
18.S34 (FALL 2007) 

PROBLEMS ON “HIDDEN” INDEPENDENCE

AND UNIFORMITY


All the problems below (with the possible exception of the last one), 
when looked at the right way, can be solved by elegant arguments avoiding 
induction, recurrence relations, complicated sums, etc. They all have a vague 
theme in common, related to certain probabilities being either uniform or 
independent. However, it is not necessary to look at a problem from this 
point of view in order to find the elegant solution. If you solve a problem in 
a complicated way, the answer might suggest to you a simpler method. The 
problems are arranged in approximate order of increasing difficulty. 

1. Slips of paper with the numbers from 1 to 99 are placed in a hat. Five 
numbers are randomly drawn out of the hat one at a time (without 
replacement). What is the probability that the numbers are chosen in 
increasing order? 

2. In how	 many ways can a positive integer n be written as a sum of 
positive integers, taking order into account? For instance, 4 can be 
written as a sum in the eight ways 4 = 3 + 1 = 1 + 3 = 2 + 2 = 
2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1. 

3. How many 8 × 8 matrices of 0’s and 1’s are there, such that every row 
and column contains an odd number of 1’s? 

4. Let f(n) be the number of ways to take an n-element set S, and, if S 
has more than one element, to partition S into two disjoint nonempty 
subsets S1 and S2, then to take one of the sets S1, S2 with more than 
one element and partition it into two disjoint nonempty subsets S3 

and S4, then to take one of the sets with more than one element not 
yet partitioned and partition it into two disjoint nonempty subsets, 
etc., always taking a set with more than one element that is not yet 
partitioned and partitioning it into two nonempty disjoint subsets, until 
only one-element subsets remain. For example, we could start with 
12345678 (short for {1, 2, 3, 4, 5, 6, 7, 8}), then partition it into 126 and 
34578, then partition 34578 into 4 and 3578, then 126 into 6 and 12, 
then 3578 into 37 and 58, then 58 into 5 and 8, then 12 into 1 and 2, and 
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finally 37 into 3 and 7. (The order we partition the sets is important; 
for instance, partitioning 1234 into 12 and 34, then 12 into 1 and 2, and 
then 34 into 3 and 4, is different from partitioning 1234 into 12 and 34, 
then 34 into 3 and 4, and then 12 into 1 and 2. However, partitioning 
1234 into 12 and 34 is the same as partitioning it into 34 and 12.) Find 
a simple formula for f(n). For instance, f(1) = 1, f(2) = 1, f(3) = 3, 
and f(4) = 18. 

5. Fix positive integers n and k. Find the number of k-tuples (S1, S2, . . . , Sk) 
of subsets Si of {1, 2, . . . , n} subject to each of the following conditions: 

(a)	 S1 ∅ S2 ∅ · · · ∅ Sk 

(b) The Si’s are pairwise disjoint. 

(c)	 S1 ≡ S2 ≡ · · · ≡ Sk = � 

(d)	 S1 ∅ S2 ≤ S3 ∅ S4 ≤ S5 ∅ · · · Sk (The symbols ∅ and ≤ 
alternate.) 

6. Let p be a prime number and 1 � k � p − 1. How many k-element 
subsets {a1, . . . , ak} of {1, 2 . . . , p} are there such that a1 + · · · + ak � 0 
(mod p)? 

7. Let � be a random permutation of 1, 2, . . . , n. Fix a positive integer 1 � 
k � n. What is the probability that in the disjoint cycle decomposition 
of �, the length of the cycle containing 1 is k? In other words, what is 
the probability that k is the least positive integer for which �k(1) = 1? 

8. Choose	 n real numbers x1, . . . , xn uniformly and independently from 
the interval [0, 1]. What is the expected value of mini xi, the minimum 
of x1, . . . , xn? 

9.	 (a) Let m and n be nonnegative integers. Evaluate the integral 

� 
1 

B(m, n) = x m(1 − x)ndx, 
0 

by interpreting the integral as a probability. 

(b) (from the 1984 Putnam Exam) Let R be the region consisting of all 
triples (x, y, z) of nonnegative real numbers satisfying x+y+z � 1. 
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Let w = 1 − x − y − z. Express the value of the triple integral 
(taken over the region R) 

� � � 
x 1 y 9 z 8 w 4 dx dy dz 

in the form a! b! c! d!/n!, where a, b, c, d, and n are positive 
integers. 

10.	 (a) Choose n points at random (uniformly and independently) on the 
circumference of a circle. Find the probability pn that all the 
points lie on a semicircle. (For instance, p1 = p2 = 1.) 

(b) More generally,	 fix � < 2� and find the probability that the n 
points lie on an arc subtending an angle � . 

(c) (Problem A6, 1992 Putnam Exam) Choose four points at random 
on the surface of a sphere. Find the probability that the center of 
the sphere is contained within the convex hull of the four points. 

(d) Choose n points uniformly at random in a square (or more gener
ally, a parallelogram). Show that the probability that the points 
are in convex position (i.e., each is a vertex of their convex hull) 
is given by 

�	 � ��2
1	 2n − 2 

Pn =	 . 
n!	 n − 1 

11. Let x1, x2, . . . , xn be n points (in that order) on the circumference of 
a circle. A person starts at the point x1 and walks to one of the two 
neighboring points with probability 1/2 for each. The person continues 
to walk in this way, always moving from the present point to one of 
the two neighboring points with probability 1/2 for each. Find the 
probability pi that the point xi is the last of the n points to be visited 
for the first time. In other words, find the probability that when xi 

is visited for the first time, all the other points will have already been 
visited. For instance, p1 = 0 (when n > 1), since x1 is the first of the 
n points to be visited. 

12. There	 are n parking spaces 1, 2, . . . , n (in that order) on a one-way 
street. Cars C1, . . . , Cn enter the street in that order and try to park. 
Each car Ci has a preferred space ai. A car will drive to its preferred 
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space and try to park there. If the space is already occupied, the car 
will park in the next available space. If the car must leave the street 
without parking, then the process fails. If � = (a1, . . . , an) is a sequence 
of preferences that allows every car to park, then we call � a parking 
function. For instance, there are 16 parking functions of length 3, given 
by (abbreviating (1, 1, 1) as 111, etc.) 111, 112, 121, 211, 113, 131, 311, 
122, 212, 221, 123, 132, 213, 231, 312, 321. Show that the number of 
parking functions of length n is equal to (n + 1)n−1 . 

13. A snake on the 8×8 chessboard is a nonempty subset S of the squares of 
the board obtained as follows: Start at one of the squares and continue 
walking one step up or to the right, stopping at any time. The squares 
visited are the squares of the snake. Here is an example of the 8 × 8 
chessboard covered with disjoint snakes. 

Find the total number of ways to cover an 8×8 chessboard with disjoint 
snakes. Generalize to an m × n chessboard. 

14. (unsolved) Let	 n be a positive integer and k a nonnegative integer. 
Let x and yij be indeterminates, for 1 � i < j � n. Let f(n, k) 
be the number of sequences consisting of n x’s and 2k yij’s (for all 
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1 � i < j � n), such that all the yij’s occur between the ith and jth 
x. It is known (by a difficult evaluation of an integral) that 

(kn)! (n + kn(n − 1))! 
n−1 

(jk)!3 

f(n, k) = . 
n! k!n(2k)!(

n) 
j=0 

(1 + k(n − 1 + j))!2

Is there a simple proof along the lines of the previous problems? 
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