18.S34 (FALL 2007) LIMIT PROBLEMS

1. Let a and b be positive real numbers. Prove that

$$\lim_{n\to\infty} \left(a^n + b^n\right)^{1/n}$$

equals the larger of a and b. What happens when a = b?

2. Show that $\lim_{n\to\infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \log(n)\right)$ exists and lies between $\frac{1}{2}$ and 1.

NOTE. This number, known as *Euler's constant* and denoted γ , is probably the third most important constant in the theory of complex variables, after π and e. Numerically we have

 $\gamma = 0.57721566490153286060651209008240243104215933593992\cdots.$

It is a famous unsolved problem to decide whether γ is irrational.

3. (47P) If (a_n) is a sequence of numbers such that, for $n \geq 1$,

$$(2-a_n)a_{n+1}=1,$$

prove that $\lim_{n\to\infty} a_n$ exists and equals 1.

4. Let K be a positive real number. Take an arbitrary positive real number x_0 and form the sequence

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{K}{x_n} \right).$$

Show that $\lim_{n\to\infty} x_n = \sqrt{K}$. (REMARK. this is how most calculators determine \sqrt{K} .)

5. (70P) Given a sequence (x_n) such that $\lim_{n\to\infty} (x_n - x_{n-2}) = 0$, prove that

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{n} = 0.$$

6. Let $x_{n+1} = x_n^2 - 6x_n + 10$. For what values of x_0 is $\{x_n\}$ convergent, and how does the value of the limit depend on x_0 ?

- 7. (90P) Is $\sqrt{2}$ the limit of a sequence of numbers of the form $\sqrt[3]{n} \sqrt[3]{m}$, (n, m = 0, 1, 2, ...)? Justify your answer.
- 8. Let $x_0 = 1$ and $x_{n+1} = x_n + 10^{-10^{x_n}}$. Does $\lim_{n \to \infty} x_n$ exist? Explain.
- 9. (00P) Show that the improper integral

$$\lim_{B\to\infty} \int_0^B \sin(x) \sin(x^2) dx$$

converges.

10. Let x > 0. Define $a_1 = x$ and $a_{n+1} = x^{a_n}$ for $n \ge 1$. For which x does $\lim_{n \to \infty} a_n$ exist (and is finite)?

PART II

LIMITS. Two useful techniques are:

(a) L'Hôpital's rule. If $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$, then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{f'(0)}{g'(0)},$$

provided the derivatives in question exist. Some limits can be converted to this form by first taking logarithms, or by substituting 1/x for x, etc.

(b) If f(x) is reasonably well-behaved (e.g., continuous) on the closed interval [a, b], then

$$\lim_{i=1}^{n} f(x_i)(x_i - x_{i-1}) = \int_a^b f(x)dx,$$

where the limit is over any sequence of "partitions of [a, b]" $a = x_0 < x_1 < \cdots < x_n = b$ such that the maximum value of $x_i - x_{i-1}$ approaches 0. In particular, taking a = 0, b = 1, $x_i = i/n$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(i/n) = \int_{0}^{1} f(x) dx.$$

Sometimes a limit of products can be converted to this form by taking logarithms.

The next problems are all from the Putnam Exam.

11. Let a > 0, $a \neq 1$. Find

$$\lim_{x \to \infty} \left(\frac{1}{x} \frac{a^x - 1}{a - 1} \right)^{1/x}$$

12. Find

$$\lim_{n \to \infty} \left[\frac{1}{n^4} \prod_{i=1}^{2n} (n^2 + i^2)^{1/n} \right]$$

13. Let 0 < a < b. Evaluate

$$\lim_{t \to 0} \left[\int_0^1 (bx + a(1-x))^t dx \right]^{1/t}$$

14. Evaluate

$$\lim_{x \to 0} \frac{1}{x} \int_0^x (1 + \sin(2t))^{1/t} dt$$

15. Evaluate

$$\lim_{n \to \infty} \sum_{j=1}^{n^2} \frac{n}{n^2 + j^2}$$

16. Evaluate

$$\prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1}.$$

17. Evaluate

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\left\lfloor \frac{2n}{k} \right\rfloor - 2 \left\lfloor \frac{n}{k} \right\rfloor \right).$$

Express your answer in the form $\log(a) - b$, where a and b are positive integers.

18. Evaluate

$$\sqrt[8]{2207 - \frac{1}{2207 - \frac{1}{2207 - \dots}}}.$$

Express your answer in the form $\frac{a+b\sqrt{c}}{d}$, where a,b,c,d are integers.

- 19. Assume that $(a_n)_{n\geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_n/n=0$. Must there exist infinitely many positive integers n such that $a_{n-i}+a_{n+i}<2a_n$ for $i=1,2,\ldots,n-1$?
- 20. Evaluate

$$\lim_{x \to 1^{-}} \prod_{n=0}^{\infty} \left(\frac{1 + x^{n+1}}{1 + x^{n}} \right)^{x^{n}}.$$

21. Let k be an integer greater than 1. Suppose $a_0 > 0$, and define

$$a_{n+1} = a_n + \frac{1}{\sqrt[k]{a_n}}$$

for n > 0. Evaluate

$$\lim_{n \to \infty} \frac{a_n^{k+1}}{n^k}.$$