18.S34 PROBLEMS \#5

Fall 2007

50. [1] A person buys a 30 -year $\$ 100,000$ mortgage at an annual rate of 8%. What is his or her monthly payment?
51. (a) [1] Person A chooses an integer between 0 and $2^{11}-1$, inclusive. Person B tries to guess A 's number by asking yes-no questions. What is the minimum number of questions needed to guarantee that B finds A 's number? Can the questions all be chosen in advance in an elegant way?
(b) [2.5] What if A is allowed to lie at most once?
52. [1] Let M be an $n \times n$ symmetric matrix such that each row and column is a permutation of $1,2, \ldots, n$. ("Symmetric" means that the entry in row i and column j is the same as the entry in row j and column i.) If n is odd, then show that every number $1,2, \ldots, n$ appears exactly once on the main diagonal. For instance,

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 1 & 5 & 3 \\
3 & 1 & 5 & 2 & 4 \\
4 & 5 & 2 & 3 & 1 \\
5 & 3 & 4 & 1 & 2
\end{array}\right]
$$

53. [1] Find all 10 digit numbers $a_{0} a_{1} \cdots a_{9}$ such that a_{i} is the number of digits equal to i, for all $0 \leq i \leq 9$.
54. [1] Two circles of radius one pass through each other's centers. What is the area of their intersection?

55. (a) [2] Given any 1000 points in the plane, show that there is a circle which contains exactly 500 of the points in its interior, and none on its circumference.
(b) [3] Given 1001 points in the plane, no three collinear and no four concyclic (i.e., no four on a circle), show that that there are exactly 250,000 circles with three of the points on the circumference, 499 points inside, and 499 points outside.
56. (a) [2.5] Let n be an integer, and suppose that $n^{4}+n^{3}+n^{2}+n+1$ is divisible by k. Show that either k or $k-1$ is divisible by 5 . Hint. First show that one may assume that k is prime. Use Fermat's theorem for the prime k, which states that if m is not divisible by k, then $m^{k-1}-1$ is divisible by k. Try to avoid more sophisticated tools.
(b) [2] Deduce that there are infinitely many primes of the form $5 j+1$.
57. [2] A cylindrical hole is drilled straight through and all the way through the center of a sphere. After the hole is drilled, its length is six inches. What is the volume that remains?
58. [2.5] Let T be a triangle. Erect an equilateral triangle on each side of T (facing outwards). Show that the centers of these equilateral triangles form the vertices of an equilateral triangle.

59. [5] Define a sequence X_{0}, X_{1}, \ldots of rational numbers by $X_{0}=2$ and $X_{n+1}=X_{n}-\frac{1}{X_{n}}$ for $n \geq 0$. Is the sequence bounded?
60. Let $B=\mathbb{Z} \times \mathbb{Z}$, regarded as an infinite chessboard. (Here \mathbb{Z} denotes the set of integers.) Suppose that counters are placed on some subset
of the points of B. A counter can jump over another counter one step vertically or horizontally to an empty point, and then remove the counter that was jumped over. Given $n>0$, let $f(n)$ denote the least number of counters that can be placed on B such that all their y coordinates are ≤ 0, and such that by some sequence of jumps it is possible for a counter to reach a point with y-coordinate equal to n. For instance, $f(1)=2$, as shown by the following diagram.

Similarly $f(2)=4$, as shown by:

(a) [2] Show that $f(3)=8$ (or at least that $f(3) \leq 8$ by constructing a suitable example).
(b) [2.5] Show that $f(4)=20$ (or at least that $f(4) \leq 20$).
(c) [3] Find an upper bound for $f(5)$.
61. [3.5] Generalize Problem 12 to n dimensions as follows. Show that there exist $n+1$ lattice points (i.e., points with integer coordinates) in \mathbb{R}^{n} such that any two of them are the same distance apart if and only if n satisfies the following conditions:
(a) If n is even, then $n+1$ is a square.
(b) If $n \equiv 3(\bmod 4)$, then it is always possible.
(c) If $n \equiv 1(\bmod 4)$, then $n+1$ is a sum of two squares (of nonnegative integers). The well-known condition for this is that if $n+1=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ is the factorization of $n+1$ into prime powers, then a_{i} is even whenever $p_{i} \equiv 3(\bmod 4)$.

