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5
Minimax Lower Bounds

In the previous chapters, we have proved several upper bounds and the goal of
this chapter is to assess their optimality. Specifically, our goal is to answer the
following questions:

1. Can our analysis be improved? In other words: do the estimators that
we have studied actually satisfy better bounds?

2. Can any estimator improve upon these bounds?

Both questions ask about some form of optimality. The first one is about
optimality of an estimator, whereas the second one is about optimality of a
bound.

The difficulty of these questions varies depending on whether we are looking
for a positive or a negative answer. Indeed, a positive answer to these questions
simply consists in finding a better proof for the estimator we have studied
(question 1.) or simply finding a better estimator, together with a proof that
it performs better (question 2.). A negative answer is much more arduous.
For example, in question 2., it is a statement about all estimators. How can
this be done? The answer lies in information theory (see [CT06] for a nice
introduction).

In this chapter, we will see how to give a negative answer to question 2. It
will imply a negative answer to question 1.
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Θ φ(Θ) Estimator Result

IRd
σ2d

θ̂ls Theorem 2.2
n

B1 σ

√
log d

θ̂ls Theorem 2.4
n B1

σ2kB ˆ(k) log(ed/k) θls0 Corollaries 2.8-2.9
n B0(k)

Table 5.1. Rate φ(Θ) obtained for different choices of Θ.

5.1 OPTIMALITY IN A MINIMAX SENSE

Consider the Gaussian Sequence Model (GSM) where we observe Y =
(Y1, . . . , Yd)

⊤, defined by

Yi = θi
∗ + εi , i = 1, . . . , d , (5.1)

where ε = (ε , . . . , ε )⊤ ∼ N (0, σ
2

1 d d Id), θ
∗ = (θ1

∗, . . . , θd
∗)⊤ ∈ Θ is the parametern

of interest and Θ ⊂ IRd is a given set of parameters. We will need a more precise
notation for probabilities and expectations throughout this chapter. Denote by
IPθ∗ and IEθ∗ the probability measure and corresponding expectation that are
associated to the distribution of Y from the GSM (5.1).

Recall that GSM is a special case of the linear regression model when the
design matrix satisfies the ORT condition. In this case, we have proved several
performance guarantees (upper bounds) for various choices of Θ that can be
expressed either in the form

IE |θ̂ 2
n − θ∗|2 ≤ Cφ(Θ) (5.2)

or the form

[ ]

|θ̂ − θ∗|2 ≤ Cφ(Θ) , with prob. 1− d−2
n 2 (5.3)

For some constant C. The rates φ(Θ) for different choices of Θ that we have
obtained are gathered in Table 5.1 together with the estimator (and the corre-
sponding result from Chapter 2) that was employed to obtain this rate. Can
any of these results be improved? In other words, does there exists another

˜ ˜estimator θ such that supθ∗ Θ IE θ∈ | − θ∗|22 ≪ φ(Θ)?
A first step in this direction is the Cramér-Rao lower bound [Sha03] that

allows us to prove lower bounds in terms of the Fisher information. Neverthe-
less, this notion of optimality is too stringent and often leads to nonexistence
of optimal estimators. Rather, we prefer here the notion of minimax optimality
that characterizes how fast θ∗ can be estimated uniformly over Θ.
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Definition 5.1. ˆWe say that an estimator θn is minimax optimal over Θ if it
satisfies (5.2) and there exists C′ > 0 such that

inf sup IE
[
φ−1 ˆ

θ (Θ)
θ̂ θ∈Θ

|θ − θ|22
]
≥ C′ (5.4)

where the infimum is taker over all estimators (i.e., measurable functions of
Y). Moreover, φ(Θ) is called minimax rate of estimation over Θ.

Note that minimax rates of convergence φ are defined up to multiplicative
constants. We may then choose this constant such that the minimax rate has
a simple form such as σ2d/n as opposed to 7σ2d/n for example.

This definition can be adapted to rates that hold with high probability. As
we saw in Chapter 2 (Cf. Table 5.1), the upper bounds in expectation and those
with high probability are of the same order of magnitude. It is also the case
for lower bounds. Indeed, observe that it follows from the Markov inequality
that for any A > 0,

ˆ ˆIE
[

2
θ φ

−1(Θ)|θ − θ|2
]
≥ AIPθ

[
φ−1(Θ)|θ − θ|22 > A (5.5)

Therefore, (5.6) follows if we prove that

]

inf sup IP θ − θ|2θ |ˆ 2 > Aφ(Θ)
θ̂ θ∈Θ

≥ C”

for some positive constantsA an

[

d C”. The above in

]

equality also implies a lower
bound with high probability. We can therefore employ the following alternate
definition for minimax optimality.

Definition 5.2. ˆWe say that an estimator θ is minimax optimal over Θ if it
satisfies either (5.2) or (5.3) and there exists C′ > 0 such that

ˆinf sup IPθ
[
|θ − θ|22 > φ(Θ)

]
≥ C′ (5.6)

θ̂ θ∈Θ

where the infimum is taker over all estimators (i.e., measurable functions of
Y). Moreover, φ(Θ) is called minimax rate of estimation over Θ.

5.2 REDUCTION TO FINITE HYPOTHESIS TESTING

Minimax lower bounds rely on information theory and follow from a simple
principle: if the number of observations is too small, it may be hard to distin-
guish between two probability distributions that are close to each other. For
example, given n i.i.d. observations, it is impossible to reliably decide whether
they are drawn from N (0, 1) or N ( 1 , 1). This simple argument can be maden
precise using the formalism of statistical hypothesis testing. To do so, we reduce
our estimation problem to a testing problem. The reduction consists of two
steps.
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1. Reduction to a finite number of hypotheses. In this step the goal is
to find the largest possible number of hypotheses θ1, . . . , θM ∈ Θ under
the constraint that

|θj − θk|22 ≥ 4φ(Θ) . (5.7)

This problem boils down to a packing of the set Θ.

Then we can use the following trivial observations:
[
|ˆ− ˆinf sup IPθ θ θ|22 > φ(Θ)

]
≥ inf max IP 2

θ θ θj 2 > φ(Θ) .
θ̂ θ∈ ˆ 1Θ θ ≤j≤ j

M

[
| − |

]

2. Reduction to a testing problem. In this second step, the necessity
of the constraint (5.7) becomes apparent.

ˆ ˆFor any estimator θ, define the minimum distance test ψ(θ) that is asso-
ciated to it by

ˆ ˆψ(θ) = argmin θ θj 2 ,
1≤j M

| − |
≤

with ties broken arbitrarily.

ˆNext observe that if, for some j = 1, . . . ,M , ψ(θ) = j, then there exists
ˆ ˆk = j such that |θ − θk|2 ≤ |θ − θj |2. Together with the reverse triangle

inequality it yields

|ˆ− | ≥ | − | − |ˆ− | ≥ | − | ˆθ θj 2 θj θk 2 θ θk 2 θj θk 2 − |θ − θj |2
so that

1|θ̂ − θj |2 ≥
2
|θj − θk|2

Together with constraint (5.7), it yields

|θ̂ − θj |22 ≥ φ(Θ)

As a result,

inf max IPθ
ˆ 1θ ≤j≤ j

M

[
|θ̂ − θj |22 > φ(Θ)

]
≥ ˆinf max IPθ (

ˆ 1≤ ≤ j ψ θ) = j
j Mθ

≥ inf max IPθ

[ ]

ψ 1≤j≤ j ψ = j
M

where the infimum is taken over all tests based on Y and

[

that t

]

ake values
in {1, . . . ,M}.

Conclusion: it is sufficient for proving lower bounds to find θ1, . . . , θM
2

∈ Θ
such that |θj − θk|2 ≥ 4φ(Θ) and

inf max IPθj ψ = j C
ψ 1≤j≤M

≥ ′ .

The above quantity is called minimax p

[

robabili

]

ty of error. In the next sections,
we show how it can be bounded from below using arguments from information
theory. For the purpose of illustration, we begin with the simple case where
M = 2 in the next section.

6
6

6

6

6
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5.3 LOWER BOUNDS BASED ON TWO HYPOTHESES

The Neyman-Pearson Lemma and the total variation distance

Consider two probability measures IP0 and IP1 and observations X drawn from
either IP0 or IP1. We want to know which distribution X comes from. It
corresponds to the following statistical hypothesis problem:

H0 : Z ∼ IP0

H1 : Z ∼ IP1

A test ψ = ψ(Z) ∈ {0, 1} indicates which hypothesis should be true. Any
test ψ can make two types of errors. It can commit either an error of type I
(ψ = 1 whereas Z ∼ IP0) or an error of type II (ψ = 0 whereas Z ∼ IP1). Of
course, the test may also be correct. The following fundamental result, called
the Neyman Pearson Lemma indicates that any test ψ is bound to commit one
of these two types of error with positive probability unless IP0 and IP1 have
essentially disjoint support.

Let ν be a sigma finite measure satisfying IP0 ≪ ν and IP1 ≪ ν. For example
we can take ν = IP0+IP1. It follows from the Radon-Nikodym theorem [Bil95]
that both IP0 and IP1 admit probability densities with respect to ν. We denote
them by p0 and p1 respectively. For any function f , we write for simplicity

∫
f =

∫
f(x)ν(dx)

Lemma 5.3 (Neyman-Pearson). Let IP0 and IP1 be two probability measures.
Then for any test ψ, it holds

IP0(ψ = 1) + IP1(ψ = 0) ≥
∫

min(p0, p1)

Moreover, equality holds for the Likelihood Ratio test ψ⋆ = 1I(p1 ≥ p0).

Proof. Observe first that

IP0(ψ
⋆ = 1) + IP1(ψ

⋆ = 0) =

∫
p0 + p1

∫ψ∗=1

∫

ψ∗=0

= p0 +

∫
p1

p1≥p0 p1<p0

=

∫
min(p0, p1) +

p1≥p0

∫
min(p0, p1)

∫ p1<p0

= min(p0, p1) .
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Next for any test ψ, define its rejection region R = {ψ = 1}. Let R⋆ = {p1 ≥
p0} denote the rejection region of the likelihood ration test ψ⋆. It holds

IP0(ψ = 1) + IP1(ψ = 0) = 1 +

=

I∫P0(R)− IP1(R)

1 + p0 p
R

− 1

= 1 +

∫
p0 − p1 +

∫
p0

R R⋆ R (R⋆)c
− p1

∫ ∩ ∩

= 1− p0 p1 + p0 p1

∫R∩R⋆

| − |
∫

R

|
∩(R⋆)c

− |

= 1 + |p0 − p1|
[
1I(R ∩ (R⋆)c)− 1I(R ∩R⋆)

The above quantity is clearly minimized for R = R⋆.

]

The lower bound in the Neyman-Pearson lemma is related to a well known
quantity: the total variation distance.

Definition-Proposition 5.4. The total variation distance between two prob-
ability measures IP0 and IP1 on a measurable space (X ,A) is defined by

TV(IP0, IP1) = sup |IP0(R)− IP1(R)
R

| (i)
∈A

= sup
R∈A
1

∣∣
∫ ∣
∣ p0 − p1 (ii)
R

=

∫
|p0

∣

2
− p1|

∣

(iii)

= 1−
∫

min(p0, p1) (iv)

= 1− inf IP0(ψ = 1) + IP1(ψ = 0) (v)
ψ

where the infimum above is tak

[

en over all tests.

]

Proof. Clearly (i) = (ii) and the Neyman-Pearson Lemma gives (iv) = (v).
Moreover, by identifying a test ψ to its rejection region, it is not hard to see
that (i) = (v). Therefore it remains only to show that (iii) is equal to any
of the other expressions. Hereafter, we show that (iii) = (iv). To that end,
observe th∫at

|p0 − p1| =
∫

p1 − p0 + p0 p1

∫p1≥p0

∫

∫ p1<p0

−

= p1 + p0 −
∫

min(p0, p1)
p1≥∫p0 p1<p0

= 1− p1 + 1−
∫

p0 −
∫

min(p0, p1)
p1<p0 p1≥p0

= 2− 2

∫
min(p0, p1)
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In view of the Neyman-Pearson lemma, it is clear that if we want to prove
large lower bounds, we need to find probability distributions that are close in
total variation. Yet, this conflicts with constraint (5.7) and a tradeoff needs to
be achieved. To that end, in the Gaussian sequence model, we need to be able

2 2

to compute the total variation distance between N (θ0,
σ Id) andn N (θ1,

σ Id).n
None of the expression in Definition-Proposition 5.4 gives an easy way to do
so. The Kullback-Leibler divergence is much more convenient.

The Kullback-Leibler divergence

Definition 5.5. The Kullback-Leibler divergence between probability mea-
sures IP1 and IP0 is given by




∫
dIP1

log
( )

dIP1 , if IP
(

≪ IP
IP , IP ) = 1 0KL 1 0 dIP0

∞ , otherwise .

It can be shown [Tsy09] t



hat the integral is always well defined when IP1 ≪
IP0 (though it can be equal to ∞ even in this case). Unlike the total variation
distance, the Kullback-Leibler divergence is not a distance. Actually, it is not
even symmetric. Nevertheless, it enjoys properties that are very useful for our
purposes.

Proposition 5.6. Let IP and Q be two probability measures. Then

1. KL(IP,Q) ≥ 0

2. If IP and Q are product measures, i.e.,

n n

IP =
⊗

IPi and Q = Qi
i=1

⊗

i=1

then
n

KL(IP,Q) =
∑

KL(IPi,Qi) .
i=1

Proof. If IP is not absolutely continuous then the result is trivial. Next, assume
that IP ≪ Q and let X ∼ IP.

1. Observe that by Jensen’s inequality,

dQ dQ
KL(IP,Q) = −IE log

(
(X)

)
≥ − log IE

(
(X)

dIP dIP

)
= − log(1) = 0 .
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2. Note that if X = (X1, . . . , Xn),

KL(IP,Q) = IE log

n

(dIP
(X)

∫
dQ

∑ (dIPi

)

= log (Xi)
)
dIP1(X1) dIPn(Xn)

dQii=1

· · ·

=
∑n dIPi

log (Xi) dIPi(Xi)
dQii=1

∫

∑n

( )

= KL(IPi,Qi)
i=1

Point 2. in Proposition 5.6 is particularly useful in statistics where obser-
vations typically consist of n independent random variables.

Example 5.7. For any θ ∈ IRd, let Pθ denote the distribution of Y ∼
N (θ, σ2Id). Then

d
(θ 2 2
i θ

K (P i
′) θ θ′ 2L θ, Pθ′) =

∑ −
=

| − |
.

2σ2 2σ2
i=1

The proof is left as an exercise (see Problem 5.1).

The Kullback-Leibler divergence is easier to manipulate than the total vari-
ation distance but only the latter is related to the minimax probability of error.
Fortunately, these two quantities can be compared using Pinsker’s inequality.
We prove here a slightly weaker version of Pinsker’s inequality that will be
sufficient for our purpose. For a stronger statement, see [Tsy09], Lemma 2.5.

Lemma 5.8 (Pinsker’s inequality.). Let IP and Q be two probability measures
such that IP ≪ Q. Then

TV(IP,Q) ≤
√
KL(IP,Q) .
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Proof. Note that

KL(IP,Q) =

∫
p

p log
pq>0

(
q

)

= −2

∫
q

p log
(√ )

= −2

∫pq>0 p

q
p log + 1

∫pq>0 p
− 1

[√q

([√ ] )

≥ −2 p − 1
]

(by Jensen)
p∫q>0 p

= 2− 2
√
pq

Next, note that

(∫ √
pq
)2

=
( ∫ √ 2

max(p, q)min(p, q)
)

≤
∫

max(p, q)

∫
min(p, q) (by Cauchy-Schwarz)

=

=

[
2−

∫
min(p, q)

1 + TV(IP,Q)

]
min(p, q)

( )(
1

∫

− TV(IP,Q)

= 1− TV(IP,Q)2

)

The two displays yield

KL(IP,Q) ≥ 2− 2
√
1− TV(IP, )2 ≥ TV(IP, )2Q Q ,

where we used the fact that 0 TV(IP,Q) 1 and
√

≤ ≤ 1− x ≤ 1 − x/2 for
x ∈ [0, 1].

Pinsker’s inequality yields the following theorem for the GSM.

Theorem 5.9. Assume that Θ contains two hypotheses θ0 and θ1 such that
|θ0 − θ1|22 = 8α2σ2/n for some α ∈ (0, 1/2). Then

2 2ασ2 1ˆinf sup IPθ( θ θ 2 ) α .
θ̂ θ Θ

| − | ≥
n

≥
2
−

∈

Proof. Write for simplicity IPj = IPθj , j = 0, 1. Recall that it follows from the
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reduction to hypothesis testing that

2ασ2
ˆinf sup IPθ(|θ − θ|22 ≥ ) ≥ inf max IPj(ψ = j)

θ̂ θ Θ n∈ ψ j=0,1

1≥ inf
(
IP0(ψ = 1) + IP1(ψ = 0)

2 ψ

1

)

=
[
1− TV(IP0, IP1)

]
(Prop.-def. 5.4)

2
1≥
[
1−

√
KL(IP1, IP0)

]
(Lemma 5.8)

2

1[
√
n|θ1 − θ 2

0
= 1

|− 2
]

(Example 5.7)
2 2σ2

1
= 1 2α

2

[
−

]

Clearly the result of Theorem 5.9 matches the upper bound for Θ = IRd

only for d = 1. How about larger d? A quick inspection of our proof shows
that our technique, in its present state, cannot yield better results. Indeed,
there are only two known candidates for the choice of θ∗. With this knowledge,
one can obtain upper bounds that do not depend on d by simply projecting
Y onto the linear span of θ0, θ1 and then solving the GSM in two dimensions.
To obtain larger lower bounds, we need to use more than two hypotheses. In
particular, in view of the above discussion, we need a set of hypotheses that
spans a linear space of dimension proportional to d. In principle, we should
need at least order d hypotheses but we will actually need much more.

5.4 LOWER BOUNDS BASED ON MANY HYPOTHESES

The reduction to hypothesis testing from Section 5.2 allows us to use more
than two hypotheses. Specifically, we should find θ1, . . . , θM such that

inf max IPθj ψ = j C ′ ,
ψ 1≤j≤M

≥

for some positive constant C′. Unfortun

[

ately,

]

the Neyman-Pearson Lemma no
longer exists for more than two hypotheses. Nevertheless, it is possible to relate
the minimax probability of error directly to the Kullback-Leibler divergence,
without involving the total variation distance. This is possible using a well
known result from information theory called Fano’s inequality. We use it in a
form that is tailored to our purposes and that is due to Lucien Birgé [Bir83]
and builds upon an original result in [IH81].

Theorem 5.10 (Fano’s inequality). Let P1, . . . , PM ,M ≥ 2 be probability dis-
tributions such that Pj ≪ Pk, ∀ j, k. Then

[ ] 1
∑M

2 KL
≥ − M j,k=1 (Pj , Pk) + log 2

inf max Pj ψ(X) = j 1
ψ 1≤j≤M log(M − 1)

6

6

6
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where the infimum is taken over all tests with values in {1, . . . ,M}.

Proof. Let Z ∈ {1, . . . ,M} be a random variable such that IP(Z = i) = 1/M
and let X ∼ PZ . Note that PZ is a mixture distribution so that for any measure
ν such that PZ ≪ ν, we have

M
dPZ 1

=
dν M

∑ dPj
.

dν
j=1

For all test ψ, we have

∑M
IP(Z = j|X) log[IP(Z = j ]

=1

|X) =
j

= IP(Z = ψ(X)|X) log[IP(Z = ψ(X)|X)] +
∑

IP(Z = j|X) log[IP(Z = j|X)]
j=ψ(X)

= (1− IP(Z = ψ(X)|X)) log[1− IP(Z = ψ(X)|X)]
∑ IP(Z = j

X
|X) IP(Z = j X)

+ IP(Z = ψ(X)| ) log
|

IP(Z = ψ(X)|X)

[
IP(Z = ψ(X)|X)

j=ψ(X)

]

+ IP(Z = ψ(X)|X) log[IP(Z = ψ(X)|X)]

= h(IP(Z = ψ(X)|X)) + IP(Z = ψ(X)|X)

j=

∑
qj log(qj) ,

ψ(X)

where
h(x) = x log(x) + (1− x) log(1− x)

and
IP(Z = j

qj =
|X)

IP(Z = ψ(X)|X)

is such that qj ≥ 0 and
∑

j=ψ(X) qj = 1. It implies by Jensen’s inequality that

∑ 1 qj
qj log(qj) = −

∑
qj log

( )
≥ − log

( ∑ )
= − log(M − 1) .

qj qj
j=ψ(X) j=ψ(X) j=ψ(X)

By the same convexity argument, we get h(x) ≥ − log 2. It yields

∑M
IP(Z = j|X) log[IP(Z = j|X)] ≥ − log 2− IP(Z = ψ(X)|X) log(M )

j=

− 1 .
1

(5.8)
Next, observe that since X ∼ PZ , the random variable IP(Z = j|X) satisfies

1 dPj dPj(X)
IP(Z = j|X) = (X) =

M dPZ
∑M
k=1 dPk(X)

6

6 6

6
6

6 6

6 6
6 6

6

6

6

6 6 6

6
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It implies

∫ {∑M
IP(Z = j|X = x) log[IP(Z = j|X = x)]

}
dPZ(x)

j=1

M

=
∑∫ { 1 dPj

(x) log
( 1 dPj

(x)
)}

dPZ(x)
M dPZ M dPZ

j=1

M
1 ∑∫ (

∑
dPj(x)

= log dPj(x)
M M

j=1 k=1 dPk(x)

)

M
1≤

∑ ∫
log

(dPj(x)
)
dPj(x)− logM (by Jensen)

M2 dPk(x)
j,k=1

M
1

=
∑

KL(Pj , Pk)
M2

j,k=1

− logM ,

Together with (5.8), it yields

M
1 ∑

KL(Pj , Pk)− logM ≥ − log 2− IP(Z = ψ(X)) log(M )
M2

j,k=

− 1
1

Since

M
1

IP(Z = ψ(X)) =
∑

Pj(ψ(X) = j) ≤ max Pj(ψ(X) = j) ,
M 1 j

j=1
≤ ≤M

this implies the desired result.

Fano’s inequality leads to the following useful theorem.

Theorem 5.11. Assume that Θ contains M ≥ 5 hypotheses θ1, . . . , θM such
that for some constant 0 < α < 1/4, it holds

(i) |θj − θk|22 ≥ 4φ

(ii) |θ 2 2ασ2

j − θk|2 ≤ log(M)
n

Then
ˆinf sup IPθ θ θ 2 1

2 φ 2α .
θ̂ θ

| − ≥ ≥
2
−

∈Θ
|

Proof. in view of (i), it follows

(

from the red

)

uction to hypothesis testing that
it is sufficient to prove that

1
inf max IPθ

1≤j≤ j
M

[
ψ = j

ψ

]
≥

2
− 2α

6

6 6 6

6
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If follows from (ii) and Example 5.7 that

n θ 2
j θk

KL(IPj , IP
2

k) =
| − |
2σ2

≤ α log(M) .

Moreover, since M ≥ 5,

1 ∑M
2 KLj,k=1 (IPj , IPk) + log 2M α log(M) + log 2 1

2α+ .
log(M 1)

≤
lo

≤− g(M − 1) 2

The proof then follows from Fano’s inequality.

2

Theorem 5.11 indicates that we must take φ ≤ ασ log(M). Therefore, the2n
larger the M , the larger the lower bound can be. However, M cannot be ar-
bitrary larger because of the constraint (i). We are therefore facing a packing
problem w√here the goal is to “pack” as many Euclidean balls of radius propor-
tional to σ log(M)/n in Θ under the constraint that their centers remain close
together (constraint (√ii)). If Θ = IRd, this the goal is to pack the Euclidean
ball of radius R = σ 2α log(M)/n with Euclidean balls of radius R

√
2α/γ.

This can be done using a volume argument (see Problem 5.3). However, we
will use the more versatile lemma below. It gives a a lower bound on the size
of a packing of the discrete hypercube {0, 1}d with respect to the Hamming
distance defined by

d

ρ(ω, ω′) =
∑

1I(ωi = ωj
′ ) , ∀ω, ω′

i=1

∈ {0, 1}d

Lemma 5.12 (Varshamov-Gilbert). For any γ ∈ (0, 1/2), there exist binary
vectors ω1, . . . ωM ∈ {0, 1}d such that

(1
(i) ρ(ωj , ωk) ≥ γ d for all j = k ,

2
−

2

⌊ 2 ⌋ ≥ γ d

( γ

)

ii) M = e d e 2 .

Proof. Let ωj,i, 1 ≤ i ≤ d, 1 ≤ j ≤ M to be i.i.d Bernoulli random variables
with parameter 1/2 and observe that

d− ρ(ωj , ωk) = X ∼ Bin(d, 1/2) .

Therefore it follows from a union bound that

1 M(M 1) d
IP
[
∃j = k , ρ(ωj , ωk) <

(
− γ

)
d
] −≤ IP

(
X − > γd .

2 2 2

Hoeffding’s inequality then yields

)

M(M − 1)
IP

2

( d ) (
2

(M(M 1)
X − > γd ≤ exp 2γ d+ log

−
1

2
−

2

))
<

6

6

6



5.5. Application to the Gaussian sequence model 114

as soon as
M(M − 1) < 2 exp 2γ2d

2

A sufficient condition for the above inequality

(

to ho

)

ld is to take M = ⌊eγ d

2γ d

⌋ ≥
e 2 . For this value of M , we have

IP
( 1∀j = k , ρ(ωj , ωk) ≥ − γ d > 0

2

and by virtue of the probabilistic method, t

(

here ex

)

ist

)

ω , . . . ω ∈ {0, 1}d1 M that
satisfy (i) and (ii)

5.5 APPLICATION TO THE GAUSSIAN SEQUENCE MODEL

We are now in a position to apply Theorem 5.11 by choosing θ1, . . . , θM
based on ω1, . . . , ωM from the Varshamov-Gilbert Lemma.

Lower bounds for estimation

Take γ = 1/4 and apply the Varshamov-Gilbert Lemma to obtain ω1, . . . , ωM
with M = ⌊ed/16⌋ ≥ ed/32 and such that ρ(ωj , ωk) ≥ d/4 for all j = k. Let
θ1, . . . , θM be such that

βσ
θj = ωj√ ,

n

for some β > 0 to be chosen later. We can check the conditions of Theorem 5.11:

β2σ2 β2σ2d
(i) |θ 2

j − θk|2 = ρ(ωj , ωk) 4
n

≥
16n

β2σ2 β2σ2d 32β2σ2 2ασ2

(ii) |θj − θk|22 = ρ(ωj , ωk) ≤ ≤ log(M) = log(M) ,
n n n n

√
for β = α . Applying now Theorem 5.11 yields4

(
2 α σ2d 1ˆinf sup IPθ θ θ 2 2α .

θ̂ θ IRd

| − | ≥
256 n∈

)
≥

2
−

It implies the following corollary.

Corollary 5.13. The minimax rate of estimation of over IRd in the Gaussian
sequence model is φ(IRd) = σ2d/n. Moreover, it is attained by the least squares

ˆestimator θls = Y.

Note that this rate is minimax over sets Θ that are strictly smaller than IRd

(see Problem 5.4). Indeed, it is minimax over any subset of IRd that contains
θ1, . . . , θM .

6

6
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Lower bounds for sparse estimation

It appears from Table 5.1 that when estimating sparse vectors, we have to pay
for an extra logarithmic term log(ed/k) for not knowing the sparsity pattern
of the unknown θ∗. In this section, we show that this term is unavoidable as
it appears in the minimax optimal rate of estimation of sparse vectors.

Note that the vectors θ1, . . . , θM employed in the previous subsection are
not guaranteed to be sparse because the vectors ω1, . . . , ωM obtained from the
Varshamov-Gilbert Lemma may themselves not be sparse. To overcome this
limitation, we need a sparse version of the Varhsamov-Gilbert lemma.

Lemma 5.14 (Sparse Varshamov-Gilbert). There exist positive constants C1

and C2 such that the following holds for any two integers k and d such that
1 ≤ k ≤ d/8. There exist binary vectors ω1, . . . ωM ∈ {0, 1}d such that

k
(i) ρ(ωi, ωj) ≥ for all i = j ,

2

k d
(ii) log(M) ≥ log(1 + ) .

8 2k

(iii) |ωj |0 = k for all j .

Proof. Take ω1, . . . , ωM independently and uniformly at random from the set

C0(k) = {ω ∈ {0, 1}d : |ω|0 = k} ,

of k-sparse binary random vectors. Note that C0(k) has cardinality d . Tok
choose ωj uniformly from C0(k), we proceed as follows. Let U1, . . . , Uk ∈
{1, . . . , d} be k random variables such that U1 is drawn uniformly at

(

ra

)

ndom
from {1, . . . , d} and for any i = 2, . . . , k, conditionally on U1, . . . , Ui 1, the ran-−
dom variable Ui is drawn uniformly at random from {1, . . . , d}\{U1, . . . , Ui−1}.
Then define

{
1 if i ∈ {U1, . . . , Uω = k}
0 otherwise .

Clearly, all outcomes in C0(k) are equally likely under this distribution and
therefore, ω is uniformly distributed on C0(k). Observe that

k
I
( 1

P ∃ωj = ωk : ρ(ωj , ωk) < k
)
=

∑
( ) IP

(
∃ωj = x : ρ(ωj , x) <d 2

k x∈{0,1}d

|x|0=k

)

1≤
∑ ∑M

( ) IP
( k
ωj = x : ρ(ωj , x) <d

k x∈{0,1}d
2

j=1

|x|0=k

)

=M IP
( k
ω = x0 : ρ(ω, x0) <

2

)

6

6 6

6

6
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where ω has the same distribution as ω1 and x0 is any k-sparse vector in
{0, 1}d. The last equality holds by symmetry since (i) all the ωjs have the
same distribution and (ii) all the outcomes of ωj are equally likely.

Note that
k

ρ(ω, x0) ≥ k −
∑

Zi ,
i=1

where Zi = 1I(Ui ∈ supp(x0)). Indeed the left hand side is the number of
coordinates on which the vectors ω, x0 disagree and the right hand side is
the number of coordinates in supp(x0) on which the two vectors disagree. In
particular, we have that, Z1 ∼ Ber(k/d) and for any i = 2, . . . , d, conditionally
on Z1, . . . , Zi i, we have Zi ∼ Ber(Qi), where−

−∑i−1k l
Qi =

l=1 Z k 2k

p− (i− 1)
≤
d− k

≤
d

since k ≤ d/2.
Next we apply a Chernoff bound to get that for any s > 0,

( k k
k k sk

IP ω = x0 : ρ(ω, x0) < IP Zi > = IE exp s Zi e− 2

2

)
≤

(∑
2

i=1

) [ ( ∑

i=1

)]

The above MGF can be controlled by induction on k as follows:

[ ( ∑k k−1

IE exp s Zi
)]

= IE
[
exp

(
s
∑

Zi
)
IE exp

(
sZk

=1 i=1

k

∣∣Z1, . . . , Zk=1

i

)]

= IE
[
exp

(
s Zi (Q (esk 1) + 1)
i=1

−

[ ( k

∑−1

1

) ]

−
2k≤ IE exp s

∑
Zi

)](
(es − 1) + 1

d
i=1

..

)

.

≤
(2k

(es
d

− 1) + 1
)k

= 2k

6
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For s = log(1 + d ). Putting everything together, we get2k

IP
( sk∃ωj = ωk : ρ(ωj, ωk) < k

)
≤ exp

(
logM + k log 2−

2
k

= exp logM + k log 2 lo

)

k
e

( d− g(1 + )
2 2k

≤ xp
( d
logM + k log 2− log(1 + )

)

( 2 2k
k d

e

)

≤ xp logM − log(1 + )
)

(for d ≥ 8k)
4 2k

< 1 .

If we take M such that

k d
logM < log(1 + )

4 2k

Apply the sparse Varshamov-Gilbert lemma to obtain ω1, . . . , ωM with
log(M) ≥ k log(1 + d ) and such that ρ(ωj , ωk)8 2k ≥ k/2 for all j = k. Let
θ1, . . . , θM be such that

βσ d
θj = ωj√

√
log(1 + ) ,

n 2k

for some β > 0 to be chosen later. We can check the conditions of Theorem 5.11:

2 2 2 2

(i) |θ − θ |2 β σ d β σ d
j k 2 = ρ(ωj , ωk) log(1 + )

2k
≥ 4 k log(1 + )

n 8n 2k

β2σ2 d 2kβ2σ2
2 d 2ασ2

(ii) |θj−θk|2 = ρ(ωj , ωk) log(1+ ) ≤ log(1+ )
n 2k

≤ log(M) ,
n 2k n

for β =
√

α . Applying now Theorem 5.11 yields8

( α2σ2
2 d 1ˆinf sup IPθ |θ − θ|2 ≥ k log(1 + ) 2α .

θ̂ θ∈IRd 64n 2k
≥

2
−

|θ|0≤k

)

It implies the following corollary.

Corollary 5.15. Recall that B d
0(k) ⊂ IR denotes the set of all k-sparse vectors

of IRd. The minimax rate of estimation over B0(k) in the Gaussian sequence
2

model is φ(B0(k)) =
σ k log(ed/k). Moreover, it is attained by the constrainedn

ˆleast squares estimator θls .B0(k)

Note that the modified BIC estimator of Problem 2.6 is also minimax op-
ˆtimal over B0(k) but unlike θls , it is also adaptive to k. For any ε > 0,B0(k)

the Lasso estimator and the BIC estimator are minimax optimal for sets of
parameters such that k ≤ d1−ε.

6

6
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Lower bounds for estimating vectors in ℓ1 balls

Recall that in Maurey’s argument, we approximated a vector θ such that |θ|1 =

R by a vector θ′ such that |θ′|0 = R n . We can essentially do the sameσ log d

for the lower bound.

√

Assume that d
√≥ n and let β ∈ (0, 1) be a parameter to be chosen later

and define k to be the smallest integer such that

R
k ≥

βσ

√
n

log(ed/
√ .
n)

Let ω1, . . . , ωM be obtained from the sparse Varshamov-Gilbert Lemma 5.14
with this choice of k and define

R
θj = ωj .

k

Observe that |θj |1 = R for j = 1, . . . ,M . We can check the conditions of
Theorem 5.11:

R2 R2 R log(ed/
√
n)

(i) |θj − θ 2
k|2 = ρ(ωj , ωk)

k2
≥

2k
≥ 4Rmin , β2σ .

8 8n

2 2R2
√

log(ed/
√
n)

(

2ασ2

)

(ii) |θj − θk|2 ≤ ≤ 4Rβσ ≤ log(M) ,
k n n

for β small enough if d ≥ Ck for some constant C > 0 chosen large enough.
Applying now Theorem 5.11 yields

(
2 R

inf sup IP |θ̂ − θ| 2 2 log(ed/
√
n) 1

θ 2 Rmin , β σ 2α .
θ̂ θ∈IRd

≥
(
8 8n

))
≥

2
−

It implies the following corollary.

Corollary 5.16. Recall that B (R) ⊂ IRd1 denotes the set vectors θ ∈ IRd such
that |θ|1 ≤ R. Then there exist a constant C > 0 such that if d ≥ n1/2+ε,
ε > 0, the minimax rate of estimation over B1(R) in the Gaussian sequence
model is

log d
φ(B 2

0(k)) = min(R ,Rσ ) .
n

ˆMoreover, it is attained by the constrained least squares estimator θls if
log d

B1(R)

ˆR ≥ σ and by the trivial estimator θ = 0 otherwise.n

Proof. To complete the proof of the statement, we need to study risk of the
trivial estimator equal to zero for small R. Note that if |θ∗|1 ≤ R, we have

|0− θ∗|22 = |θ∗|22 ≤ |θ∗|21 = R2 .
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Remark 5.17. Note that the inequality |θ∗|22 ≤ |θ∗|21 appears to be quite loose.
Nevertheless, it is tight up to a multiplicative constant for the vectors of the
form θj = ω R

j that are employed in the lower bound. Indeed, if R ≤ σ log d ,k n
we have k ≤ 2/β

R2 β|θj |22 =
k

≥ θj
2
| |21 .
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PROBLEM SET

Problem 5.1. (a) Prove the statement of Example 5.7.

(b) Let Pθ denote the distribution of X ∼ Ber(θ). Show that

KL(Pθ , P
2

θ
′) ≥ C(θ − θ′) .

Problem 5.2. Let IP0 and IP1 be two probability measures. Prove that for
any test ψ, it holds

1
max IP (ψ = j) ≥ e−KL(IP0,IP1)

j .
j=0,1 4

Problem 5.3. For any R > 0, θ ∈ IRd, denote by B2(θ,R) the (Euclidean)
ball of radius R and centered at θ. For any ε > 0 let N = N(ε) be the largest
integer such that there exist θ1, . . . , θN ∈ B2(0, 1) for which

|θi − θj | ≥ 2ε

for all i = j. We call the set {θ1, . . . , θN} an ε-packing of B2(0, 1) .

(a) Show that there exists a constant C > 0 such that N ≤ C/εd .

(b) Show that for any x ∈ B2(0, 1), there exists i = 1, . . . , N such that
|x− θi|2 ≤ 2ε.

(c) Use (b) to conclude that there exists a constant C′ > 0 such that N ≥
C′/εd .

Problem 5.4. Show that the rate φ = σ2d/n is the minimax rate of estimation
over:

(a) The Euclidean Ball of IRd with radius σ2d/n.

(b) The unit ℓ ball of IRd defined by∞

B (1) = {θ ∈ IRd : max∞
j

|θj | ≤ 1}

as long as σ2 ≤ n.

(c) The set of nonnegative vectors of IRd.

(d) The discrete hypercube σ√ 0, 1 d .
16 n

{ }

Problem 5.5. Fix β ≥ 5/3, Q > 0 and prove that the minimax rate of esti-
2β

mation over Θ(β,Q) with the ‖ · ‖ 2β+1
L2([0,1])-norm is given by n− .

[Hint:Consider functions of the form

N
C

fj = √
∑

ωjiϕi
n
i=1

where C is a constant, ωj ∈ {0, 1}N for some appropriately chosen

N and {ϕj}j≥1 is the trigonometric basis.]

6

6



Bibliography

[AS08] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-
Interscience Series in Discrete Mathematics and Optimization.
JohnWiley & Sons, Inc., Hoboken, NJ, third edition, 2008. With
an appendix on the life and work of Paul Erdős.
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