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Sub-Gaussian Random Variables 

1.1 GAUSSIAN TAILS AND MGF 

Recall that a random variable X ∈ IR has Gaussian distribution iff it has a 
density p with respect to the Lebesgue measure on IR given by 

1 (x − µ)2 
p(x) = √ exp

(
− 

)
, x ∈ IR ,

2σ22πσ2 

where µ = IE(X) ∈ IR and σ2 = var(X) > 0 are the mean and variance of 
X . We write X ∼ N (µ, σ2). Note that X = σZ + µ for Z ∼ N (0, 1) (called 
standard Gaussian) and where the equality holds in distribution. Clearly, this 
distribution has unbounded support but it is well known that it has almost 
bounded support in the following sense: IP(|X −µ| ≤ 3σ) ≃ 0.997. This is due 
to the fast decay of the tails of p as |x| → ∞ (see Figure 1.1). This decay can 
be quantified using the following proposition (Mills inequality). 

Proposition 1.1. Let X be a Gaussian random variable with mean µ and 
variance σ2 then for any t > 0, it holds 

− t2 
2σ21 e 

IP(X − µ > t) ≤ √ . 
2π t 

By symmetry we also have 

− t2 
2σ21 e 

IP(X − µ < −t) ≤ √ . 
2π t 

14 



15 1.1. Gaussian tails and MGF 

Figure 1.1. Probabilities of falling within 1, 2, and 3 standard deviations close to the 

mean in a Gaussian distribution. Source http://www.openintro.org/ 

and 
2σ2

 
2 e − t2 

IP(|X − µ| > t) ≤ . 
π t 

Proof. Note that it is sufficient to prove the theorem for µ = 0 and σ2 = 1 by 
simple translation and rescaling. We get for Z ∼ N (0, 1), 

2 

IP(Z > t) = √	 1 
1 ∞ 

exp
(
− x

)
dx 

2π t 2 
2 

≤ √ 1 
1 ∞ x 

exp
(
− x

)
dx 

2π t t 2 
2 

= √ 1 
1 ∞ 

− ∂ 
exp
(
− x

)
dx 

t 2π t ∂x 2 

= √ 1 exp(−t2/2) . 
t 2π 

The second inequality follows from symmetry and the last one using the union 
bound: 

IP(|Z| > t) = IP({Z > t}∪ {Z < −t}) ≤ IP(Z > t) + IP(Z < −t) = 2IP(Z > t) . 

The fact that a Gaussian random variable Z has tails that decay to zero 
exponentially fast can also be seen in the moment generating function (MGF) 

M : s  → M(s) = IE[exp(sZ)] . 

http://www.openintro.org/


  

16 1.2. Sub-Gaussian random variables and Chernoff bounds 

Indeed in the case of a standard Gaussian random variable, we have 

21 
1 

−sz M(s) = IE[exp(sZ)] = √ e e 
z 
2 dz 

2π 
1 
1 

+ s 2(z−s)2 −= √ e 2 2 dz 
2π 
2 s 
2= e . 

2σ2 sIt follows that if X ∼ N (µ, σ2), then IE[exp(sX)] = exp
(
sµ + 

)
.2 

1.2 SUB-GAUSSIAN RANDOM VARIABLES AND CHERNOFF BOUNDS 

Definition and first properties 

Gaussian tails are practical when controlling the tail of an average of inde
pendent random variables. Indeed, recall that if X1, . . . , Xn are i.i.d N (µ, σ2), 

¯ 1 
�n

then X = Xi ∼ N (µ, σ2/n). Using Lemma 1.3 below for example, we n i=1 

get 
nt2 ¯IP(|X − µ| > t) ≤ 2 exp

(
− 

)
. 

2σ2

Equating the right-hand side with some confidence level δ > 0, we find that 
with probability at least1 1− δ, 

2 log(2/δ) 2 log(2/δ) 
µ ∈ 
[
X̄ − σ , X̄ + σ 

 
, (1.1) 

n n

This is almost the confidence interval that you used in introductory statistics. 
The only difference is that we used an approximation for the Gaussian tail 
whereas statistical tables or software use a much more accurate computation. 
Figure 1.2 shows the ration of the width of the confidence interval to that of 
the confidence interval computer by the software R. It turns out that intervals 
of the same form can be also derived for non-Gaussian random variables as 
long as they have sub-Gaussian tails. 

Definition 1.2. A random variable X ∈ IR is said to be sub-Gaussian with 
variance proxy σ2 if IE[X ] = 0 and its moment generating function satisfies 

2(σ2s )
IE[exp(sX)] ≤ exp , ∀ s ∈ IR . (1.2) 

2 

In this case we write X ∼ subG(σ2). Note that subG(σ2) denotes a class of 
distributions rather than a distribution. Therefore, we abuse notation when 
writing X ∼ subG(σ2). 

More generally, we can talk about sub-Gaussian random vectors and ma
trices. A random vector X ∈ IRd is said to be sub-Gaussian with variance 

1We will often commit the statement “at least” for brevity 

√ √



17 1.2. Sub-Gaussian random variables and Chernoff bounds 

Figure 1.2. Width of confidence intervals from exact computation in R (red dashed) 

and (1.1) (solid black). 

proxy σ2 if IE[X ] = 0 and u⊤X is sub-Gaussian with variance proxy σ2 for 
any unit vector u ∈ Sd−1 . In this case we write X ∼ subGd(σ2). A ran
dom matrix X ∈ IRd×T is said to be sub-Gaussian with variance proxy σ2 

if IE[X ] = 0 and u⊤Xv is sub-Gaussian with variance proxy σ2 for any unit 
vectors u ∈ Sd−1, v ∈ ST −1 . In this case we write X ∼ subGd×T (σ

2). 

This property can equivalently be expressed in terms of bounds on the tail 
of the random variable X . 

Lemma 1.3. Let X ∼ subG(σ2). Then for any t > 0, it holds 

t2 t2 
IP[X > t] ≤ exp

(
− 

)
, and IP[X < −t] ≤ exp

(
− 

)
. (1.3) 

2σ2 2σ2

Proof. Assume first thatX ∼ subG(σ2). We will employ a very useful technique 
called Chernoff bound that allows to to translate a bound on the moment 
generating function into a tail bound. Using Markov’s inequality, we have for 
any s > 0, 

sX
 

IE
 
e

IP(X > t) ≤ IP
(
e sX > est

)
≤ . 

est 

Next we use the fact that X is sub-Gaussian to get 

−st 2IP(X > t) ≤ e 
σ2 s 2 

. 



18 1.2. Sub-Gaussian random variables and Chernoff bounds 

The above inequality holds for any s > 0 so to make it the tightest possible, we 
sminimize with respect to s > 0. Solving φ ′ (s) = 0, where φ(s) = σ

2 2 − st, we 2 
2tfind that infs>0 φ(s) = − 2σ2 . This proves the first part of (1.3). The second 

inequality in this equation follows in the same manner (recall that (1.2) holds 
for any s ∈ IR). 

Moments 

Recall that the absolute moments of Z ∼ N (0, σ2) are given by 

IE[|Z|k] = √ 1 (2σ2)k/2Γ
(k + 1 )

π 2 

where Γ(·) denote the Gamma function defined by 

∞1
t−1Γ(t) = x e −xdx , t > 0 . 

0 

The next lemma shows that the tail bounds of Lemma 1.3 are sufficient to 
show that the absolute moments of X ∼ subG(σ2) can be bounded by those of 
Z ∼ N (0, σ2) up to multiplicative constants. 

Lemma 1.4. Let X be a random variable such that 

t2 
IP[|X | > t] ≤ 2 exp

(
− 

)
,

2σ2

then for any positive integer k ≥ 1, 

IE[|X |k] ≤ (2σ2)k/2kΓ(k/2) . 

In particular, √(
IE[|X |k])1/k ≤ σe1/e k , k ≥ 2 . 

√ 
and IE[|X |] ≤ σ 2π . 

Proof. 

∞1
IE[|X |k] = IP(|X |k > t)dt 

0 
∞1

= IP(|X | > t1/k)dt 
0 

∞ 2/k 
1

− t≤ 2 e 2σ2 dt 
0 

∞ t2/k
1

−u = (2σ2)k/2k e uk/2−1du , u = 
0 2σ2 

= (2σ2)k/2kΓ(k/2) 
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19 1.2. Sub-Gaussian random variables and Chernoff bounds 

The second statement follows from Γ(k/2) ≤ (k/2)k/2 and k1/k ≤ e1/e for any 
k ≥ 2. It yields 

2σ2k √ 
≤ k1/k 1/eσ

(
(2σ2)k/2kΓ(k/2)

)1/k ≤ e k . 
2 

√ √ 
Moreover, for k = 1, we have 2Γ(1/2) = 2π. 

Using moments, we can prove the following reciprocal to Lemma 1.3. 

Lemma 1.5. If (1.3) holds, then for any s > 0, it holds 

24σ2 sIE[exp(sX)] ≤ e . 

As a result, we will sometimes write X ∼ subG(σ2) when it satisfies (1.3). 

Proof. We use the Taylor expansion of the exponential function as follows. 
Observe that by the dominated convergence theorem 

ssX IE e ≤ 1 + 
�∞ kIE[|X |k] 

k! 
k=2 

k! 
k=2 

∞
(2σ2s2)k/2kΓ(k/2) ≤ 1 + 

∞�
1 + 

∞

(2k)! (2k + 1)! 
k=1 k=1 

(2σ2s2)k2kΓ(k) (2σ2s2)k+1/2(2k + 1)Γ(k + 1/2) 
+= 

∞

(2k)! 
k=1 

√ (2σ2s2)kk! ≤ 1 +
(
2 + 2σ2s2

)

∞

k! 
k=1 

(2σ2s2)kσ2s2 ≤ 1 +
(
1 + 

)
2 

2(k!)2 ≤ (2k)! 

σ2s222σ2 s 22σ2 s+ (e − 1) = e 
2 

24σ2 s≤ e . 

From the above Lemma, we see that sub-Gaussian random variables can 
be equivalently defined from their tail bounds and their moment generating 
functions, up to constants. 

Sums of independent sub-Gaussian random variables 

Recall that if X1, . . . , Xn are i.i.d N (0, σ2), then for any a ∈ IRn , 

n�
aiXi ∼ N (0, |a|22σ2). 

i=1 

√

√

√

[ ]
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20 1.2. Sub-Gaussian random variables and Chernoff bounds 

If we only care about the tails, this property is preserved for sub-Gaussian 
random variables. 

Theorem 1.6. Let X = (X1, . . . , Xn) be a vector of independent sub-Gaussian 
random variables that have variance proxy σ2 . Then, the random vector X is 
sub-Gaussian with variance proxy σ2 . 

Proof. Let u ∈ Sn−1 be a unit vector, then 

n n
σ2 s u σ2 s 2|u|2 2⊤

2 
i 
2

2 σ2 ssu suiXi ] ≤IE[e X ] = 
�

IE[e 
�

e 2 = e 2 = e 2 . 
i=1 i=1 

Using a Chernoff bound, we immediately get the following corollary 

Corollary 1.7. Let X1, . . . , Xn be n independent random variables such that 
Xi ∼ subG(σ2). Then for any a ∈ IRn, we have 

n
t2[� (

− 
)

IP aiXi > t ≤ exp ,
2σ2|a|2 2i=1 

and 
n

t2 
IP
[�

aiXi < −t ≤ exp
(
− 

2σ2|a|2
)

2i=1 

Of special interest is the case where ai = 1/n for all i. Then, we get that 
n

the average X̄ = 1 Xi, satisfies n i=1 

2 2 

¯ −
2σ2 ¯ −

2σ2 
nt nt

IP( X > t) ≤ e and IP( X < −t) ≤ e 

just like for the Gaussian average. 

Hoeffding’s inequality 

The class of subGaussian random variables is actually quite large. Indeed, 
Hoeffding’s lemma below implies that all randdom variables that are bounded 
uniformly are actually subGaussian with a variance proxy that depends on the 
size of their support. 

Lemma 1.8 (Hoeffding’s lemma (1963)). Let X be a random variable such 
that IE(X) = 0 and X ∈ [a, b] almost surely. Then, for any s ∈ IR, it holds 

s 2(b−a)2 sX ] ≤ 8IE[e e . 

(b−a)2 In particular, X ∼ subG( ) .4 

]

]

∑
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21 1.2. Sub-Gaussian random variables and Chernoff bounds 

Proof. Define ψ(s) = log IE[esX ], and observe that and we can readily compute 

2 22 tn

2

2 

sX ]IE[XesX ] 
ψ ′′ (s)

IE[X2e
�
IE[XesX ]

�2 
ψ ′ (s) = , = − . 

IE[esX ] IE[esX ] IE[esX ] 

Thus ψ ′′ (s) can be interpreted as the variance of the random variable X under 
sX ethe probability measure dQ = sX ]dIP. But since X ∈ [a, b] almost surely, IE[e

we have, under any probability, 

var(X) = var
(
X − a + b ) ≤ IE

[(
X − a + b)2 ≤ (b − a)2 

. 
2 2 4 

The fundamental theorem of calculus yields 

s µ1 1
s2(b − a)2 

ψ(s) = ψ ′′ (ρ) dρ dµ ≤ 
80 0 

using ψ(0) = log 1 = 0 and ψ ′ (0) = IEX = 0. 

Using a Chernoff bound, we get the following (extremely useful) result. 

Theorem 1.9 (Hoeffding’s inequality). Let X1, . . . , Xn be n independent ran
dom variables such that almost surely, 

Xi ∈ [ai, bi] , ∀ i. 
n1Let X̄ = Xi, then for any t > 0,n i=1
 

2t2
2n¯ ¯
(
− 

)
IP( X − IE( X) > t) ≤ exp ,n (bi − ai)2i=1 

and 

¯ ¯
(
− 

)
IP( X − IE( X) < −t) ≤ exp .n 

(bi − ai)2i=1 

Note that Hoeffding’s lemma is for any bounded random variables. For 
example, if one knows that X is a Rademacher random variable. Then 

s 
s −se + esX )IE(e = = cosh(s) ≤ e 

2 

2

2

Note that 2 is the best possible constant in the above approximation. For such 
variables a = −1, b = 1, IE(X) = 0 so Hoeffding’s lemma yields 

ssX ) ≤IE(e e . 

Hoeffding’s inequality is very general but there is a price to pay for this gen
erality. Indeed, if the random variables have small variance, we would like to 
see it reflected in the exponential tail bound (like for the Gaussian case) but 
the variance does not appear in Hoeffding’s inequality. We need a more refined 
inequality. 

∑

∑

]

∑
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1.3 SUB-EXPONENTIAL RANDOM VARIABLES 

What can we say when a centered random variable is not sub-Gaussian? 
A typical example is the double exponential (or Laplace) distribution with 
parameter 1, denoted by Lap(1). Let X ∼ Lap(1) and observe that 

−tIP(|X | > t) = e , t ≥ 0 . 

In particular, the tails of this distribution do not decay as fast as the Gaussian 
−tones (that decay as e

2/2). Such tails are said to be heavier than Gaussian. 
This tail behavior is also captured by the moment generating function of X . 
Indeed, we have 

1sX IE e = if |s| < 1 ,
1− s2 

and is not defined for s ≥ 1. It turns out that a rather week condition on 
the moment generating function is enough to partially reproduce some of the 
bounds that we have proved for sub-Gaussian random variables. Observe that 
for X ∼ Lap(1) 

2sX 2sIE e ≤ e if |s| < 1/2 , 

In particular, the Laplace distribution has its moment generating distribution 
that is bounded by that of a Gaussian in a neighborhood of 0 but does not 
even exist away from zero. It turns out that all distributions that have tails at 
least as heavy as that of a Laplace distribution satisfy such a property. 

Lemma 1.10. Let X be a centered random variable such that IP(|X | > t) ≤ 
2e−2t/λ for some λ > 0. Then, for any positive integer k ≥ 1, 

IE[|X |k] ≤ λk k! . 

Moreover, (
IE[|X |k])1/k ≤ 2λk , 

and the moment generating function of X satisfies 

IE e sX ≤ e 2s 2λ2 

, ∀|s| ≤ 1 
2λ 

. 

Proof. 

IE[|X |k] = 

1 ∞ 

0 

IP(|X |k > t)dt 

= 

1 ∞ 

0 

IP(|X | > t1/k)dt 

≤ 
1 ∞ 

2e −
2t1/k 

λ dt 
0 

= 2(λ/2)kk 
1 ∞ 

e −u u k−1du , u = 
2t1/k 

λ0 

≤ λkkΓ(k) = λkk! 

[ ]

[ ]

[ ]
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23 1.3. Sub-exponential random variables 

The second statement follows from Γ(k) ≤ kk and k1/k ≤ e1/e ≤ 2 for any 
k ≥ 1. It yields (

λk kΓ(k)
)1/k ≤ 2λk . 

To control the MGF of X , we use the Taylor expansion of the exponential 
function as follows. Observe that by the dominated convergence theorem, for 
any s such that |s| ≤ 1/2λ 

∞ |s|kIE[|X |k]sX IE e ≤ 1 + 
k! 

k=2 

∞ 
≤ 1 + (|s|λ)k 

k=2 

∞ 
2λ2 = 1 + s (|s|λ)k 

k=0 

1 ≤ 1 + 2s 2λ2 |s| ≤ 
2λ 

2λ22s≤ e 

This leads to the following definition 

Definition 1.11. A random variable X is said to be sub-exponential with 
parameter λ (denoted X ∼ subE(λ)) if IE[X ] = 0 and its moment generating 
function satisfies 

2sX s /2IE e ≤ e λ2

, ∀|s| ≤ 1 . 
λ 

A simple and useful example of of a sub-exponential random variable is 
given in the next lemma. 

Lemma 1.12. Let X ∼ subG(σ2) then the random variable Z = X2 − IE[X2] 
is sub-exponential: Z ∼ subE(16σ2). 

∑

∑

[ ]

∑

[ ]
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24 1.3. Sub-exponential random variables 

Proof. We have, by the dominated convergence theorem, 

∞ k 
skIE X2 − IE[X2]sZ ]IE[e = 1 + 

k! 
k=2 

∞ 
sk2k−1

(
IE[X2k] + (IE[X2])k

)
≤ 1 + (Jensen) 

k! 
k=2 

∞ 
sk4kIE[X2k]≤ 1 + 

k=2 
2(k!) 

(Jensen again) 

≤ 1 + 

∞ 

k=2 

sk4k2(2σ2)kk! 

2(k!) 
(Lemma 1.4) 

∞ 
= 1 + (8sσ2)2 (8sσ2)k 

k=0 

= 1 + 128s 2σ4 for |s| ≤ 1 

16σ2 

2σ4128s≤ e . 

Sub-exponential random variables also give rise to exponential deviation 
inequalities such as Corollary 1.7 (Chernoff bound) or Theorem 1.9 (Hoeffd
ing’s inequality) for weighted sums of independent sub-exponential random 
variables. The significant difference here is that the larger deviations are con
trolled in by a weaker bound. 

Berstein’s inequality 

Theorem 1.13 (Bernstein’s inequality). Let X1, . . . , Xn be independent ran
dom variables such that IE(Xi) = 0 and Xi ∼ subE(λ). Define 

n
1

X̄ = Xi , 
n 
i=1 

Then for any t > 0 we have 

n t2 t¯ ¯IP( X > t) ∨ IP( X < −t) ≤ exp − ( ∧ ) . 
2 λ2 λ 

Proof. Without loss of generality, assume that λ = 1 (we can always replace 
Xi by Xi/λ and t by t/λ. Next, using a Chernoff bound, we get for any s > 0 

n 

¯ sXi −snt IP( X > t) ≤ IE e e . 
i=1 

∑

∑

∑

∑

∑

∏

[ ]

∑

[ ]

[ ]



  

25 1.4. Maximal inequalities 

sXi s 2Next, if |s| ≤ 1, then IE e ≤ e /2 by definition of sub-exponential distri
butions. It yields 

2 −snt ¯ 2IP( X > t) ≤ e ns 

Choosing s = 1 ∧ t yields 
− (t2∧t)¯ 2IP( X > t) ≤ e n 

¯We obtain the same bound for IP( X < −t) which concludes the proof. 

Note that usually, Bernstein’s inequality refers to a slightly more precise 
result that is qualitatively the same as the one above: it exhibits a Gaussian 

−nt /(2λ2 −nt/(2λ)tail e
2 ) and an exponential tail e . See for example Theorem 2.10 

in [BLM13]. 

1.4 MAXIMAL INEQUALITIES 

The exponential inequalities of the previous section are valid for linear com
binations of independent random variables, and in particular, for the average 
X̄ . In many instances, we will be interested in controlling the maximum over 
the parameters of such linear combinations (this is because of empirical risk 
minimization). The purpose of this section is to present such results. 

Maximum over a finite set 

We begin by the simplest case possible: the maximum over a finite set. 

Theorem 1.14. LetX1, . . . , XN be N random variables such that Xi ∼ subG(σ2). 
Then 

IE[ max Xi] ≤ σ
�
2 log(N) , and IE[ max |Xi|] ≤ σ

�
2 log(2N) 

1≤i≤N 1≤i≤N 

Moreover, for any t > 0, 

2σ2 2σ2IP
(
max Xi > t

)
≤ Ne− t2 , and IP

(
max |Xi| > t

)
≤ 2Ne− t2 

1≤i≤N 1≤i≤N 

Note that the random variables in this theorem need not be independent. 

[ ]
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s 

Proof. For any s > 0, 

1 s max1≤i≤N XiIE[ max Xi] = IE log e 
1≤i≤N s 

1 s max1≤i≤N Xi≤ log IE e (by Jensen) 
s 
1 

= log IE max e sXi 

s 1≤i≤N 

1 ≤ log IE e sXi 

s 
1≤i≤N 

21 σ2 

2≤ log e 
s 

1≤i≤N 

log N σ2s 
= + 

s 2 

Taking s = 
�
2(logN)/σ2 yields the first inequality in expectation. 

The first inequality in probability is obtained by a simple union bound: 

IP
(

max Xi > t
)
= IP
( 
 

{Xi > t}
)

1≤i≤N 
1≤i≤N

≤ IP(Xi > t) 
1≤i≤N 

2σ2≤ Ne− t2 , 

where we used Lemma 1.3 in the last inequality. 
The remaining two inequalities follow trivially by noting that 

max |Xi| = max Xi , 
1≤i≤N 1≤i≤2N 

where XN+i = −Xi for i = 1, . . . , N . 

Extending these results to a maximum over an infinite set may be impossi
ble. For example, if one is given an infinite sequence of i.i.d N (0, σ2) random 
variables X1, X2, . . . ,, then for any N ≥ 1, we have for any t > 0, 

IP( max Xi < t) = [IP(X1 < t)]N → 0 , N → ∞ . 
1≤i≤N 

On the opposite side of the picture, if all the Xis are equal to the same random 
variable X , we have for any t > 0, 

IP( max Xi < t) = IP(X1 < t) > 0 ∀N ≥ 1 . 
1≤i≤N 

In the Gaussian case, lower bounds are also available. They illustrate the effect 
of the correlation between the Xis 

]

]

]

∑ ]

∑

∑

[

[

[

[
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Examples from statistics have structure and we encounter many examples 
where a maximum of random variables over an infinite set is in fact finite. 
This is due to the fact that the random variable that we are considering are 
not independent from each other. In the rest of this section, we review some 
of these examples. 

Maximum over a convex polytope 

We use the definition of a polytope from [Gru03]: a convex polytope P is a 
compact set with a finite number of vertices V(P) called extreme points. It 
satisfies P = conv(V(P)), where conv(V(P)) denotes the convex hull of the 
vertices of P. 

LetX ∈ IRd be a random vector and consider the (infinite) family of random 
variables 

F = {θ⊤X : θ ∈ P} , 
where P ⊂ IRd is a polytope with N vertices. While the family F is infinite, the 
maximum over F can be reduced to the a finite maximum using the following 
useful lemma. 

⊤Lemma 1.15. Consider a linear form x  → c x, x, c ∈ IRd . Then for any 
convex polytope P ⊂ IRd , 

⊤ ⊤ max c x = max c x 
x∈P x∈V(P) 

where V(P) denotes the set of vertices of P. 

Proof. Assume that V(P) = {v1, . . . , vN }. For any x ∈ P = conv(V(P)), there 
exist nonnegative numbers λ1, . . . λN that sum up to 1 and such that x = 
λ1v1 + · · · + λN vN . Thus 

N N N 
⊤ ⊤

( )
⊤ ⊤ ⊤ c x = c λivi = λic vi ≤ λi max c x = max c x . 

x∈V(P) x∈V(P)
i=1 i=1 i=1 

It yields 
⊤ ⊤ ⊤ max c x ≤ max c x ≤ max c x 

x∈P x∈V(P) x∈P 

so the two quantities are equal. 

It immediately yields the following theorem 

Theorem 1.16. Let P be a polytope with N vertices v(1), . . . , v(N) ∈ IRd and let 
X ∈ IRd be a random vector such that, [v(i)]⊤X, i = 1, . . . , N are sub-Gaussian 
random variables with variance proxy σ2 . Then 

IE[max θ⊤X ] ≤ σ
�

2 log(N) , and IE[max |θ⊤X |] ≤ σ
�
2 log(2N) . 

θ∈P θ∈P 

Moreover, for any t > 0, 

2σ2 2σ2IP
(
max θ⊤X > t

)
≤ Ne− t2 , and IP

(
max |θ⊤X | > t

)
≤ 2Ne− t2 

θ∈P θ∈P 

∑ ∑ ∑
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Of particular interests are polytopes that have a small number of vertices. 
A primary example is the ℓ1 ball of IR

d defined for any radius R > 0, by 

d 

B1 = 
{
x ∈ IRd : |xi| ≤ 1} . 

i=1 

Indeed, it has exactly 2d vertices. 

Maximum over the ℓ2 ball 

Recall that the unit ℓ2 ball of IR
d is defined by the set of vectors u that have 

Euclidean norm |u|2 at most 1. Formally, it is defined by 

d{
2 

}
B2 = x ∈ IRd : x ≤ 1 .i 

i=1 

Clearly, this ball is not a polytope and yet, we can control the maximum of 
random variables indexed by B2. This is due to the fact that there exists a 
finite subset of B2 such that the maximum over this finite set is of the same 
order as the maximum over the entire ball. 

Definition 1.17. Fix K ⊂ IRd and ε > 0. A set N is called an ε-net of K 
with respect to a distance d(·, ·) on IRd, if N ⊂ K and for any z ∈ K, there 
exists x ∈ N such that d(x, z) ≤ ε. 

Therefore, if N is an ε-net of K with respect to norm 1 ·1, then every point 
of K is at distance at most ε from a point in N . Clearly, every compact set 
admits a finite ε-net. The following lemma gives an upper bound on the size 
of the smallest ε-net of B2. 

Lemma 1.18. Fix ε ∈ (0, 1). Then the unit Euclidean ball B2 has an ε-net N 
with respect to the Euclidean distance of cardinality |N | ≤ (3/ε)d 

Proof. Consider the following iterative construction if the ε-net. Choose x1 = 
0. For any i ≥ 2, take any xi to be any x ∈ B2 such that |x − xj |2 > ε for 
all j < i. If no such x exists, stop the procedure. Clearly, this will create an 
ε-net. We now control its size. 

Observe that since |x−y|2 > ε for all x, y ∈ N , the Euclidean balls centered 
at x ∈ N and with radius ε/2 are disjoint. Moreover, 

ε ε
 
{z + B2} ⊂ (1 + )B2

2 2
z∈N

where {z + εB2} = {z + εx , x ∈ B2}. Thus, measuring volumes, we get 

ε ε ε 
vol
(
(1 + )B2

)
≥ vol

( 
 
{z + B2}

)
= vol

(
{z + B2}

)
2 2 2 

z∈N z∈N 

∑

∑

∑
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This is equivalent to 
ε ε 

)d(1 + )d ≥ |N |( . 
2 2

Therefore, we get the following bound 

|N | ≤
(
1 + 

2)d (3)d 
≤ . 

ε ε 

Theorem 1.19. Let X ∈ IRd be a sub-Gaussian random vector with variance 
proxy σ2 . Then 

√ 
IE[max θ⊤X ] = IE[max |θ⊤X |] ≤ 4σ d . 

θ∈B2 θ∈B2 

Moreover, for any δ > 0, with probability 1− δ, it holds 

√ 
max θ⊤X = max |θ⊤X | ≤ 4σ d + 2σ

�
2 log(1/δ) . 

θ∈B2 θ∈B2 

Proof. Let N be a 1/2-net of B2 with respect to the Euclidean norm that 
satisfies |N | ≤ 6d . Next, observe that for every θ ∈ B2, there exists z ∈ N and 
x such that |x|2 ≤ 1/2 and θ = z + x. Therefore, 

max θ⊤X ≤ max z ⊤X + max x ⊤X 
θ∈B2 z∈N x∈ 1 

2B2 

But 
1⊤X ⊤X 

x∈ 1 2 x∈B2 

max x = max x 
2B2 

Therefore, using Theorem 1.14, we get 

√ 
IE[max θ⊤X ] ≤ 2IE[max z ⊤X ] ≤ 2σ

�
2 log(|N |) ≤ 2σ

�
2(log 6)d ≤ 4σ d . 

θ∈B2 z∈N 

The bound with high probability, follows because 

− t2 − t2 
8σ2 ≤ 6d 

8σ2 

θ∈B2 z∈N 
IP
(
max θ⊤X > t

)
≤ IP
(
2max z ⊤X > t

)
≤ |N |e e . 

To conclude the proof, we find t such that 

2 − t +d log(6) e 8σ2 ≤ δ ⇔ t2 ≥ 8 log(6)σ2d + 8σ2 log(1/δ) . 
√ 

Therefore, it is sufficient to take t = 
�
8 log(6)σ d + 2σ

�
2 log(1/δ) . 



�
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1.5 PROBLEM SET 

Problem 1.1. Let X1, . . . , Xn be independent random variables such that 
IE(Xi) = 0 and Xi ∼ subE(λ). For any vector a = (a1, . . . , an)

⊤ ∈ IRn, define 
the weighted sum 

n 

S(a) = aiXi , 
i=1 

Show that for any t > 0 we have 

t2 t 
IP(|S(a)| > t) ≤ 2 exp −C

(
λ2|a|2 ∧ λ|a|∞

)
. 

2 

for some positive constant C. 

Problem 1.2. A random variable X has χ2 (chi-squared with n degrees of n 
freedom) if it has the same distribution as Z1

2 + . . . +Z2, where Z1, . . . , Zn are n

iid N (0, 1). 

(a) Let Z ∼ N (0, 1). Show that the moment generating function of Y = 
Z2 − 1 satisfies 

−s
e

sY 
 √ if s < 1/2 

φ(s) := E e = 1− 2s 
∞ otherwise 

 

(b) Show that for all 0 < s < 1/2, 

2s( )
φ(s) ≤ exp . 

1− 2s

(c) Conclude that √ −tIP(Y > 2t + 2 t) ≤ e 
√ 

[Hint: you can use the convexity inequality 1 + u ≤ 1+u/2]. 

(d) Show that if X ∼ χ2 , then, with probability at least 1 − δ, it holds n

X ≤ n + 2
�
n log(1/δ) + 2 log(1/δ) . 

Problem 1.3. Let X1, X2 . . . be an infinite sequence of sub-Gaussian random 
variables with variance proxy σ2 = C(log i)−1/2 . Show that for C large enough, i 
we get 

IE max Xi < ∞ . 
i≥2 

∑

[ ]

[ ]

[ ]
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Problem 1.4. Let A = {Ai,j } 1≤i≤n be a random matrix such that its entries 
1≤j≤m 

are iid sub-Gaussian random variables with variance proxy σ2 . 

(a) Show that the matrix A is sub-Gaussian. What is its variance proxy? 

(b) Let 1A1 denote the operator norm of A defined by
 

|Ax|2
 
max . 
x∈IRm |x|2 

Show that there exits a constant C > 0 such that 
√ √ 

IE1A1 ≤ C( m + n) . 

Problem 1.5. Recall that for any q ≥ 1, the ℓq norm of a vector x ∈ IRn is 
defined by 

|x|q = 

n(
|xi|q 
)

i=1 

1 
q 

. 

Let X = (X1, . . . , Xn) be a vector with independent entries such that Xi is 
sub-Gaussian with variance proxy σ2 and IE(Xi) = 0. 

(a) Show that for any q ≥ 2, and any x ∈ IRd , 

1
2− 1 |x|2 ≤ |x|q n q , 

and prove that the above inequality cannot be improved 

(b) Show that for for any q > 1, 

1√ 
qIE|X |q ≤ 4σn q 

(c) Recover from this bound that 

IE max |Xi| ≤ 4eσ
�
log n . 

1≤i≤n 

Problem 1.6. Let K be a compact subset of the unit sphere of IRp that 
admits an ε-net Nε with respect to the Euclidean distance of IR

p that satisfies 
|Nε| ≤ (C/ε)d for all ε ∈ (0, 1). Here C ≥ 1 and d ≤ p are positive constants. 
Let X ∼ subGp(σ2) be a centered random vector. 

Show that there exists positive constants c1 and c2 to be made explicit such 
that for any δ ∈ (0, 1), it holds 

max θ⊤X ≤ c1σ
�
d log(2p/d) + c2σ

�
log(1/δ) 

θ∈K 

with probability at least 1−δ. Comment on the result in light of Theorem 1.19 . 

∑



�
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Problem 1.7. For any K ⊂ IRd, distance d on IRd and ε > 0, the ε-covering 
number C(ε) of K is the cardinality of the smallest ε-net of K. The ε-packing 
number P (ε) of K is the cardinality of the largest set P ⊂ K such that 

′ ′ d(z, z ′ ) > ε for all z, z ∈ P , z � z . Show that = 

C(2ε) ≤ P (2ε) ≤ C(ε) . 

Problem 1.8. Let X1, . . . , Xn be n independent and random variables such 
that IE[Xi] = µ and var(Xi) ≤ σ2 . Fix δ ∈ (0, 1) and assume without loss of 
generality that n can be factored into n = K · G where G = 8 log(1/δ) is a 
positive integers. 

For g = 1, . . . , G, let X̄g denote the average over the gth group of k variables. 
Formally 

gk 
1

X̄g = Xi . 
k 
i=(g−1)k+1 

1. Show that for any g = 1, . . . , G, 

IP X̄g − µ > √ 2σ ≤ 1 . 
k 4 

¯ ¯2. Let µ̂ be defined as the median of {X1, . . . , XG}. Show that 

2σ G 
IP µ̂ − µ > √ ≤ IP B ≥ , 

k 2 

where B ∼ Bin(G, 1/4). 

3. Conclude that 
2 log(1/δ)

IP µ̂ − µ > 4σ ≤ δ 
n 

4. Compare this result with 1.7 and Lemma 1.3. Can you conclude that 
µ̂− µ ∼ subG(σ̄2/n) for some σ̄2? Conclude. 

6

∑

6
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√
]
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