, 1]) , f (β

2
−1) is absolutely continuous and

∫ 1

[f (β)]2 ≤ L2 , f (j)(0) = f (j)(1), j = 0, . . . , β 1
0

−
}

Any function f ∈ W (β, L) can represented1 as its Fourier expansion along
the trigonometric basis:

∞
f(x) = θ1

∗ϕ1(x) +
∑(

θ2
∗
kϕ2k(x) + θ2

∗
k+1ϕ2k+1(x) , x [0, 1] ,

k=1

)
∀ ∈

where θ∗ = {θj∗}j 1 is in the space of squared summable sequence ℓ2(IN) defined≥
by

∞
ℓ2(IN) =

{
θ :

∑
θ2j <

j=1

∞
}
.

For any β > 0, define the coefficients
{

jβ for j even
aj = (3.9)

(j − 1)β for j odd

Thanks to these coefficients, we can define the Sobolev class of functions in
terms of Fourier coefficients.

1In the sense that
∫

1 k

lim |f(t) −
∑

θjϕj(t)|
2dt = 0

k→∞ 0 j=1
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Theorem 3.11. Fix β ≥ 1 and L > 0 and let {ϕj}j 1 denote the trigonometric≥
basis of L2([0, 1]). Moreover, let {aj}j be defined as in (3.9). A function≥1

f ∈W (β, L) can be represented as

f =
∑∞

θj
∗ϕj ,

j=1

where the sequence {θj∗}j 1 belongs to Sobolev ellipsoid of ℓ2(IN) defined by≥

Θ(β,Q) =
{ ∑∞
θ ∈ ℓ2(IN) : a2jθ

2
j

j=1

≤ Q
}

for Q = L2/π2β.

Proof. Let us first recall the definition of the Fourier coefficients {sk(j) k 1 of
the jth derivative f (j)

} ≥
of f for j = 1, . . . , β:

1

s1(j) =

∫
f (j)(t)dt = f (j−1)(1)− f (j−1)(0) = 0 ,

0
1

s (
2k(j) =

√
2

∫
f j)(t) cos(2πkt)dt ,

0

s 2

∫ 1

(j) =
√

f (j)
2k+1 (t) sin(2πkt)dt ,

0

The Fourier coefficients of f are given by θk = sk(0).
Using integration by parts, we find that

√ ∣∣ 11

s ( β 1)
2k β) = 2f ( − (t) cos(2πkt)∣ + (2πk)

√
2 f (β−1)(t) sin(2πkt)dt

0

∫

0

√ 1

= 2[f (β−1)(1)− f (β−1)(0)] + (2πk)
√
2

= (2πk)s

∫
f (β−1)(t) sin(2πkt)dt

0

2k+1(β − 1) .

Moreover,

11

s2k+1(β) =
√
2f (β−1)(t) sin(2πkt)

∣∣∣
√

0
− (2πk) 2

∫
f (β−1)(t) cos(2πkt)dt

0

= −(2πk)s2k(β − 1) .

In particular, it yields

s 2
2 ( 2
k β) + s2k+1(β) = (2πk)2 s2k(β − 1)2 + s2k+1(β − 1)2

By induction, we find that for any k ≥

[

1,

]

s (β)2 + s (β)2 2
k = 2

2 (2πk)2β2k+1

(
θ2k + θ2k+1

)
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Next, it follows for the definition (3.9) of aj that

∑∞ ∞ ∞
(2πk)2β

(
θ2 + θ2

)
= π2β 2

2k 2k+1

∑
a 2 2β
2kθ2k + π

k=1 k=1

∞
k

∑
a2 2
2k+1θ2k+1

=1

= π2β
∑

a2jθ
2
j .

j=1

Together with the Parseval identity, it yields

∫ 1 (
f (β)(t)

)2 ∞ ∞
dt =

∑
s (β)2 + s (β)2 = π2β a2θ22k 2k+1 j j .

0 k=1

∑

j=1

To conclude, observe that since f ∈W (β, L), we have

∫ 1

0

2 2β

( 2
f (β)(t)

)
dt ≤ L2 ,

so that θ ∈ Θ(β, L /π ) .

It can actually be shown that the reciprocal is true, that is any function
with Fourier coefficients in Θ(β,Q) belongs to if W (β, L) but we will not be
needing this.

In what follows, we will define smooth functions as functions with Fourier
coefficients (with respect to the trigonometric basis) in a Sobolev ellipsoid. By
extension, we write f ∈ Θ(β,Q) in this case and consider any real value for β.

Proposition 3.12. The Sobolev ellipsoids enjoy the following properties

(i) For any Q > 0,

0 < β′ < β ⇒ Θ(β,Q) ⊂ Θ(β′, Q)

(ii) For any Q > 0,
1

β > ⇒ f is continuous
2

The proof is left as an exercise (Problem 3.5)
It turns out that the first functions in the trigonometric basis are orthonor-

mal with respect to the inner product of L2 but also to the inner predictor
associated to fixed design 〈f, g〉 := 1 f(Xi)g(Xi) when the design is chosen ton
be regular, i.e., Xi = (i− 1)/n, i = 1, . . . , n.

Lemma 3.13. Assume that {X1, . . . , Xn} is the regular design, i.e., Xi =
(i − 1)/n. Then, for any M ≤ n − 1, the design matrix Φ = {ϕj(Xi)} 1≤i

1
≤n

≤j≤M
satisfies the ORT condition.
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Proof. Note first that for any j, j′ ∈ {1, . . . , n − 1}, j = j′ the inner product
ϕ⊤
j ϕj′ is of the form

n−1

ϕ⊤
j ϕj′ = 2

∑
uj(2πkjs/n)vj′(2πkj′s/n)

s=0

where kj = ⌊j/2⌋ is the integer part of j/2 for any x ∈ IR, uj(x), vj′ (x)
ix x

Re Im
i

∈
{ (e ), (e )}.

Next, observe that if kj = kj′ , we have

n∑−1
i

n 1
2πk s i2πk ′ s ∑− i2π(k −k

− j ′ )sj j j

e n e n = e n = 0 .
s=0 s=0

Moreover, if we define the vectors a, b, a′, b′ ∈ IRn with coordinates such that
i2πk s i2πk ′ sj j

e n = as + ibs and e n = a′s + ib′s, we get

n∑−1
i2πk s i2πk

− ′ sj j

e n e n = (a+ ib)⊤(a′ − ib′) = a⊤a′ + b⊤b′ + i ⊤ a
0

[
b a′

=

− ⊤b′

s

]

and consequently that

1
ϕ⊤
j ϕj′ = a⊤a′ + b⊤b′ + i

[
b⊤a′ a

2
− ⊤b′

with |a|2|b|2 = |a′|2|b′|2 = 0, i.e., either a = 0 or b = 0 a

]

nd either a′ = 0 or
b′ = 0. Therefore, in the case where kj = kj′ , we have

a⊤a′ = −b⊤b′ = 0, b⊤a′ = a⊤b′ = 0

which implies ϕ⊤
j ϕj′ = 0. To conclude the proof, it remains to deal with the

case where kj = kj′ . This can happen in two cases: |j′ − j| = 1 or j′ = j. In
the first case, we have that {u (x), v (x)} = {Re(eix), Im(eixj j′ )}, i.e., one is a
sin(·) and the other is a cos(·). Therefore,

1
ϕ⊤
j ϕj′ = a⊤a′ + b⊤b′ + i b⊤a′

2
− a⊤b′ = 0

The final case is j = j′ for which, on the on

[

e hand,

]

n∑−1
i2πk s i

n
2πk s i4πj j

−1

e n e n =
∑ k sj

e n = 0
s=0 s=0

and on the other hand

n∑−1
i2πk s i2πk sj j

e n e n = |a+ ib|22 = |a|22
0

− b|22
s=

|

6

6

6
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so that |a|2 = |b|2. Moreover, by
{
definition,

2 2|a|22 if j is even|ϕj |2 =
2|b|22 if j is odd

so that
|a|2 + |b| n2 −1

i2πk s

|ϕj | 22 j2
2 = 2 2 = e n = n

2
s=0

Therefore, the design matrix Φ is such tha

∑

t

∣∣ ∣∣

Φ⊤Φ = nIM .

Integrated squared error

As mentioned in the introduction of this chapter, the smoothness assumption
allows us to control the approximation error. Before going into the details, let
us gain some insight. Note first that if θ ∈ Θ(β,Q), then a2 2

jθj → 0 as j → ∞
so that |θj | = o(j−β). Therefore, the θjs decay polynomially to zero and it
makes sense to approximate f by its truncated Fourier series

∑M
θj
∗ϕj =: ϕMθ∗

j=1

for any fixed M . This truncation leads to a systematic error that vanishes as
M → ∞. We are interested in understanding the rate at which this happens.

The Sobolev assumption to control precisely this error as a function of the
tunable parameter M and the smoothness β.

Lemma 3.14. For any integer M ≥ 1, and f ∈ Θ(β,Q), β > 1/2, it holds

‖ϕMθ∗ − f‖2 2
L2

=
j

∑

>M

|θ∗| ≤ QM−2β
j . (3.10)

and for M = n− 1, we have

2

|ϕn−1
θ∗ − f |22 ≤ 2n

(
θ

j

∑

≥n
| j∗|

)
. Qn2−2β . (3.11)

Proof. Note that for any θ ∈ Θ(β,Q), if β > 1/2, then

∑∞ ∞
|θj | =

∑ 1
aj θj

ajj=2 √j=2

| |

≤
√√√∑∞ ∞

a2jθ
2
j

∑ 1
by Cauchy-Schwarz

a2jj=2 j=2

≤

√√√√
∞

Q
∑ 1

<
j2β

j=1

∞
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Since {ϕj}j forms an orthonormal system in L2([0, 1]), we have

min ‖ϕ − f‖2 2
θ L2

= ‖ϕθ∗ − f‖L2
=

∑
|θ∗ 2
j

θ∈IRM

j>M

| .

When θ∗ ∈ Θ(β,Q), we have

∑
|2 1 Q|θj∗ =

∑
a2j θj

∗ 2 1| | Q .
a2 2β
j

≤
a2M+1 M

j>M j>M

≤

To prove the second part of the lemma, observe that

|ϕn−1
θ∗ − f |2 =

∣∑
θj
∗ϕj

≥

∣
2
√
2n θ∗

2 j ,
j n

≤
j

∑

≥n
| |

where in√the last inequality, we

∣

used the

∣

fact that for the trigonometric basis
|ϕj |2 ≤ 2n, j ≥ 1 regardless of the choice of the design X1, . . . , Xn. When
θ∗ ∈ Θ(β,Q), we have

∑ 1|θj∗| =
∑ 1

aj|θj∗| a2
a j θj

∗
j

j n j n

≤
√

j

∑

n

| |
√

1
2 . Qn 2 .

a2
−β

≥ ≥ ≥ jj

∑

≥n

Note the truncated Fourier series ϕθ∗ is an oracle: this is what we see when
we view f through the lens of functions with only low frequency harmonics.

To estimate ϕθ∗ , consider the estimator ϕ l̂s whereθ

n

θ̂ls ∈ 2
argmin

∑(
Yi

M

− ϕθ(Xi) .
θ∈IR i=1

)

Which should be such that ϕ l̂s is close to ϕθ∗ . For this estimator, we haveθ
proved (Theorem 3.3) an oracle inequality for the MSE that is of the form

|ϕM − f |2l̂s 2 ≤ inf |ϕM 2
θ − f |2 + Cσ M log(1/δ) , C > 0 .

θ θ∈IRM

It yields

|ϕM ϕM 2 2( M ϕMˆ ∗ ϕˆ ∗)⊤(f ϕM 2
∗) + Cσ M log(1/δ)

θls
− θ |2 ≤

θls
− θ − θ

= 2(ϕM M
ˆ − ϕθ∗ls

)⊤(
θ

∑
θ 2
j
∗ϕj) + Cσ M log(1/δ)

j>M

= 2(ϕM
θ̂ls

− ϕMθ∗)
⊤(

∑
θj
∗ϕj) + Cσ2M log(1/δ) ,

j≥n

where we used Lemma 3.13 in the last equality. Together with (3.11) and
Young’s inequality 2ab ≤ αa2 + b2/α, a, b ≥ 0 for any α > 0, we get

M M C
2(ϕ l̂s − ϕθ∗)

⊤(
∑

θ∗ M M 2 2 2β
jϕj) ≤ α|ϕˆ ∗

θ θls
ϕ 2

j

− θ ,
n

| + Qn −
α≥
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for some positive constant C when θ∗ ∈ Θ(β,Q). As a result,

M 1 σ2M|ϕ
θ̂ls

− ϕM 2
θ∗ |2 . Qn2−2β + log(1/δ) (3.12)

α(1 − α) 1− α

for any t ∈ (0, 1). Since, Lemma 3.13 implies, |ϕM 2
l̂
− ϕMθ∗s

|2 = n
2

‖ϕMˆθ θls
M

−
ϕθ∗‖L ([0,1]), we have proved the following theorem.

2

Theorem 3.15. Fix β ≥ (1 +
√
5)/4 ≃ 0.81, Q > 0, δ > 0 and assume the

general regression model (3.1) with f ∈ Θ(β,Q) and ε ∼ subG (σ2), σ2
n 1.

1

≤
Moreover, let M = ⌈n 2β+1 and n be large enough so that M n 1. Then the

ˆ
⌉ ≤ −

least squares estimator θls defined in (3.2) with {ϕj}Mj=1 being the trigonometric
basis, satisfies with probability 1− δ, for n large enough,

g(1‖ϕ − 2β lo /δ)
l̂s f 2 .θ ‖ n− 2β+1 + σ2

L2([0,1])
.

n

where the constant factors may depend on β,Q and σ. Moreover

IE‖ 2β

ϕ − f‖2 . n− 2β+1
θ̂ls L2([0,1])

.

Proof. Choosing α = 1/2 for example and absorbing Q in the constants, we
get from (3.12) and Lemma 3.13 that for M ≤ n− 1,

2 M + log(1/δ)‖ϕˆ − ϕ 1 2β
θ∗ls ‖L ([0,1]) .2

n − + σ2 .θ n

Using now Lemma 3.14 and σ2 ≤ 1, we get

M + σ2

‖ 2 2β 1 2β log(1/δ)
ϕ l̂s − fθ ‖L2([0,1])

.M− + n − + .
n

1

Taking M = ⌈n 2β+1 ⌉ ≤ n− 1 for n large enough yields

2β2 1 2β 2 log(1/δ)‖ϕ 2β+1
θ̂ls − f‖L2([0,1])

. n− + n − + σ .
n

To conclude the proof, simply note that for the prescribed β, we have n1−2β ≤
n− 2β

2β+1 . The bound in expectation can be obtained by integrating the tail
bound.

Adaptive estimation

1

The rate attained by the projection estimator ϕ l̂s withM = ⌈n 2β+1
θ ⌉ is actually

optimal so, in this sense, it is a good estimator. Unfortunately, its implementa-
tion requires the knowledge of the smoothness parameter β which is typically
unknown, to determine the level M of truncation. The purpose of adaptive es-
timation is precisely to adapt to the unknown β, that is to build an estimator
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2β

that does not depend on β and yet, attains a rate of the order of Cn− 2β+1 (up
to a logarithmic lowdown). To that end, we will use the oracle inequalities for
the BIC and Lasso estimator defined in (3.3) and (3.4) respectively. In view of
Lemma 3.13, the design matrix Φ actually satisfies the assumption ORT when
we work with the trigonometric basis. This has two useful implications:

1. Both estimators are actually thresholding estimators and can therefore
be implemented efficiently

2. The condition INC(k) is automatically satisfied for any k ≥ 1.

These observations lead to the following corollary.

Corollary 3.16. Fix β ≥ (1 +
√
5)/4 ≃ 0.81, Q > 0, δ > 0 and n large enough

to ensure n − 1 ≥ ⌈ 1

n 2β+1 ⌉ assume the general regression model (3.1) with
f ∈ Θ(β,Q) and ε ∼ subGn(σ

2), σ2 ≤ 1. Let {ϕ n
j}j−1

=1 be the trigonometric

basis. Denote by ϕn 1 n 1
b̂

−
ic

(resp. ϕˆL
− ) the BIC (resp. Lasso) estimator defined

θ θ

in (3.3) (resp. (3.4)) over IRn−1 with regularization parameter given by (3.5)
ˆ ˆ(resp. (3.6)). Then ϕn−1, where θ ∈ {θbic ˆ

ˆ , θL} satisfies with probability 1
θ

− δ,

‖ 2β

ϕn−1 − f‖2 . n− 2β+1 + σ2 log(1/δ)
ˆ L2([0,1])

.
θ n

Moreover,
logn

2β
2β+1

IE‖ϕn−1 2 2
ˆ − f‖L2([0,1])

. σ .
θ n

where constant factors may depend on β and

(

Q.

)

ˆ ˆProof. For θ ∈ {θbic ˆ, θL}, adapting the proofs of Theorem 3.4 for the BIC
estimator and Theorem 3.5 for the Lasso estimator, for any θ ∈ IRn−1, with
probability 1− δ

ϕn
1 + α| ˆ

−1 f 2 2
2 ϕn−1

θ f |2 + (
α
| − R

θ
− | ≤

1
|θ|0) .−

where
Cσ2 Cσ2

R(|θ|0) := |θ0| log(en) + log(1/δ)
α(1− α) α(1− α)

It yields

2α|ϕn−1 − ϕn−1 2
ˆ θ |2θ

≤
1 α

|ϕn−1 − f |2 + 2(ϕn−1 − ϕn−1)⊤(ϕn−1 − f) +R(|θ| )
( − θ 2 ˆ θ θ 0θ

2α 1≤ + ϕn−1 f 2 + α ϕn−1 ϕn−1 2 +R( θ 0) ,
1 α

|− α θ − |2 | ˆ − θ |2θ
| |

where we used Young’s inequalit

)

y once again. Choose now α = 1/2 and θ = θM
∗ ,

where θM
∗ is equal to θ∗ on its first M coordinates and 0 otherwise so that

ϕn−1
θ∗ = ϕMθ∗ . It yields
M

|ϕn−1 −ϕn−1|2 . |ϕn 1 2 n 1 n 1 2 n 1 2
ˆ θ∗ 2 θ∗

− − f |2+R(M) . |ϕθ∗− −ϕθ∗
− |2+ |ϕθ∗− − f |2+R(M)

θ M M M
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Next, it follows from (3.11) that |ϕn−1
θ∗ − f |22 . Qn2−2β. Together with

Lemma 3.13, it yields

‖ϕn−1 − ϕn−1‖2 . ‖ϕn−1 n 1 2 1 2β R(M)
ˆ θ∗ L2([0,1]) θ∗ − ϕθ∗

− ‖L2([0,1])
+Qn − + .

θ M M n

Moreover, using (3.10), we find that

2

‖ϕn 1 2 M σ
. 2β

ˆ
− − f‖L2([0,1])

M− +Qn1−2β + log(en) + log(1/δ) .
θ n n

1

To conclude the proof, chooseM = ⌈(n/ logn) 2β+1 ⌉ and observe that the choice
of β ensures that n1−2β .M−2β . This yields the high probability bound. The
bound in expectation is obtained by integrating the tail.

While there is sometimes a (logarithmic) price to pay for adaptation, it
turns out that the extra logarithmic factor can be removed by a clever use of
blocks (see [Tsy09, Chapter 3]). The reason why we get this extra logarithmic
factor here is because we use a hammer that’s too big. Indeed, BIC and Lasso
allow for “holes” in the Fourier decomposition and we use a much weaker
version of their potential.
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3.3 PROBLEM SET

Problem 3.1. ˆShow that the least-squares estimator θls defined in (3.2) sat-
isfies the following exact oracle inequality:

IEMSE(ϕ 2M
θ̂ls) ≤ inf MSE(ϕθ) + Cσ

θ∈IRM n

for some constant M to be specified.

Problem 3.2. Assume that ε ∼ subGn(σ
2) and the vectors ϕj are normalized

in such a way that maxj |ϕj |2
√

ˆ
≤ n. Show that there exists a choice of τ

such that the Lasso estimator θL with regularization parameter 2τ satisfies the
following exact oracle inequality:

logM
MSE(ϕˆL) ≤ inf MSE(ϕθ) + Cσ

θ∈I
|θ|1θ

RM

√

n

with probability at least 1−M−c

{

for some positive constants

}

C, c.

Problem 3.3. Let {ϕ1, . . . , ϕM} be a dictionary normalized in such a way
that maxj |ϕj |2

√≤ n. Show that for any integer k such that 1 ≤ k ≤ M , we
have

1 1 2
k q̄ M q̄

min MSE(ϕθ) ≤ min MSE(ϕθ) + C 2
qD

θ∈IRM

−
,

θ∈IRM k
|θ|0≤2k |θ|wℓq≤1

( )

where |θ|wℓq denotes the weak ℓq norm and q̄ is such that 1 + 1 = 1.q q̄

Problem 3.4. Show that the trigonometric basis and the Haar system indeed
form an orthonormal system of L2([0, 1]).

Problem 3.5. If f ∈ Θ(β,Q) for β > 1/2 and Q > 0, then f is continuous.
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4
Matrix estimation

Over the past decade or so, matrices have entered the picture of high-dimensional
statistics for several reasons. Perhaps the simplest explanation is that they are
the most natural extension of vectors. While this is true, and we will see exam-
ples where the extension from vectors to matrices is straightforward, matrices
have a much richer structure than vectors allowing “interaction” between their
rows and columns. In particular, while we have been describing simple vectors
in terms of their sparsity, here we can measure the complexity of a matrix by
its rank. This feature was successfully employed in a variety of applications
ranging from multi-task learning to collaborative filtering. This last application
was made popular by the Netflix prize in particular.

In this chapter, we study several statistical problems where the parameter of
interest θ is a matrix rather than a vector. These problems include: multivari-
ate regression, covariance matrix estimation and principal component analysis.
Before getting to these topics, we begin by a quick reminder on matrices and
linear algebra.

4.1 BASIC FACTS ABOUT MATRICES

Matrices are much more complicated objects than vectors. In particular,
while vectors can be identified with linear operators from IRd to IR, matrices
can be identified to linear operators from IRd to IRn for n ≥ 1. This seemingly
simple fact gives rise to a profusion of notions and properties as illustrated by
Bernstein’s book [Ber09] that contains facts about matrices over more than a
thousand pages. Fortunately, we will be needing only a small number of such
properties, which can be found in the excellent book [GVL96], that has become
a standard reference on matrices and numerical linear algebra.

81
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Singular value decomposition

Let A = {aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a m × n real matrix of rank r ≤
min(m,n). The Singular Value Decomposition (SVD) of A is given by

A = UDV ⊤ =
∑r

λjujvj
⊤ ,

j=1

where D is a r× r diagonal matrix with positive diagonal entries {λ1, . . . , λr},
U is a matrix with columns {u1, . . . , u m

r} ∈ IR that are orthonormal and V is
a matrix with columns {v1, . . . , vr} ∈ IRn that are also orthonormal. Moreover,
it holds that

AA⊤uj = λ2juj , and A⊤Avj = λ2jvj

for j = 1, . . . , r. The values λj > 0 are called singular values of A and are
uniquely defined. If rank r < min(n,m) then the singular values of A are
given by λ = (λ1, . . . , λ , 0, . . . , 0)⊤ ∈ IRmin(n,m)

r where there are min(n,m)− r
zeros. This way, the vector λ of singular values of a n×m matrix is a vector
in IRmin(n,m).

In particular, if A is a n × n symmetric positive semidefinite (PSD), i.e.
A⊤ = A and u⊤Au ≥ 0 for all u ∈ IRn, then the singular values of A are equal
to its eigenvalues.

The largest singular value of A denoted by λmax (A) also satisfies the fol-
lowing variational formulation:

|Ax|2 y⊤Ax
λmax (A) = max = max = max y⊤Ax .

x∈IRn |x|2 x∈IRn

y∈IRm
|y|2|x|2 x∈Sn−1

y∈Sm−1

In the case of a n× n PSD matrix A, we have

λmax (A) = max x⊤Ax .
x∈Sn−1

Norms and inner product

Let A = {aij} and B = {bij} be two real matrices. Their size will be implicit
in the following notation.

Vector norms

The simplest way to treat a matrix is to deal with it as if it were a vector. In
particular, we can extend ℓq norms to matrices:

|A|q =
(∑ 1/q

a q
ij , q > 0 .

ij

| |
)

The cases where q ∈ {0,∞} can also be extended matrices:

|A|0 =
∑

1I(aij = 0) ,
ij

|A| = max∞
ij

|aij | .6
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The case q = 2 plays a particular role for matrices and |A|2 is called the
Frobenius norm of A and is often denoted by ‖A‖F . It is also the Hilbert-
Schmidt norm associated to the inner product:

〈A,B〉 = Tr(A⊤B) = Tr(B⊤A) .

Spectral norms

Let λ = (λ1, . . . , λr, 0, . . . , 0) be the singular values of a matrix A. We can
define spectral norms on A as vector norms on the vector λ. In particular, for
any q ∈ [1,∞],

‖A‖q = |λ|q ,
is called Schatten q-norm of A. Here again, special cases have special names:

• q = 2: ‖A‖2 = ‖A‖F is the Frobenius norm defined above.

• q = 1: ‖A‖1 = ‖A‖ is called the Nuclear norm (or trace norm) of A.∗

• q = ∞: ‖A‖ = λmax (A) = ‖A‖op is called the operator norm (or∞
spectral norm) of A.

We are going to employ these norms to assess the proximity to our matrix
of interest. While the interpretation of vector norms is clear by extension from
the vector case, the meaning of “‖A−B‖op is small” is not as transparent. The
following subsection provides some inequalities (without proofs) that allow a
better reading.

Useful matrix inequalities

Let A and B be two m× n matrices with singular values λ1(A) ≥ λ2(A) . . . ≥
λmin(m,n)(A) and λ1(B) ≥ . . . ≥ λmin(m,n)(B) respectively. Then the following
inequalities hold:

max
∣∣λk(A) λk(B) A B op , Weyl (1912)

∑
k

− ≤ ‖ − ‖
∣∣ 2
λ λ 2
k(A) − k(B)

∣∣
∣∣ ≤ ‖A−B‖F , Hoffman-Weilandt (1953)

k

1 1〈A,B〉 ≤ ‖A‖q‖B‖q , + = 1, p, q
p q

∈ [1,∞] , Hölder

4.2 MULTIVARIATE REGRESSION

In the traditional regression setup, the response variable Y is a scalar. In
several applications, the goal is not to predict a variable but rather a vector
Y ∈ IRT , still from a covariateX ∈ IRd. A standard example arises in genomics
data where Y contains T physical measurements of a patient and X contains
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the expression levels for d genes. As a result the regression function in this case
f(x) = IE[Y |X = x] is a function from IRd to IRT . Clearly, f can be estimated
independently for each coordinate, using the tools that we have developed in
the previous chapter. However, we will see that in several interesting scenar-
ios, some structure is shared across coordinates and this information can be
leveraged to yield better prediction bounds.

The model

Throughout this section, we consider the following multivariate linear regres-
sion model:

Y = XΘ∗ + E , (4.1)

where Y ∈ IRn×T is the matrix of observed responses, X is the n× d observed
design matrix (as before), Θ ∈ IRd×T is the matrix of unknown parameters and
E ∼ subGn T (σ

2) is the noise matrix. In this chapter, we will focus on the×
prediction task, which consists in estimating XΘ∗.

As mentioned in the foreword of this chapter, we can view this problem as T
(univariate) linear regression problems Y (j) = Xθ∗,(j)+ε(j), j = 1, . . . , T , where
Y (j), θ∗,(j) and ε(j) are the jth column of Y,Θ∗ and E respectively. In particu-
lar, an estimator for XΘ∗ can be obtained by concatenating the estimators for
each of the T problems. This approach is the subject of Problem 4.1.

The columns of Θ∗ correspond to T different regression tasks. Consider the
following example as a motivation. Assume that the Subway headquarters
want to evaluate the effect of d variables (promotions, day of the week, TV
ads,. . . ) on their sales. To that end, they ask each of their T = 40, 000
restaurants to report their sales numbers for the past n = 200 days. As a
result, franchise j returns to headquarters a vector Y(j) ∈ IRn. The d variables
for each of the n days are already known to headquarters and are stored in
a matrix X ∈ IRn×d. In this case, it may be reasonable to assume that the
same subset of variables has an impact of the sales for each of the franchise,
though the magnitude of this impact may differ from franchise to franchise. As
a result, one may assume that the matrix Θ∗ has each of its T columns that
is row sparse and that they share the same sparsity pattern, i.e., Θ∗ is of the
form: 

0 0 0 0

• •
∗

 • • • •



 • •
 0 0 0 0Θ =



 ,
. . . .


 . . . .



. . . .



0 0 0 0



• • • •



where • indicates a potentially nonzero entry.
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It follows from the result of Problem 4.1 that if each task is performed
ˆindividually, one may find an estimator Θ such that

1 kT log(
IE‖XΘ̂− 2 2 ed)

XΘ∗ . σ
n

‖F ,
n

where k is the number of nonzero coordinates in each column of Θ∗. We
remember that the term log(ed) corresponds to the additional price to pay
for not knowing where the nonzero components are. However, in this case,
when the number of tasks grows, this should become easier. This fact was
proved in [LPTVDG11]. We will see that we can recover a similar phenomenon
when the number of tasks becomes large, though larger than in [LPTVDG11].
Indeed, rather than exploiting sparsity, observe that such a matrix Θ∗ has rank
k. This is the kind of structure that we will be predominantly using in this
chapter.

Rather than assuming that the columns of Θ∗ share the same sparsity
pattern, it may be more appropriate to assume that the matrix Θ∗ is low rank
or approximately so. As a result, while the matrix may not be sparse at all,
the fact that it is low rank still materializes the idea that some structure is
shared across different tasks. In this more general setup, it is assumed that the
columns of Θ∗ live in a lower dimensional space. Going back to the Subway

example this amounts to assuming that while there are 40,000 franchises, there
are only a few canonical profiles for these franchises and that all franchises are
linear combinations of these profiles.

Sub-Gaussian matrix model

Recall that under the assumption ORT for the design matrix, i.e., X⊤X = nId,
then the univariate regression model can be reduced to the sub-Gaussian se-
quence model. Here we investigate the effect of this assumption on the multi-
variate regression model (4.1).

Observe that under assumption ORT,

1 1
X⊤Y = Θ∗ + X⊤E .

n n

Which can be written as an equation in IRd×T called the sub-Gaussian matrix
model (sGMM):

y = Θ∗ + F , (4.2)

where y = 1X⊤Y and F = 1X⊤E ∼ subGd T (σ
2/n).n n ×

Indeed, for any u ∈ Sd−1, v ∈ ST−1, it holds

1 1
u⊤Fv = ( 2Xu)⊤Ev =

n
√ w⊤Ev
n

∼ subG(σ /n) ,

⊤

where w = Xu/
√
n has unit norm: |w|2 = u⊤ X X 2

2 u =n |u|2 = 1.
Akin to the sub-Gaussian sequence model, we have a direct observation

model where we observe the parameter of interest with additive noise. This
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enables us to use thresholding methods for estimating Θ∗ when |Θ∗|0 is small.
However, this also follows from Problem 4.1. The reduction to the vector case
in the sGMM is just as straightforward. The interesting analysis begins when
Θ∗ is low-rank, which is equivalent to sparsity in its unknown eigenbasis.

Consider the SVD of Θ∗:

Θ∗ =
∑

λjujvj
⊤ .

j

and recall that ‖Θ∗‖0 = |λ|0. Therefore, if we knew uj and vj , we could
simply estimate the λjs by hard thresholding. It turns out that estimating
these eigenvectors by the eigenvectors of y is sufficient.

Consider the SVD of the observed matrix y:

∑
ˆy = λj ûj v̂j

⊤ .
j

Definition 4.1. The singular value thresholding estimator with threshold
2τ ≥ 0 is defined by

Θ̂svt =
∑

λ̂j1I(|λ̂j | > 2τ)ûj v̂j
⊤ .

j

Recall that the threshold for the hard thresholding estimator was chosen to
be the level of the noise with high probability. The singular value thresholding
estimator obeys the same rule, except that the norm in which the magnitude of
the noise is measured is adapted to the matrix case. Specifically, the following
lemma will allow us to control the operator norm of the matrix F .

Lemma 4.2. Let A be a d × T random matrix such that A ∼ subGd×T (σ2).
Then

‖A‖op ≤ 4σ
√
log(12)(d ∨ T ) + 2σ

√
2 log(1/δ)

with probability 1− δ.

Proof. This proof follows the same steps as Problem 1.4. Let N1 be a 1/4-
net for Sd−1 and N2 be a 1/4-net for ST−1. It follows from Lemma 1.18
that we can always choose 1 12d and 2T2 1 . Moreover, for any
u ∈ Sd−1, v ∈ ST 1

|N | ≤ |N | ≤
− , it holds

1
u⊤Av ≤ max x⊤Av + max u⊤Av

x∈N1 4 u∈Sd−1

1 1≤ max max x⊤Ay + max max x⊤Av + max u⊤Av
x∈N y∈N 4 x∈N v∈ST−1 4 u∈Sd−11 2 1

1≤ max max x⊤Ay + max max u⊤Av
x∈N1 y∈N2 2 u∈Sd−1 v∈ST−1

It yields
‖A‖op ≤ 2 max max x⊤Ay

x∈N1 y∈N2
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So that for any t ≥ 0, by a union bound,

IP
(
‖A‖op > t

)
≤ I >

x

∑
P x⊤Ay t/2

∈N1
y∈N2

( )

Next, since A ∼ subGd T (σ
2), it holds that x⊤Ay ∼ subG(σ2) for any x× ∈

N1, y ∈ N2.Together with the above display, it yields

IP
(
‖A‖op > t

) t≤ 12d+T exp
( 2

− δ
8σ2

f

)
≤

or
t ≥ 4σ

√
log(12)(d ∨ T ) + 2σ

√
2 log(1/δ) .

The following theorem holds.

Theorem 4.3. Consider the multivariate linear regression model (4.1) under
the assumption ORT or, equivalently, the sub-Gaussian matrix model (4.2).

ˆThen, the singular value thresholding estimator Θsvt with threshold

2τ = 8σ

√
log(12)(d ∨ T )

+ 4σ

√
2 log(1/δ)

, (4.3)
n n

satisfies

1 ‖XΘ̂svt − XΘ∗‖2 = ‖Θ̂svt Θ∗ 2 144 rank(Θ∗)τ2
n F − ‖F ≤

σ2 rank(Θ∗)
.

(
d ∨ T + log(1/δ) .

n

with probability 1

)

− δ.

Proof. Assume without loss of generality that the singular values of Θ∗ and y
ˆ ˆare arranged in a non increasing order: λ1 ≥ λ2 ≥ . . . and λ1 ≥ λ2 ≥ . . . .

Define the set S = { ˆj : |λj | > 2τ}.
Observe first that it follows from Lemma 4.2 that ‖F‖op ≤ τ for τ chosen

as in (4.3) on an event A such that IP(A) ≥ 1− δ. The rest of the proof is on
A.

ˆNote that it follows from Weyl’s inequality that |λj − λj | ≤ ‖F‖op ≤ τ . It
implies that S ⊂ {j : |λj | > τ} and Sc ⊂ {j : |λj | ≤ 3τ

¯
}.

Next define the oracle Θ =
∑

j∈S λjujvj
⊤ and note that

‖Θ̂svt − ¯Θ∗‖2 ≤ ˆ2‖Θsvt −Θ‖2 ¯
F F + 2‖Θ−Θ∗‖2F (4.4)

Using Cauchy-Schwarz, we control the first term as follows

‖Θ̂svt − Θ̄‖2F ≤ ˆrank(Θsvt − Θ̄)‖Θ̂svt − Θ̄‖2op ≤ ˆ2|S|‖Θsvt − Θ̄‖2op
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Moreover,

‖ ˆ svt − ¯ ¯Θ ‖ ˆΘ svt
op ≤ ‖Θ − y‖op + ‖y −Θ∗‖op + ‖Θ∗ −Θ‖op

≤ max |λ̂j |+ τ +max λ
j∈Sc j∈Sc

| j | ≤ 6τ .

Therefore,

‖Θ̂svt − Θ̄‖2F ≤ 72|S|τ2 = 72 τ2 .
j

∑

∈S

The second term in (4.4) can be written as

‖Θ̄− Θ∗‖2F =
j

∑

Sc

|λj |2 .
∈

Plugging the above two displays in (4.4), we get

‖Θ̂svt −Θ∗‖2F ≤ 144
j

∑
τ2 +

∈S j

∑

∈Sc

|λj |2

Since on S, τ2 = min(τ2, |λj |2) and on Sc, |λj |2 ≤ 3min(τ2, |λj |2), it yields,

‖Θ̂svt −Θ∗‖2F ≤ 432
∑

min(τ2, |λj
j

|2)

rank(Θ∗)

≤ 432
∑

τ2

j=1

= 432 rank(Θ∗)τ2 .

In the next subsection, we extend our analysis to the case where X does not
necessarily satisfy the assumption ORT.

Penalization by rank

The estimator from this section is the counterpart of the BIC estimator in the
spectral domain. However, we will see that unlike BIC, it can be computed
efficiently.

ˆLet Θrk be any solution to the following minimization problem:

min
{ 1 ‖Y− XΘ‖2F + 2τ2 rank(Θ)

Θ∈IRd×T n

}
.

This estimator is called estimator by rank penalization with regularization pa-
rameter τ2. It enjoys the following property.
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Theorem 4.4. Consider the multivariate linear regression model (4.1). Then,
ˆthe estimator by rank penalization Θrk with regularization parameter τ2, where

τ is defined in (4.3) satisfies

1 2

‖ Θ̂rk − Θ∗‖2 ≤ 8 rank(Θ∗)τ2
σ rank(Θ∗)

X X .
n F d

n
∨ T + log(1/δ) .

with probability 1

( )

− δ.

Proof. We begin as usual by noting that

‖Y− Xˆ ˆΘrk‖2F + 2nτ2 rank(Θrk) ≤ ‖ 2Y− XΘ∗‖F + 2nτ2 rank(Θ∗) ,

which is equivalent to

‖ 2 2 2Xˆ r ˆΘ k − XΘ∗‖ X rk X ˆ rk
F ≤ 2〈E, Θ − Θ∗〉 − 2nτ rank(Θ ) + 2nτ rank(Θ∗) .

Next, by Young’s inequality, we have

2〈E,XΘ̂rk 1− XΘ∗〉 = 2〈 ˆE,U〉2 +
2
‖XΘrk − XΘ∗‖2F ,

where
XΘ̂rk − XΘ∗

U = .
‖XΘ̂rk − XΘ∗‖F

Write
XΘ̂rk − XΘ∗ = ΦN ,

where Φ is a n× r, r ≤ d matrix whose columns form orthonormal basis of the
column span of X. The matrix Φ can come from the SVD of X for example:
X = ΦΛΨ⊤. It yields

ΦN
U = ‖N‖F

and

‖XΘ̂rk − XΘ∗‖2F ≤ 〈 ˆ4 Φ⊤E,N/‖N‖F 〉2 − 4nτ2 rank(Θrk) + 4nτ2 rank(Θ∗) .
(4.5)

ˆNote that rank(N) ≤ rank(Θrk) + rank(Θ∗). Therefore, by Hölder’s in-
equality, we get

〈E,U〉2 = 〈Φ⊤E,N/‖N‖F 〉2

≤ ‖Φ⊤E‖2op
‖N‖21
‖N‖2F

≤ rank(N)‖Φ⊤E‖2op
≤ ‖Φ⊤E‖2op

[
ˆrank(Θrk) + rank(Θ∗) .

Next, note that Lemma 4.2 yields ‖Φ⊤E‖2op ≤ nτ2 so that

]

〈E,U〉2 ≤ ˆnτ2 rank(Θrk) + rank(Θ∗) .

Together with (4.5), this complete

[

s the proof.

]
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It follows from Theorem 4.4 that the estimator by rank penalization enjoys
the same properties as the singular value thresholding estimator even when X

does not satisfies the ORT condition. This is reminiscent of the BIC estimator
which enjoys the same properties as the hard thresholding estimator. However
this analogy does not extend to computational questions. Indeed, while the
rank penalty, just like the sparsity penalty, is not convex, it turns out that
XΘ̂rk can be computed efficiently.

Note first that

1
min ‖ 2 + 2τ2

1
Y−XΘ‖F rank(Θ) = min min Θ 2Y X F + 2τ2k .

Θ∈IRd×T n k

{
n Θ∈IRd×T

‖ − ‖
rank(Θ)≤k

}

Therefore, it remains to show that

min Y XΘ 2
F

Θ∈IRd×T
‖ − ‖

rank(Θ)≤k

¯can be solved efficiently. To that end, let Y = X(X⊤X)†X⊤Y denote the orthog-
onal projection of Y onto the image space of X: this is a linear operator from
IRd×T into IRn×T . By the Pythagorean theorem, we get for any Θ ∈ IRd×T ,

‖Y− XΘ‖2 Y Ȳ 2 Ȳ 2XF = ‖ − ‖F + ‖ − Θ‖F .
¯Next consider the SVD of Y:

Ȳ =
∑

λjujvj
⊤

j

˜where λ1 ≥ λ2 ≥ . . .. The claim is that if we define Y by

∑k
Ỹ = λjujvj

⊤

j=1

which is clearly of rank at most k, then it satisfies

‖Ȳ− 2Ỹ‖ ¯
F = min Y Z 2

F .
Z:rank(Z)≤k

‖ − ‖

Indeed,

‖Ȳ− Ỹ‖2F =
∑

λ2j ,
j>k

and for any matrix Z such that rank(Z) ≤ k with SVD

k

Z =
∑

µjxjyj
⊤,

j=1

where µ1 ≥ µ2 ≥ . . ., we have by Hoffman-Weilandt

‖Z − Ȳ ‖2F ≥
∑

j≥1

|λj − µj |2 ≥
∑

λ2j .
j>k
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Therefore, any minimizer of XΘ 7→ ‖Y− XΘ‖2F over matrices of rank at most
¯k can be obtained by truncating the SVD of Y at order k.

ˆ ˆOnce XΘrk has been found, one may obtain a corresponding Θrk by least
squares but this is not necessary for our results.

Remark 4.5. While the rank penalized estimator can be computed efficiently,
it is worth pointing out that a convex relaxation for the rank penalty can also

ˆbe used. The estimator by nuclear norm penalization Θ is defined to be any
solution to the minimization problem

1
min

n
‖Y− XΘ‖2F + τ

Θ∈IRd×T
‖Θ‖1

Clearly this criterion is convex

{

and it can actually be

}

implemented efficiently
using semi-definite programming. It has been popularized by matrix comple-
tion problems. Let X have the following SVD:

r

X =
∑

λjujvj
⊤ ,

j=1

with λ1 ≥ λ2 ≥ . . . ≥ λr > 0. It can be shown that for some appropriate choice
of τ , it holds

1 λ σ2 rank(Θ∗)‖Xˆ 1
Θ ‖2X

n
− Θ∗

F . d
λr n

∨ T

with probability .99. However, the proof of this result is far more involved
than a simple adaption of the proof for the Lasso estimator to the matrix case
(the readers are invited to see that for themselves). For one thing, there is no
assumption on the design matrix (such as INC for example). This result can
be found in [KLT11].

4.3 COVARIANCE MATRIX ESTIMATION

Empirical covariance matrix

Le[t X1, .]. . , Xn be n i.i.d. copies of a random vector X ∈ IRd such that
IE XX⊤ = Σ for some unknown matrix Σ ≻ 0 called covariance matrix.
This matrix contains information about the moments of order 2 of the random
vector X . A natural candidate to estimate Σ is the empirical covariance matrix
Σ̂ defined by

n
1

Σ̂ = XiX
n i

⊤ .
i=1

Using the tools of Chapter 1, we c

∑

an prove the following result.

Theorem 4.6. Let X1, . . . , Xn be n i.i.d. sub-Gaussian random vectors such
that IE[XX⊤] = Σ and X ∼ subGd(‖Σ‖op). Then

(√d+ log(1/δ) d+ log(1/δ)‖Σ̂− Σ‖op . ‖Σ‖op
n

∨
n

)
,
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with probability 1− δ.

Proof. Observe first that without loss of generality we can assume that Σ = Id.
Indeed, note that since IE XX⊤ = Σ ≻ 0, then X ∼ subGd(‖Σ‖op). Moreover,

Y = Σ−1/2X ∼ subG 1
d(1)

[

and IE

]

[Y Y ⊤] = Σ− /2ΣΣ−1/2 = Id. Therefore,

‖Σ̂− ‖ n
Σ op ‖ 1

i=1 iXn

∑
X i

⊤
=

− Σ‖op
‖Σ‖op ‖Σ‖op

‖ nΣ1/2‖op‖ 1
n

∑
i=1 YiYi

⊤ − I≤ d‖op‖Σ1/2‖op
‖Σ‖op

n
1

= ‖
n

∑
YiYi

⊤ Id op .
i=1

− ‖

Let N be a 1/4-net for Sd−1 such that |N | ≤ 12d. It follows from the proof of
Lemma 4.2 that

‖Σ̂− Id‖op ≤ ˆ2 max x⊤(Σ
x,y∈N

− Id)y

So that for any t ≥ 0, by a union bound,

(
‖ˆIP Σ− Id‖op > t

)
≤

∑
IP
(
x⊤ ˆ(Σ >

x,y

− Id)y t/2
∈N

)
. (4.6)

It holds,

∑n1ˆx⊤(Σ− Id)y =
{
(Xi

⊤x)(Xi
⊤y)− IE

[
(X⊤

n i x)(Xi
⊤y)

i=1

]}
.

Using polarization, we also have

Z2

(Xi
⊤x)(Xi

⊤y) = + − Z2
− ,

4

here Z+ = Xi
⊤(x+ y) and Z = Xi

⊤(x− y). It yields−

IE
[
exp

(
s
(
(Xi

⊤x)(Xi
⊤y)− IE

[
(Xi

⊤x)(Xi
⊤y)

= IE

]))]

[ s
exp

(
4

(
Z2
+ − IE[Z2

+]
) s− Z2 IE[Z2 ])

( 4

2

(
− − −

E x

))

≤ I
[
e p Z

]

(s
2

(
2

+ − IE[Z+]

where in the last inequality, we u

)

s

)]
IE
[
exp

( s−
2

ed Cauchy-Sc

( 1/2

Z2 ,− − IE[Z2 ]−

hwarz. Next

)

,

)]

s

)

ince X
subG

∼
d(1), we have Z+, Z ∼ subG(2), and it follows from Lemma 1.12 that−

Z2
+ − IE[Z2

+] ∼ subE(32) , and Z2
− − IE[Z2 ]− ∼ subE(32)

Therefore for any s ≤ 1/16, we have for any Z ∈ {Z+, Z−}, we have

IE
[ s 2

exp
(
2

(
Z2 − IE[Z2]

))]
≤ e128s ,
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It yields that

(Xi
⊤x)(Xi

⊤y)− IE (Xi
⊤x)(Xi

⊤y) ∼ subE(16) .

Applying now Bernstein’s inequalit

[

y (Theorem 1

]

.13), we get

n t 2 tˆIP x⊤(Σ− Id)y > t/2 ≤ exp
[
− ( ) .

2

(
32

)
∧

32

]

Together with (

(

4.6), this yields

)

ˆIP
(
‖Σ− Id‖op > t ≤ 144d exp

[ n− (
( t )2 t∧ )

]
. (4.7)

2 32 32

In particular, the right hand sid

)

e of the above inequality is at most δ ∈ (0, 1) if

t 2d 2 2d 2 1/2

≥ log(144) + log(1/δ)
32 n n

∨ log(144) + log(1/δ)
n n

This conclud

(

es our proof.

) ( )

Theorem 4.6 indicates that for fixed d, the empirical covariance matrix is a
consistent estimator of Σ (in any norm as they are all equivalent in finite dimen-
sion). However, the bound that we got is not satisfactory in high-dimensions
when d≫ n. To overcome this limitation, we can introduce sparsity as we have
done in the case of regression. The most obvious way to do so is to assume
that few of the entries of Σ are non zero and it turns out that in this case
thresholding is optimal. There is a long line of work on this subject (see for
example [CZZ10] and [CZ12]).

Once we have a good estimator of Σ, what can we do with it? The key
insight is that Σ contains information about the projection of the vector X
onto any direction u ∈ Sd−1. Indeed, we have that var(X⊤u) = u⊤Σu, which

ˆcan be readily estimated by V̂ar(X⊤u) = u⊤Σu. Observe that it follows from
Theorem 4.6

∣∣V̂ ˆar(X⊤u)−Var(X⊤u)
∣∣ =

∣∣u⊤(Σ− Σ)u

≤ ‖Σ̂− Σ‖op

∣∣

d+ log(1/δ) d+ log(1/δ)
. ‖Σ‖op

√

n
∨

n

with probability 1− δ.

( )

The above fact is useful in the Markowitz theory of portfolio section for
example [Mar52], where a portfolio of assets is a vector u ∈ IRd such that
|u|1 = 1 and the risk of a portfolio is given by the variance Var(X⊤u). The
goal is then to maximize reward subject to risk constraints. In most instances,
the empirical covariance matrix is plugged into the formula in place of Σ.
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4.4 PRINCIPAL COMPONENT ANALYSIS

Spiked covariance model

Estimating the variance in all directions is also useful for dimension reduction.
In Principal Component Analysis (PCA), the goal is to find one (or more)
directions onto which the data X1, . . . , Xn can be projected without loosing
much of its properties. There are several goals for doing this but perhaps
the most prominent ones are data visualization (in few dimensions, one can
plot and visualize the cloud of n points) and clustering (clustering is a hard
computational problem and it is therefore preferable to carry it out in lower
dimensions). An example of the output of a principal component analysis
is given in Figure 4.1. In this figure, the data has been projected onto two
orthogonal directions PC1 and PC2, that were estimated to have the most
variance (among all such orthogonal pairs). The idea is that when projected
onto such directions, points will remain far apart and a clustering pattern
will still emerge. This is the case in Figure 4.1 where the original data is
given by d = 500, 000 gene expression levels measured on n ≃ 1, 387 people.
Depicted are the projections of these 1, 387 points in two dimension. This
image has become quite popular as it shows that gene expression levels can
recover the structure induced by geographic clustering. How is it possible to
“compress” half a million dimensions into only two? The answer is that the
data is intrinsically low dimensional. In this case, a plausible assumption is
that all the 1, 387 points live close to a two-dimensional linear subspace. To see
how this assumption (in one dimension instead of two for simplicity) translates
into the structure of the covariance matrix Σ, assume that X1, . . . , Xn are
Gaussian random variables generated as follows. Fix a direction v ∈ Sd−1

and let Y1, . . . , Yn ∼ Nd(0, Id) so that v⊤Yi are i.i.d. N (0, 1). In particular,
the vectors (v⊤Y1)v, . . . , (v⊤Yn)v live in the one-dimensional space spanned by
v. If one would observe such data the problem would be easy as only two
observations would suffice to recover v. Instead, we observe X1, . . . , Xn ∈ IRd

where Xi = (v⊤Yi)v + Zi, and Z
2

i ∼ Nd(0, σ Id) are i.i.d. and independent of
the Yis, that is we add a isotropic noise to every point. If the σ is small enough,
we can hope to recover the direction v (See Figure 4.2). The covariance matrix
of Xi generated as such is given by

Σ = IE
[
XX⊤

This model is often

]
= IE

[
((v⊤Y )v + Z)((v⊤Y )v + Z)⊤ = vv⊤ + σ2Id .

called the spiked covariance model.

]

By a simple rescaling,
it is equivalent to the following definition.

Definition 4.7. A covariance matrix Σ ∈ IRd×d is said to satisfy the spiked
covariance model if it is of the form

Σ = θvv⊤ + Id ,

where θ > 0 and v ∈ Sd−1. The vector v is called the spike.
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Figure 4.1. Projection onto two dimensions of 1, 387 points from gene expression data.
Source: Gene expression blog.

v

Figure 4.2. Points are close to a one dimensional space space by v.

This model can be extended to more than one spike but this extension is
beyond the scope of these notes.

Clearly, under the spiked covariance model, v is the eigenvector of the
matrix Σ that is associated to its largest eigenvalue 1 + θ. We will refer to
this vector simply as largest eigenvector. To estimate it, a natural candidate

˜ ˜is the largest eigenvector v̂ of Σ, where Σ is any estimator of Σ. There is a
caveat: by symmetry, if u is an eigenvector, of a symmetric matrix, then −u is
also an eigenvector associated to the same eigenvalue. Therefore, we may only
estimate v up to a sign flip. To overcome this limitation, it is often useful to
describe proximity between two vectors u and v in terms of the principal angle

Courtesy of Macmillan Publishers Ltd. Used with permission.
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between their linear span. Let us recall that for two unit vectors the principal
angle between their linear spans is denoted by ∠(u, v) and defined as

∠(u, v) = arccos(|u⊤v|) .
The following result form perturbation theory is known as the Davis-Kahan
sin(θ) theorem as it bounds the sin of the principal angle between eigenspaces.
This theorem exists in much more general versions that extend beyond one-
dimensional eigenspaces.

Theorem 4.8 (Davis-Kahan sin(θ) theorem). Let Σ satisfy the spiked covari-
˜ance model and let Σ be any PSD estimator of Σ. Let ṽ denote the largest

˜eigenvector of Σ. Then we have

8
min |εṽ − v|22 ≤ ˜2 sin2

ε∈{±

(
∠(ṽ, v)

1}

)
≤ Σ Σ 2 .
θ2

‖ − ‖op

Proof. Note that for any u ∈ Sd−1, it holds under the spiked covariance model
that

u⊤Σu = 1 + θ(v⊤u)2 = 1 + θ cos2(∠(u, v)) .

Therefore,

v⊤Σv − ṽ⊤Σṽ = θ[1− cos2(∠(ṽ, v))] = θ sin2(∠(ṽ, v)) .

Next, observe that

v⊤Σv − ṽ⊤ ˜ ˜Σṽ = v⊤Σv − ṽ⊤Σṽ − v⊤ Σ− Σ v

≤ ⊤ ˜
(
˜ṽ Σṽ − ṽ⊤Σṽ − v⊤

(

Σ− Σ

)

v

= 〈Σ̂− Σ, ṽṽ⊤ − vv⊤〉

)

(4.8)

≤ ‖Σ̃− Σ‖op‖ṽṽ⊤ − vv⊤‖1 (Hölder)
√

≤ 2‖Σ̃− Σ‖op‖ṽṽ⊤ − vv⊤‖F (Cauchy-Schwarz) .

where in the first inequality, we used the fact that ṽ is the largest eigenvector
˜of Σ and in the last one, we used the fact that the matrix ṽṽ⊤ − vv⊤ has rank

at most 2.
Next, we have that

‖ṽṽ⊤ − vv⊤‖2F = 2(1− (v⊤ṽ)2) = 2 sin2(∠(ṽ, v)) .

Therefore, we have proved that

2 ∠ ≤ ‖˜θ sin ( (ṽ, v)) 2 Σ− Σ‖op sin(∠(ṽ, v)) ,
so that

2 ˜sin(∠(ṽ, v)) ≤ ‖Σ Σ
θ

− ‖op .
To conclude the proof, it remains to check that

min |εṽ − v|22 = 2− 2
ε∈{±1}

|ṽ⊤v| ≤ 2− 2(ṽ⊤v)2 = 2 sin2(∠(ṽ, v)) .
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Combined with Theorem 4.6, we immediately get the following corollary.

Corollary 4.9. Let X1, . . . , X[ n be ]n i.i.d. copies of a sub-Gaussian random
vector X ∈ IRd such that IE XX⊤ = Σ and X ∼ subGd(‖Σ‖op). Assume
further that Σ = θvv⊤ + Id satisfies the spiked covariance model. Then, the

ˆlargest eigenvector v̂ of the empirical covariance matrix Σ satisfies,

1 + θ d+ log(1/δ) d+ log(1/δ)
min |εv̂ v

ε∈{±1}
− |2 .

θ

√

n
∨

n

with probability 1

( )

− δ.

ˆThis result justifies the use of the empirical covariance matrix Σ as a re-
placement for the true covariance matrix Σ when performing PCA in low di-
mensions, that is when d ≪ n. In the high-dimensional case, where d ≫ n,
the above result is uninformative. As before, we resort to sparsity to overcome
this limitation.

Sparse PCA

In the example of Figure 4.1, it may be desirable to interpret the meaning of
the two directions denoted by PC1 and PC2. We know that they are linear
combinations of the original 500,000 gene expression levels. A natural question
to ask is whether only a subset of these genes could suffice to obtain similar
results. Such a discovery could have potential interesting scientific applications
as it would point to a few genes responsible for disparities between European
populations.

In the case of the spiked covariance model this amounts to have v to be
sparse. Beyond interpretability as we just discussed, sparsity should also lead
to statistical stability as in the case of sparse linear regression for example.
To enforce sparsity, we will assume that v in the spiked covariance model is
k-sparse: |v|0 = k. Therefore, a natural candidate to estimate v is given by v̂
defined by

v̂⊤Σ̂v̂ = max u⊤Σ̂u .
u∈ d−1

|u
S
|0=k

ˆIt is easy to check that λk ˆ
max(Σ) = v̂⊤Σv̂ is the largest of all leading eigenvalues

ˆamong all k × k sub-matrices of Σ so that the maximum is indeed attained,
ˆthough there my be several maximizers. We call λkmax(Σ) the k-sparse leading

ˆeigenvalue of Σ and v̂ a k-sparse leading eigenvector.

Theorem 4.10. Let X1, . . . ,[Xn be]n i.i.d. copies of a sub-Gaussian random
vector X ∈ IRd such that IE XX⊤ = Σ and X ∼ subGd(‖Σ‖op). Assume
further that Σ = θvv⊤ + Id satisfies the spiked covariance model for v such
that |v|0 = k ≤ d/2. Then, the k-sparse largest eigenvector v̂ of the empirical
covariance matrix satisfies,

1 + θ
√
k log(ed/k) + log(1/δ) k log(ed/k) + log(1/δ)

min |εv̂ − v
ε 1}

|2 . .
∈{± θ n

∨
n

( )
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with probability 1− δ.

Proof. We begin by obtaining an intermediate result of the Davis-Kahan sin(θ)
theorem (Theorem 4.8). Note that we get from (4.8) that

v⊤Σv − v̂⊤ ˆΣv̂ ≤ 〈Σ− Σ, v̂v̂⊤ − vv⊤〉

Since both v̂ and v are k sparse, there exists a (random) set S ⊂ {1, . . . , d}
such that |S| ≤ 2k and {v̂v̂⊤ − vv⊤}ij = 0 if (i, j) ∈/ S2. It yields

〈Σ̂− Σ, v̂v̂⊤ − ⊤〉 〈ˆvv = Σ(S)− Σ(S), v̂(S)v̂(S)⊤ − v(S)v(S)⊤〉

Where for any d×d matrix M , we defined the matrix M(S) to be the |S|× |S|
sub-matrix of M with rows and columns indexed by S and for any vector
x ∈ IRd, x(S) ∈ IR|S| denotes the sub-vector of x with coordinates indexed by
S. It yields, by Hölder’s inequality that

v⊤Σv − ˆv̂⊤Σv̂ ≤ ‖Σ(S)− Σ(S)‖op‖v̂(S)v̂(S)⊤ − v(S)v(S)⊤‖1 .

Following the same steps as in the proof of Theorem 4.8, we get now that

8 ˆmin |εv̂ − v|22 ≤ 2 sin2
(
∠(v̂, v)

)
≤ sup ‖Σ(S)− Σ(S)‖op .

ε∈{±1} θ2 S : |S|=2k

ˆTo conclude the proof, it remains to control supS : S =2k ‖Σ(S)| | − Σ(S)‖op. To
that end, observe that

IP
[

ˆsup Σ(S) Σ(S) op > t Σ op
S : |S|=2k

‖ − ‖ ‖ ‖
]

≤
∑

IP
[

sup ‖Σ̂(S)− Σ(S) op > t Σ(S) op
S : S =2k

‖ ‖ ‖
S : S

||=2k
||

]

(
d
)

2k
[ n ( t 2 t≤ 144 exp − ( ) .

2k 2 32

)
∧
32

]

where we used (4.7) in the second inequality. Using Lemma 2.7, we get that
the right-hand side above is further bounded by

[ n ( t )2 t ed
exp − ( ∧ ) + 2k log(144) + k log

2 32 32 2k

Choosing now t such that

( )]

k log(ed/k) + log(1/δ) k log(ed/k) + log(1/δ)
t ≥ C

√

n
∨ ,

n

for large enough C ensures that the desired bound holds with probability at
least 1− δ.
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4.5 PROBLEM SET

Problem 4.1. Using the results of Chapter 2, show that the following holds
for the multivariate regression model (4.1).

ˆ1. There exists an estimator Θ ∈ IRd×T such that

1 T
XΘ̂ XΘ∗ 2 . σ2 r

n
‖ − ‖F n

with probability .99, where r denotes the rank of X .

ˆ2. There exists an estimator Θ ∈ IRd×T such that

1 ‖ Θ̂− Θ∗‖2 . σ2 )
X X

|Θ∗|0 log(ed
n F .

n

with probability .99.

Problem 4.2. Consider the multivariate regression model (4.1) where Y has
SVD:

Y =
∑

λ̂j ûj v̂j
⊤ .

j

Let M be defined by

M̂ =
∑

ˆ ˆλj1I(|λj | > 2τ)ûj v̂j
⊤ , τ > 0 .

j

1. Show that there exists a choice of τ such that

1 σ2 rank(Θ∗)
n
‖M̂ − ∗ 2XΘ ‖F . (d

n
∨ T )

with probability .99.

ˆ ˆ2. Show that there exists a matrix n×n matrix P such that PM = XΘ for
ˆsome estimator Θ and

1 2 σ2 rank(Θ∗)‖XΘ̂− XΘ∗‖F . (d
n n

∨ T )

with probability .99.

3. Comment on the above results in light of the results obtain in Section 4.2.

Problem 4.3. ˆConsider the multivariate regression model (4.1) and define Θ
be the any solution to the minimization problem

1
min

Θ∈IRd×T

{
n
‖ − 2Y XΘ‖F + τ‖XΘ‖1

}
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1. Show that there exists a choice of τ such that

1 σ2
2 rank(Θ∗)‖XΘ̂− XΘ∗‖F . (d ∨ T )

n n

with probability .99.

[Hint:Consider the matrix

∑ λ̂j + λ∗j
ûj v̂j

⊤
2

j

where λ∗1 ≥ λ∗2 ≥ ˆ. . . and λ1 ≥ λ̂2 ≥ . . . are the singular values

of XΘ∗ and Y respectively and the SVD of Y is given by

Y
∑

ˆ= λj ûj v̂j
⊤

j

ˆ2. Find a closed form for XΘ.
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5
Minimax Lower Bounds

In the previous chapters, we have proved several upper bounds and the goal of
this chapter is to assess their optimality. Specifically, our goal is to answer the
following questions:

1. Can our analysis be improved? In other words: do the estimators that
we have studied actually satisfy better bounds?

2. Can any estimator improve upon these bounds?

Both questions ask about some form of optimality. The first one is about
optimality of an estimator, whereas the second one is about optimality of a
bound.

The difficulty of these questions varies depending on whether we are looking
for a positive or a negative answer. Indeed, a positive answer to these questions
simply consists in finding a better proof for the estimator we have studied
(question 1.) or simply finding a better estimator, together with a proof that
it performs better (question 2.). A negative answer is much more arduous.
For example, in question 2., it is a statement about all estimators. How can
this be done? The answer lies in information theory (see [CT06] for a nice
introduction).

In this chapter, we will see how to give a negative answer to question 2. It
will imply a negative answer to question 1.

101
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Θ φ(Θ) Estimator Result

IRd
σ2d

θ̂ls Theorem 2.2
n

B1 σ

√
log d

θ̂ls Theorem 2.4
n B1

σ2kB ˆ(k) log(ed/k) θls0 Corollaries 2.8-2.9
n B0(k)

Table 5.1. Rate φ(Θ) obtained for different choices of Θ.

5.1 OPTIMALITY IN A MINIMAX SENSE

Consider the Gaussian Sequence Model (GSM) where we observe Y =
(Y1, . . . , Yd)

⊤, defined by

Yi = θi
∗ + εi , i = 1, . . . , d , (5.1)

where ε = (ε , . . . , ε )⊤ ∼ N (0, σ
2

1 d d Id), θ
∗ = (θ1

∗, . . . , θd
∗)⊤ ∈ Θ is the parametern

of interest and Θ ⊂ IRd is a given set of parameters. We will need a more precise
notation for probabilities and expectations throughout this chapter. Denote by
IPθ∗ and IEθ∗ the probability measure and corresponding expectation that are
associated to the distribution of Y from the GSM (5.1).

Recall that GSM is a special case of the linear regression model when the
design matrix satisfies the ORT condition. In this case, we have proved several
performance guarantees (upper bounds) for various choices of Θ that can be
expressed either in the form

IE |θ̂ 2
n − θ∗|2 ≤ Cφ(Θ) (5.2)

or the form

[ ]

|θ̂ − θ∗|2 ≤ Cφ(Θ) , with prob. 1− d−2
n 2 (5.3)

For some constant C. The rates φ(Θ) for different choices of Θ that we have
obtained are gathered in Table 5.1 together with the estimator (and the corre-
sponding result from Chapter 2) that was employed to obtain this rate. Can
any of these results be improved? In other words, does there exists another

˜ ˜estimator θ such that supθ∗ Θ IE θ∈ | − θ∗|22 ≪ φ(Θ)?
A first step in this direction is the Cramér-Rao lower bound [Sha03] that

allows us to prove lower bounds in terms of the Fisher information. Neverthe-
less, this notion of optimality is too stringent and often leads to nonexistence
of optimal estimators. Rather, we prefer here the notion of minimax optimality
that characterizes how fast θ∗ can be estimated uniformly over Θ.
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Definition 5.1. ˆWe say that an estimator θn is minimax optimal over Θ if it
satisfies (5.2) and there exists C′ > 0 such that

inf sup IE
[
φ−1 ˆ

θ (Θ)
θ̂ θ∈Θ

|θ − θ|22
]
≥ C′ (5.4)

where the infimum is taker over all estimators (i.e., measurable functions of
Y). Moreover, φ(Θ) is called minimax rate of estimation over Θ.

Note that minimax rates of convergence φ are defined up to multiplicative
constants. We may then choose this constant such that the minimax rate has
a simple form such as σ2d/n as opposed to 7σ2d/n for example.

This definition can be adapted to rates that hold with high probability. As
we saw in Chapter 2 (Cf. Table 5.1), the upper bounds in expectation and those
with high probability are of the same order of magnitude. It is also the case
for lower bounds. Indeed, observe that it follows from the Markov inequality
that for any A > 0,

ˆ ˆIE
[

2
θ φ

−1(Θ)|θ − θ|2
]
≥ AIPθ

[
φ−1(Θ)|θ − θ|22 > A (5.5)

Therefore, (5.6) follows if we prove that

]

inf sup IP θ − θ|2θ |ˆ 2 > Aφ(Θ)
θ̂ θ∈Θ

≥ C”

for some positive constantsA an

[

d C”. The above in

]

equality also implies a lower
bound with high probability. We can therefore employ the following alternate
definition for minimax optimality.

Definition 5.2. ˆWe say that an estimator θ is minimax optimal over Θ if it
satisfies either (5.2) or (5.3) and there exists C′ > 0 such that

ˆinf sup IPθ
[
|θ − θ|22 > φ(Θ)

]
≥ C′ (5.6)

θ̂ θ∈Θ

where the infimum is taker over all estimators (i.e., measurable functions of
Y). Moreover, φ(Θ) is called minimax rate of estimation over Θ.

5.2 REDUCTION TO FINITE HYPOTHESIS TESTING

Minimax lower bounds rely on information theory and follow from a simple
principle: if the number of observations is too small, it may be hard to distin-
guish between two probability distributions that are close to each other. For
example, given n i.i.d. observations, it is impossible to reliably decide whether
they are drawn from N (0, 1) or N ( 1 , 1). This simple argument can be maden
precise using the formalism of statistical hypothesis testing. To do so, we reduce
our estimation problem to a testing problem. The reduction consists of two
steps.
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1. Reduction to a finite number of hypotheses. In this step the goal is
to find the largest possible number of hypotheses θ1, . . . , θM ∈ Θ under
the constraint that

|θj − θk|22 ≥ 4φ(Θ) . (5.7)

This problem boils down to a packing of the set Θ.

Then we can use the following trivial observations:
[
|ˆ− ˆinf sup IPθ θ θ|22 > φ(Θ)

]
≥ inf max IP 2

θ θ θj 2 > φ(Θ) .
θ̂ θ∈ ˆ 1Θ θ ≤j≤ j

M

[
| − |

]

2. Reduction to a testing problem. In this second step, the necessity
of the constraint (5.7) becomes apparent.

ˆ ˆFor any estimator θ, define the minimum distance test ψ(θ) that is asso-
ciated to it by

ˆ ˆψ(θ) = argmin θ θj 2 ,
1≤j M

| − |
≤

with ties broken arbitrarily.

ˆNext observe that if, for some j = 1, . . . ,M , ψ(θ) = j, then there exists
ˆ ˆk = j such that |θ − θk|2 ≤ |θ − θj |2. Together with the reverse triangle

inequality it yields

|ˆ− | ≥ | − | − |ˆ− | ≥ | − | ˆθ θj 2 θj θk 2 θ θk 2 θj θk 2 − |θ − θj |2
so that

1|θ̂ − θj |2 ≥
2
|θj − θk|2

Together with constraint (5.7), it yields

|θ̂ − θj |22 ≥ φ(Θ)

As a result,

inf max IPθ
ˆ 1θ ≤j≤ j

M

[
|θ̂ − θj |22 > φ(Θ)

]
≥ ˆinf max IPθ (

ˆ 1≤ ≤ j ψ θ) = j
j Mθ

≥ inf max IPθ

[ ]

ψ 1≤j≤ j ψ = j
M

where the infimum is taken over all tests based on Y and

[

that t

]

ake values
in {1, . . . ,M}.

Conclusion: it is sufficient for proving lower bounds to find θ1, . . . , θM
2

∈ Θ
such that |θj − θk|2 ≥ 4φ(Θ) and

inf max IPθj ψ = j C
ψ 1≤j≤M

≥ ′ .

The above quantity is called minimax p

[

robabili

]

ty of error. In the next sections,
we show how it can be bounded from below using arguments from information
theory. For the purpose of illustration, we begin with the simple case where
M = 2 in the next section.

6
6

6

6

6
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5.3 LOWER BOUNDS BASED ON TWO HYPOTHESES

The Neyman-Pearson Lemma and the total variation distance

Consider two probability measures IP0 and IP1 and observations X drawn from
either IP0 or IP1. We want to know which distribution X comes from. It
corresponds to the following statistical hypothesis problem:

H0 : Z ∼ IP0

H1 : Z ∼ IP1

A test ψ = ψ(Z) ∈ {0, 1} indicates which hypothesis should be true. Any
test ψ can make two types of errors. It can commit either an error of type I
(ψ = 1 whereas Z ∼ IP0) or an error of type II (ψ = 0 whereas Z ∼ IP1). Of
course, the test may also be correct. The following fundamental result, called
the Neyman Pearson Lemma indicates that any test ψ is bound to commit one
of these two types of error with positive probability unless IP0 and IP1 have
essentially disjoint support.

Let ν be a sigma finite measure satisfying IP0 ≪ ν and IP1 ≪ ν. For example
we can take ν = IP0+IP1. It follows from the Radon-Nikodym theorem [Bil95]
that both IP0 and IP1 admit probability densities with respect to ν. We denote
them by p0 and p1 respectively. For any function f , we write for simplicity

∫
f =

∫
f(x)ν(dx)

Lemma 5.3 (Neyman-Pearson). Let IP0 and IP1 be two probability measures.
Then for any test ψ, it holds

IP0(ψ = 1) + IP1(ψ = 0) ≥
∫

min(p0, p1)

Moreover, equality holds for the Likelihood Ratio test ψ⋆ = 1I(p1 ≥ p0).

Proof. Observe first that

IP0(ψ
⋆ = 1) + IP1(ψ

⋆ = 0) =

∫
p0 + p1

∫ψ∗=1

∫

ψ∗=0

= p0 +

∫
p1

p1≥p0 p1<p0

=

∫
min(p0, p1) +

p1≥p0

∫
min(p0, p1)

∫ p1<p0

= min(p0, p1) .
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Next for any test ψ, define its rejection region R = {ψ = 1}. Let R⋆ = {p1 ≥
p0} denote the rejection region of the likelihood ration test ψ⋆. It holds

IP0(ψ = 1) + IP1(ψ = 0) = 1 +

=

I∫P0(R)− IP1(R)

1 + p0 p
R

− 1

= 1 +

∫
p0 − p1 +

∫
p0

R R⋆ R (R⋆)c
− p1

∫ ∩ ∩

= 1− p0 p1 + p0 p1

∫R∩R⋆

| − |
∫

R

|
∩(R⋆)c

− |

= 1 + |p0 − p1|
[
1I(R ∩ (R⋆)c)− 1I(R ∩R⋆)

The above quantity is clearly minimized for R = R⋆.

]

The lower bound in the Neyman-Pearson lemma is related to a well known
quantity: the total variation distance.

Definition-Proposition 5.4. The total variation distance between two prob-
ability measures IP0 and IP1 on a measurable space (X ,A) is defined by

TV(IP0, IP1) = sup |IP0(R)− IP1(R)
R

| (i)
∈A

= sup
R∈A
1

∣∣
∫ ∣
∣ p0 − p1 (ii)
R

=

∫
|p0

∣

2
− p1|

∣

(iii)

= 1−
∫

min(p0, p1) (iv)

= 1− inf IP0(ψ = 1) + IP1(ψ = 0) (v)
ψ

where the infimum above is tak

[

en over all tests.

]

Proof. Clearly (i) = (ii) and the Neyman-Pearson Lemma gives (iv) = (v).
Moreover, by identifying a test ψ to its rejection region, it is not hard to see
that (i) = (v). Therefore it remains only to show that (iii) is equal to any
of the other expressions. Hereafter, we show that (iii) = (iv). To that end,
observe th∫at

|p0 − p1| =
∫

p1 − p0 + p0 p1

∫p1≥p0

∫

∫ p1<p0

−

= p1 + p0 −
∫

min(p0, p1)
p1≥∫p0 p1<p0

= 1− p1 + 1−
∫

p0 −
∫

min(p0, p1)
p1<p0 p1≥p0

= 2− 2

∫
min(p0, p1)
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In view of the Neyman-Pearson lemma, it is clear that if we want to prove
large lower bounds, we need to find probability distributions that are close in
total variation. Yet, this conflicts with constraint (5.7) and a tradeoff needs to
be achieved. To that end, in the Gaussian sequence model, we need to be able

2 2

to compute the total variation distance between N (θ0,
σ Id) andn N (θ1,

σ Id).n
None of the expression in Definition-Proposition 5.4 gives an easy way to do
so. The Kullback-Leibler divergence is much more convenient.

The Kullback-Leibler divergence

Definition 5.5. The Kullback-Leibler divergence between probability mea-
sures IP1 and IP0 is given by




∫
dIP1

log
( )

dIP1 , if IP
(

≪ IP
IP , IP ) = 1 0KL 1 0 dIP0

∞ , otherwise .

It can be shown [Tsy09] t



hat the integral is always well defined when IP1 ≪
IP0 (though it can be equal to ∞ even in this case). Unlike the total variation
distance, the Kullback-Leibler divergence is not a distance. Actually, it is not
even symmetric. Nevertheless, it enjoys properties that are very useful for our
purposes.

Proposition 5.6. Let IP and Q be two probability measures. Then

1. KL(IP,Q) ≥ 0

2. If IP and Q are product measures, i.e.,

n n

IP =
⊗

IPi and Q = Qi
i=1

⊗

i=1

then
n

KL(IP,Q) =
∑

KL(IPi,Qi) .
i=1

Proof. If IP is not absolutely continuous then the result is trivial. Next, assume
that IP ≪ Q and let X ∼ IP.

1. Observe that by Jensen’s inequality,

dQ dQ
KL(IP,Q) = −IE log

(
(X)

)
≥ − log IE

(
(X)

dIP dIP

)
= − log(1) = 0 .
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2. Note that if X = (X1, . . . , Xn),

KL(IP,Q) = IE log

n

(dIP
(X)

∫
dQ

∑ (dIPi

)

= log (Xi)
)
dIP1(X1) dIPn(Xn)

dQii=1

· · ·

=
∑n dIPi

log (Xi) dIPi(Xi)
dQii=1

∫

∑n

( )

= KL(IPi,Qi)
i=1

Point 2. in Proposition 5.6 is particularly useful in statistics where obser-
vations typically consist of n independent random variables.

Example 5.7. For any θ ∈ IRd, let Pθ denote the distribution of Y ∼
N (θ, σ2Id). Then

d
(θ 2 2
i θ

K (P i
′) θ θ′ 2L θ, Pθ′) =

∑ −
=

| − |
.

2σ2 2σ2
i=1

The proof is left as an exercise (see Problem 5.1).

The Kullback-Leibler divergence is easier to manipulate than the total vari-
ation distance but only the latter is related to the minimax probability of error.
Fortunately, these two quantities can be compared using Pinsker’s inequality.
We prove here a slightly weaker version of Pinsker’s inequality that will be
sufficient for our purpose. For a stronger statement, see [Tsy09], Lemma 2.5.

Lemma 5.8 (Pinsker’s inequality.). Let IP and Q be two probability measures
such that IP ≪ Q. Then

TV(IP,Q) ≤
√
KL(IP,Q) .
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Proof. Note that

KL(IP,Q) =

∫
p

p log
pq>0

(
q

)

= −2

∫
q

p log
(√ )

= −2

∫pq>0 p

q
p log + 1

∫pq>0 p
− 1

[√q

([√ ] )

≥ −2 p − 1
]

(by Jensen)
p∫q>0 p

= 2− 2
√
pq

Next, note that

(∫ √
pq
)2

=
( ∫ √ 2

max(p, q)min(p, q)
)

≤
∫

max(p, q)

∫
min(p, q) (by Cauchy-Schwarz)

=

=

[
2−

∫
min(p, q)

1 + TV(IP,Q)

]
min(p, q)

( )(
1

∫

− TV(IP,Q)

= 1− TV(IP,Q)2

)

The two displays yield

KL(IP,Q) ≥ 2− 2
√
1− TV(IP, )2 ≥ TV(IP, )2Q Q ,

where we used the fact that 0 TV(IP,Q) 1 and
√

≤ ≤ 1− x ≤ 1 − x/2 for
x ∈ [0, 1].

Pinsker’s inequality yields the following theorem for the GSM.

Theorem 5.9. Assume that Θ contains two hypotheses θ0 and θ1 such that
|θ0 − θ1|22 = 8α2σ2/n for some α ∈ (0, 1/2). Then

2 2ασ2 1ˆinf sup IPθ( θ θ 2 ) α .
θ̂ θ Θ

| − | ≥
n

≥
2
−

∈

Proof. Write for simplicity IPj = IPθj , j = 0, 1. Recall that it follows from the



5.4. Lower bounds based on many hypotheses 110

reduction to hypothesis testing that

2ασ2
ˆinf sup IPθ(|θ − θ|22 ≥ ) ≥ inf max IPj(ψ = j)

θ̂ θ Θ n∈ ψ j=0,1

1≥ inf
(
IP0(ψ = 1) + IP1(ψ = 0)

2 ψ

1

)

=
[
1− TV(IP0, IP1)

]
(Prop.-def. 5.4)

2
1≥
[
1−

√
KL(IP1, IP0)

]
(Lemma 5.8)

2

1[
√
n|θ1 − θ 2

0
= 1

|− 2
]

(Example 5.7)
2 2σ2

1
= 1 2α

2

[
−

]

Clearly the result of Theorem 5.9 matches the upper bound for Θ = IRd

only for d = 1. How about larger d? A quick inspection of our proof shows
that our technique, in its present state, cannot yield better results. Indeed,
there are only two known candidates for the choice of θ∗. With this knowledge,
one can obtain upper bounds that do not depend on d by simply projecting
Y onto the linear span of θ0, θ1 and then solving the GSM in two dimensions.
To obtain larger lower bounds, we need to use more than two hypotheses. In
particular, in view of the above discussion, we need a set of hypotheses that
spans a linear space of dimension proportional to d. In principle, we should
need at least order d hypotheses but we will actually need much more.

5.4 LOWER BOUNDS BASED ON MANY HYPOTHESES

The reduction to hypothesis testing from Section 5.2 allows us to use more
than two hypotheses. Specifically, we should find θ1, . . . , θM such that

inf max IPθj ψ = j C ′ ,
ψ 1≤j≤M

≥

for some positive constant C′. Unfortun

[

ately,

]

the Neyman-Pearson Lemma no
longer exists for more than two hypotheses. Nevertheless, it is possible to relate
the minimax probability of error directly to the Kullback-Leibler divergence,
without involving the total variation distance. This is possible using a well
known result from information theory called Fano’s inequality. We use it in a
form that is tailored to our purposes and that is due to Lucien Birgé [Bir83]
and builds upon an original result in [IH81].

Theorem 5.10 (Fano’s inequality). Let P1, . . . , PM ,M ≥ 2 be probability dis-
tributions such that Pj ≪ Pk, ∀ j, k. Then

[ ] 1
∑M

2 KL
≥ − M j,k=1 (Pj , Pk) + log 2

inf max Pj ψ(X) = j 1
ψ 1≤j≤M log(M − 1)

6

6

6
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where the infimum is taken over all tests with values in {1, . . . ,M}.

Proof. Let Z ∈ {1, . . . ,M} be a random variable such that IP(Z = i) = 1/M
and let X ∼ PZ . Note that PZ is a mixture distribution so that for any measure
ν such that PZ ≪ ν, we have

M
dPZ 1

=
dν M

∑ dPj
.

dν
j=1

For all test ψ, we have

∑M
IP(Z = j|X) log[IP(Z = j ]

=1

|X) =
j

= IP(Z = ψ(X)|X) log[IP(Z = ψ(X)|X)] +
∑

IP(Z = j|X) log[IP(Z = j|X)]
j=ψ(X)

= (1− IP(Z = ψ(X)|X)) log[1− IP(Z = ψ(X)|X)]
∑ IP(Z = j

X
|X) IP(Z = j X)

+ IP(Z = ψ(X)| ) log
|

IP(Z = ψ(X)|X)

[
IP(Z = ψ(X)|X)

j=ψ(X)

]

+ IP(Z = ψ(X)|X) log[IP(Z = ψ(X)|X)]

= h(IP(Z = ψ(X)|X)) + IP(Z = ψ(X)|X)

j=

∑
qj log(qj) ,

ψ(X)

where
h(x) = x log(x) + (1− x) log(1− x)

and
IP(Z = j

qj =
|X)

IP(Z = ψ(X)|X)

is such that qj ≥ 0 and
∑

j=ψ(X) qj = 1. It implies by Jensen’s inequality that

∑ 1 qj
qj log(qj) = −

∑
qj log

( )
≥ − log

( ∑ )
= − log(M − 1) .

qj qj
j=ψ(X) j=ψ(X) j=ψ(X)

By the same convexity argument, we get h(x) ≥ − log 2. It yields

∑M
IP(Z = j|X) log[IP(Z = j|X)] ≥ − log 2− IP(Z = ψ(X)|X) log(M )

j=

− 1 .
1

(5.8)
Next, observe that since X ∼ PZ , the random variable IP(Z = j|X) satisfies

1 dPj dPj(X)
IP(Z = j|X) = (X) =

M dPZ
∑M
k=1 dPk(X)

6

6 6

6
6

6 6

6 6
6 6

6

6

6

6 6 6

6
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It implies

∫ {∑M
IP(Z = j|X = x) log[IP(Z = j|X = x)]

}
dPZ(x)

j=1

M

=
∑∫ { 1 dPj

(x) log
( 1 dPj

(x)
)}

dPZ(x)
M dPZ M dPZ

j=1

M
1 ∑∫ (

∑
dPj(x)

= log dPj(x)
M M

j=1 k=1 dPk(x)

)

M
1≤

∑ ∫
log

(dPj(x)
)
dPj(x)− logM (by Jensen)

M2 dPk(x)
j,k=1

M
1

=
∑

KL(Pj , Pk)
M2

j,k=1

− logM ,

Together with (5.8), it yields

M
1 ∑

KL(Pj , Pk)− logM ≥ − log 2− IP(Z = ψ(X)) log(M )
M2

j,k=

− 1
1

Since

M
1

IP(Z = ψ(X)) =
∑

Pj(ψ(X) = j) ≤ max Pj(ψ(X) = j) ,
M 1 j

j=1
≤ ≤M

this implies the desired result.

Fano’s inequality leads to the following useful theorem.

Theorem 5.11. Assume that Θ contains M ≥ 5 hypotheses θ1, . . . , θM such
that for some constant 0 < α < 1/4, it holds

(i) |θj − θk|22 ≥ 4φ

(ii) |θ 2 2ασ2

j − θk|2 ≤ log(M)
n

Then
ˆinf sup IPθ θ θ 2 1

2 φ 2α .
θ̂ θ

| − ≥ ≥
2
−

∈Θ
|

Proof. in view of (i), it follows

(

from the red

)

uction to hypothesis testing that
it is sufficient to prove that

1
inf max IPθ

1≤j≤ j
M

[
ψ = j

ψ

]
≥

2
− 2α

6

6 6 6

6
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If follows from (ii) and Example 5.7 that

n θ 2
j θk

KL(IPj , IP
2

k) =
| − |
2σ2

≤ α log(M) .

Moreover, since M ≥ 5,

1 ∑M
2 KLj,k=1 (IPj , IPk) + log 2M α log(M) + log 2 1

2α+ .
log(M 1)

≤
lo

≤− g(M − 1) 2

The proof then follows from Fano’s inequality.

2

Theorem 5.11 indicates that we must take φ ≤ ασ log(M). Therefore, the2n
larger the M , the larger the lower bound can be. However, M cannot be ar-
bitrary larger because of the constraint (i). We are therefore facing a packing
problem w√here the goal is to “pack” as many Euclidean balls of radius propor-
tional to σ log(M)/n in Θ under the constraint that their centers remain close
together (constraint (√ii)). If Θ = IRd, this the goal is to pack the Euclidean
ball of radius R = σ 2α log(M)/n with Euclidean balls of radius R

√
2α/γ.

This can be done using a volume argument (see Problem 5.3). However, we
will use the more versatile lemma below. It gives a a lower bound on the size
of a packing of the discrete hypercube {0, 1}d with respect to the Hamming
distance defined by

d

ρ(ω, ω′) =
∑

1I(ωi = ωj
′ ) , ∀ω, ω′

i=1

∈ {0, 1}d

Lemma 5.12 (Varshamov-Gilbert). For any γ ∈ (0, 1/2), there exist binary
vectors ω1, . . . ωM ∈ {0, 1}d such that

(1
(i) ρ(ωj , ωk) ≥ γ d for all j = k ,

2
−

2

⌊ 2 ⌋ ≥ γ d

( γ

)

ii) M = e d e 2 .

Proof. Let ωj,i, 1 ≤ i ≤ d, 1 ≤ j ≤ M to be i.i.d Bernoulli random variables
with parameter 1/2 and observe that

d− ρ(ωj , ωk) = X ∼ Bin(d, 1/2) .

Therefore it follows from a union bound that

1 M(M 1) d
IP
[
∃j = k , ρ(ωj , ωk) <

(
− γ

)
d
] −≤ IP

(
X − > γd .

2 2 2

Hoeffding’s inequality then yields

)

M(M − 1)
IP

2

( d ) (
2

(M(M 1)
X − > γd ≤ exp 2γ d+ log

−
1

2
−

2

))
<

6

6

6
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as soon as
M(M − 1) < 2 exp 2γ2d

2

A sufficient condition for the above inequality

(

to ho

)

ld is to take M = ⌊eγ d

2γ d

⌋ ≥
e 2 . For this value of M , we have

IP
( 1∀j = k , ρ(ωj , ωk) ≥ − γ d > 0

2

and by virtue of the probabilistic method, t

(

here ex

)

ist

)

ω , . . . ω ∈ {0, 1}d1 M that
satisfy (i) and (ii)

5.5 APPLICATION TO THE GAUSSIAN SEQUENCE MODEL

We are now in a position to apply Theorem 5.11 by choosing θ1, . . . , θM
based on ω1, . . . , ωM from the Varshamov-Gilbert Lemma.

Lower bounds for estimation

Take γ = 1/4 and apply the Varshamov-Gilbert Lemma to obtain ω1, . . . , ωM
with M = ⌊ed/16⌋ ≥ ed/32 and such that ρ(ωj , ωk) ≥ d/4 for all j = k. Let
θ1, . . . , θM be such that

βσ
θj = ωj√ ,

n

for some β > 0 to be chosen later. We can check the conditions of Theorem 5.11:

β2σ2 β2σ2d
(i) |θ 2

j − θk|2 = ρ(ωj , ωk) 4
n

≥
16n

β2σ2 β2σ2d 32β2σ2 2ασ2

(ii) |θj − θk|22 = ρ(ωj , ωk) ≤ ≤ log(M) = log(M) ,
n n n n

√
for β = α . Applying now Theorem 5.11 yields4

(
2 α σ2d 1ˆinf sup IPθ θ θ 2 2α .

θ̂ θ IRd

| − | ≥
256 n∈

)
≥

2
−

It implies the following corollary.

Corollary 5.13. The minimax rate of estimation of over IRd in the Gaussian
sequence model is φ(IRd) = σ2d/n. Moreover, it is attained by the least squares

ˆestimator θls = Y.

Note that this rate is minimax over sets Θ that are strictly smaller than IRd

(see Problem 5.4). Indeed, it is minimax over any subset of IRd that contains
θ1, . . . , θM .

6

6
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Lower bounds for sparse estimation

It appears from Table 5.1 that when estimating sparse vectors, we have to pay
for an extra logarithmic term log(ed/k) for not knowing the sparsity pattern
of the unknown θ∗. In this section, we show that this term is unavoidable as
it appears in the minimax optimal rate of estimation of sparse vectors.

Note that the vectors θ1, . . . , θM employed in the previous subsection are
not guaranteed to be sparse because the vectors ω1, . . . , ωM obtained from the
Varshamov-Gilbert Lemma may themselves not be sparse. To overcome this
limitation, we need a sparse version of the Varhsamov-Gilbert lemma.

Lemma 5.14 (Sparse Varshamov-Gilbert). There exist positive constants C1

and C2 such that the following holds for any two integers k and d such that
1 ≤ k ≤ d/8. There exist binary vectors ω1, . . . ωM ∈ {0, 1}d such that

k
(i) ρ(ωi, ωj) ≥ for all i = j ,

2

k d
(ii) log(M) ≥ log(1 + ) .

8 2k

(iii) |ωj |0 = k for all j .

Proof. Take ω1, . . . , ωM independently and uniformly at random from the set

C0(k) = {ω ∈ {0, 1}d : |ω|0 = k} ,

of k-sparse binary random vectors. Note that C0(k) has cardinality d . Tok
choose ωj uniformly from C0(k), we proceed as follows. Let U1, . . . , Uk ∈
{1, . . . , d} be k random variables such that U1 is drawn uniformly at

(

ra

)

ndom
from {1, . . . , d} and for any i = 2, . . . , k, conditionally on U1, . . . , Ui 1, the ran-−
dom variable Ui is drawn uniformly at random from {1, . . . , d}\{U1, . . . , Ui−1}.
Then define

{
1 if i ∈ {U1, . . . , Uω = k}
0 otherwise .

Clearly, all outcomes in C0(k) are equally likely under this distribution and
therefore, ω is uniformly distributed on C0(k). Observe that

k
I
( 1

P ∃ωj = ωk : ρ(ωj , ωk) < k
)
=

∑
( ) IP

(
∃ωj = x : ρ(ωj , x) <d 2

k x∈{0,1}d

|x|0=k

)

1≤
∑ ∑M

( ) IP
( k
ωj = x : ρ(ωj , x) <d

k x∈{0,1}d
2

j=1

|x|0=k

)

=M IP
( k
ω = x0 : ρ(ω, x0) <

2

)

6

6 6

6

6
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where ω has the same distribution as ω1 and x0 is any k-sparse vector in
{0, 1}d. The last equality holds by symmetry since (i) all the ωjs have the
same distribution and (ii) all the outcomes of ωj are equally likely.

Note that
k

ρ(ω, x0) ≥ k −
∑

Zi ,
i=1

where Zi = 1I(Ui ∈ supp(x0)). Indeed the left hand side is the number of
coordinates on which the vectors ω, x0 disagree and the right hand side is
the number of coordinates in supp(x0) on which the two vectors disagree. In
particular, we have that, Z1 ∼ Ber(k/d) and for any i = 2, . . . , d, conditionally
on Z1, . . . , Zi i, we have Zi ∼ Ber(Qi), where−

−∑i−1k l
Qi =

l=1 Z k 2k

p− (i− 1)
≤
d− k

≤
d

since k ≤ d/2.
Next we apply a Chernoff bound to get that for any s > 0,

( k k
k k sk

IP ω = x0 : ρ(ω, x0) < IP Zi > = IE exp s Zi e− 2

2

)
≤

(∑
2

i=1

) [ ( ∑

i=1

)]

The above MGF can be controlled by induction on k as follows:

[ ( ∑k k−1

IE exp s Zi
)]

= IE
[
exp

(
s
∑

Zi
)
IE exp

(
sZk

=1 i=1

k

∣∣Z1, . . . , Zk=1

i

)]

= IE
[
exp

(
s Zi (Q (esk 1) + 1)
i=1

−

[ ( k

∑−1

1

) ]

−
2k≤ IE exp s

∑
Zi

)](
(es − 1) + 1

d
i=1

..

)

.

≤
(2k

(es
d

− 1) + 1
)k

= 2k

6
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For s = log(1 + d ). Putting everything together, we get2k

IP
( sk∃ωj = ωk : ρ(ωj, ωk) < k

)
≤ exp

(
logM + k log 2−

2
k

= exp logM + k log 2 lo

)

k
e

( d− g(1 + )
2 2k

≤ xp
( d
logM + k log 2− log(1 + )

)

( 2 2k
k d

e

)

≤ xp logM − log(1 + )
)

(for d ≥ 8k)
4 2k

< 1 .

If we take M such that

k d
logM < log(1 + )

4 2k

Apply the sparse Varshamov-Gilbert lemma to obtain ω1, . . . , ωM with
log(M) ≥ k log(1 + d ) and such that ρ(ωj , ωk)8 2k ≥ k/2 for all j = k. Let
θ1, . . . , θM be such that

βσ d
θj = ωj√

√
log(1 + ) ,

n 2k

for some β > 0 to be chosen later. We can check the conditions of Theorem 5.11:

2 2 2 2

(i) |θ − θ |2 β σ d β σ d
j k 2 = ρ(ωj , ωk) log(1 + )

2k
≥ 4 k log(1 + )

n 8n 2k

β2σ2 d 2kβ2σ2
2 d 2ασ2

(ii) |θj−θk|2 = ρ(ωj , ωk) log(1+ ) ≤ log(1+ )
n 2k

≤ log(M) ,
n 2k n

for β =
√

α . Applying now Theorem 5.11 yields8

( α2σ2
2 d 1ˆinf sup IPθ |θ − θ|2 ≥ k log(1 + ) 2α .

θ̂ θ∈IRd 64n 2k
≥

2
−

|θ|0≤k

)

It implies the following corollary.

Corollary 5.15. Recall that B d
0(k) ⊂ IR denotes the set of all k-sparse vectors

of IRd. The minimax rate of estimation over B0(k) in the Gaussian sequence
2

model is φ(B0(k)) =
σ k log(ed/k). Moreover, it is attained by the constrainedn

ˆleast squares estimator θls .B0(k)

Note that the modified BIC estimator of Problem 2.6 is also minimax op-
ˆtimal over B0(k) but unlike θls , it is also adaptive to k. For any ε > 0,B0(k)

the Lasso estimator and the BIC estimator are minimax optimal for sets of
parameters such that k ≤ d1−ε.

6

6
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Lower bounds for estimating vectors in ℓ1 balls

Recall that in Maurey’s argument, we approximated a vector θ such that |θ|1 =

R by a vector θ′ such that |θ′|0 = R n . We can essentially do the sameσ log d

for the lower bound.

√

Assume that d
√≥ n and let β ∈ (0, 1) be a parameter to be chosen later

and define k to be the smallest integer such that

R
k ≥

βσ

√
n

log(ed/
√ .
n)

Let ω1, . . . , ωM be obtained from the sparse Varshamov-Gilbert Lemma 5.14
with this choice of k and define

R
θj = ωj .

k

Observe that |θj |1 = R for j = 1, . . . ,M . We can check the conditions of
Theorem 5.11:

R2 R2 R log(ed/
√
n)

(i) |θj − θ 2
k|2 = ρ(ωj , ωk)

k2
≥

2k
≥ 4Rmin , β2σ .

8 8n

2 2R2
√

log(ed/
√
n)

(

2ασ2

)

(ii) |θj − θk|2 ≤ ≤ 4Rβσ ≤ log(M) ,
k n n

for β small enough if d ≥ Ck for some constant C > 0 chosen large enough.
Applying now Theorem 5.11 yields

(
2 R

inf sup IP |θ̂ − θ| 2 2 log(ed/
√
n) 1

θ 2 Rmin , β σ 2α .
θ̂ θ∈IRd

≥
(
8 8n

))
≥

2
−

It implies the following corollary.

Corollary 5.16. Recall that B (R) ⊂ IRd1 denotes the set vectors θ ∈ IRd such
that |θ|1 ≤ R. Then there exist a constant C > 0 such that if d ≥ n1/2+ε,
ε > 0, the minimax rate of estimation over B1(R) in the Gaussian sequence
model is

log d
φ(B 2

0(k)) = min(R ,Rσ ) .
n

ˆMoreover, it is attained by the constrained least squares estimator θls if
log d

B1(R)

ˆR ≥ σ and by the trivial estimator θ = 0 otherwise.n

Proof. To complete the proof of the statement, we need to study risk of the
trivial estimator equal to zero for small R. Note that if |θ∗|1 ≤ R, we have

|0− θ∗|22 = |θ∗|22 ≤ |θ∗|21 = R2 .



5.5. Application to the Gaussian sequence model 119

Remark 5.17. Note that the inequality |θ∗|22 ≤ |θ∗|21 appears to be quite loose.
Nevertheless, it is tight up to a multiplicative constant for the vectors of the
form θj = ω R

j that are employed in the lower bound. Indeed, if R ≤ σ log d ,k n
we have k ≤ 2/β

R2 β|θj |22 =
k

≥ θj
2
| |21 .



5.5. Application to the Gaussian sequence model 120

PROBLEM SET

Problem 5.1. (a) Prove the statement of Example 5.7.

(b) Let Pθ denote the distribution of X ∼ Ber(θ). Show that

KL(Pθ , P
2

θ
′) ≥ C(θ − θ′) .

Problem 5.2. Let IP0 and IP1 be two probability measures. Prove that for
any test ψ, it holds

1
max IP (ψ = j) ≥ e−KL(IP0,IP1)

j .
j=0,1 4

Problem 5.3. For any R > 0, θ ∈ IRd, denote by B2(θ,R) the (Euclidean)
ball of radius R and centered at θ. For any ε > 0 let N = N(ε) be the largest
integer such that there exist θ1, . . . , θN ∈ B2(0, 1) for which

|θi − θj | ≥ 2ε

for all i = j. We call the set {θ1, . . . , θN} an ε-packing of B2(0, 1) .

(a) Show that there exists a constant C > 0 such that N ≤ C/εd .

(b) Show that for any x ∈ B2(0, 1), there exists i = 1, . . . , N such that
|x− θi|2 ≤ 2ε.

(c) Use (b) to conclude that there exists a constant C′ > 0 such that N ≥
C′/εd .

Problem 5.4. Show that the rate φ = σ2d/n is the minimax rate of estimation
over:

(a) The Euclidean Ball of IRd with radius σ2d/n.

(b) The unit ℓ ball of IRd defined by∞

B (1) = {θ ∈ IRd : max∞
j

|θj | ≤ 1}

as long as σ2 ≤ n.

(c) The set of nonnegative vectors of IRd.

(d) The discrete hypercube σ√ 0, 1 d .
16 n

{ }

Problem 5.5. Fix β ≥ 5/3, Q > 0 and prove that the minimax rate of esti-
2β

mation over Θ(β,Q) with the ‖ · ‖ 2β+1
L2([0,1])-norm is given by n− .

[Hint:Consider functions of the form

N
C

fj = √
∑

ωjiϕi
n
i=1

where C is a constant, ωj ∈ {0, 1}N for some appropriately chosen

N and {ϕj}j≥1 is the trigonometric basis.]

6

6
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