18.S34 PROBLEMS \#4

FALL 2007

39. [1] Three students A, B, C compete in a series of tests. For coming in first in a test, a student is awarded x points; for coming second, y points; for coming third, z points. Here x, y, z are positive integers with $x>y>z$. There were no ties in any of the tests. Altogether A accumulated 20 points, $B 10$ points, and $C 9$ points. Student A came in second in the algebra test. Who came in second in the geometry test?
40. [1] Remove the upper-left and lower-right corner squares from an 8×8 chessboard. Show that the resulting board cannot be covered by 31 dominoes. (A domino consists of two squares with an edge in common.)
41. [1] Mr. X brings some laundry from his house to a nearby river. After washing it in the river, he delivers it to Ms. Y who lives on the same side of the river.

At what point on the river should Mr. X bring the laundry in order to travel the least possible distance? Try to do this problem without using calculus. (Assume of course that the river is a straight line.)
42. [2] An antimagic square is an $n \times n$ matrix whose entries are the distinct integers $1,2, \ldots, n^{2}$ such that any set of n entries, no two in the same row or column, have the same sum of their elements. For instance,

$$
\left[\begin{array}{rrrr}
14 & 8 & 16 & 6 \\
9 & 3 & 11 & 1 \\
10 & 4 & 12 & 2 \\
13 & 7 & 15 & 5
\end{array}\right]
$$

For what values of n do there exist $n \times n$ antimagic squares?
43. [1] Let $f(n)$ be the number of regions which are formed by n lines in the plane, where no two lines are parallel and no three meet in a point. E.g., $f(4)=11$.

Find a simple formula for $f(n)$.
44. [2.5] Define a sequence $a_{0}, a_{1}, a_{2}, \ldots$ of integers as follows: $a_{0}=0$, and given $a_{0}, a_{1}, \ldots, a_{n}$, then a_{n+1} is the least integer greater than a_{n} such that no three distinct terms (not necessarily consecutive) of $a_{0}, a_{1}, \ldots, a_{n+1}$ are in arithmetic progression. (This means that for no $0 \leq i<j<k \leq n+1$ do we have $a_{j}-a_{i}=a_{k}-a_{j}$.) Find a simple rule for determining a_{n}. For instance, what is $a_{1000000}$? The sequence begins $0,1,3,4,9,10,12, \ldots$.
45. (a) [1] Let a, b, m, n be positive integers. Suppose that an $m \times n$ checkerboard can be tiled with $a \times b$ boards (in any orientation), i.e., the $a \times b$ boards can be placed on the $m \times n$ board to cover it completely, with no overlapping of the interiors of the $a \times b$ boards. Show that $m n$ is divisible by $a b$.
(b) [2.5] Assuming the condition of (a), show in fact that at least one of m and n is divisible by a. (Thus by symmetry, at least one of
m and n is divisible by b.) For instance, a 6×30 board cannot be tiled with 4×3 boards.
(c) [2.5] Generalize (b) to any number of dimensions.
46. [2.5] Let R be a rectangle whose sides can have any positive real lengths. Show that if R can be tiled with finitely many rectangles all with at least one side of integer length, then R has at least one side of integer length.
47. [3] A polygon is a plane region enclosed by non-intersecting straight line segments, such as

A polygon P is convex if any straight line segment whose endpoints lie in P lies entirely in P. For instance, the above polygon is not convex, but

is convex. Can a convex polygon be dissected into non-convex quadrilaterals? (A quadrilateral is a four-sided polygon. The non-convex quadrilaterals in the above question may be of any size and shape, provided none are convex.) This problem was formulated and solved by a Berkeley undergraduate; none of the mathematics professors to whom he showed it were able to solve it.
48. (a) [3] Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. Assume that f is a polynomial in each variable separately, i.e., for all $a \in \mathbb{R}$, the functions $f(a, x)$ and $f(x, a)$ are polynomials in x. Prove that $f(x, y)$ is a polynomial in x and y.
(b) $[2.5]$ Show that (a) is false if \mathbb{R} is replaced by \mathbb{Q} (the rational numbers).
49. [3.5] Does there exist a polynomial $f(x)$ with real coefficients such that $f(x)^{2}$ has fewer nonzero coefficients than $f(x)$?

