18.S34 PROBLEMS \#3

Fall 2007

28. [1] Let $x, y>0$. The harmonic mean of x and y is defined to be $2 x y /(x+y)$. The geometric mean is $\sqrt{x y}$. The arithmetic mean (or average) is $(x+y) / 2$. Show that

$$
\frac{2 x y}{x+y} \leq \sqrt{x y} \leq \frac{x+y}{2}
$$

with equality if and only if $x=y$.
29. [1] A car travels one mile at a speed of $x \mathrm{mi} / \mathrm{hr}$ and another mile at y $\mathrm{mi} / \mathrm{hr}$. What is the average speed? What kind of mean of x and y is this?
30. [1] Consider two telephone poles of heights x and y. Connect the top of each pole to the bottom of the other with a rope. What is the height of the point where the ropes cross? What kind of mean is this related to?

31. [1] Given two line segments of lengths x and y, describe a simple geometric construction for constructing a segment of length $\sqrt{x y}$.
32. [1] Suppose x and y are real numbers such that $x^{2}+y^{2}=x+y$. What is the largest possible value of x ?
33. [2.5] (a) Let $x, y>0$ and $p \neq 0$. The p-th power mean of x and y is defined to be

$$
M_{p}(x, y)=\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p}
$$

Note that $M_{-1}(x, y)$ is the harmonic mean and $M_{1}(x, y)$ is the arithmetic mean. If $p<q$, then show that

$$
M_{p}(x, y) \leq M_{q}(x, y),
$$

with equality if and only if $x=y$.
(b) Compute $\lim _{p \rightarrow \infty} M_{p}(x, y), \lim _{p \rightarrow 0} M_{p}(x, y), \lim _{p \rightarrow-\infty} M_{p}(x, y)$.
34. [3.5] Let $x, y>0$. Define two sequences x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots as follows:

$$
\begin{aligned}
x_{1} & =x & y_{1} & =y \\
x_{n+1} & =\frac{x_{n}+y_{n}}{2} & y_{n+1} & =\sqrt{x_{n} y_{n}}, \quad n>1 .
\end{aligned}
$$

It's not hard to see that $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$. This limit is denoted $A G(x, y)$ and is called the arithmetic-geometric mean of x and y. Show that

$$
A G(x, y)=\frac{\pi}{\int_{0}^{\pi} \frac{d \theta}{\sqrt{x^{2} \sin ^{2} \theta+y^{2} \cos ^{2} \theta}}}
$$

35. Let $x>0$. Define

$$
f(x)=x^{x^{x^{+}}} .
$$

More precisely, let $x_{1}=x$ and $x_{n+1}=x^{x_{n}}$ if $n>1$, and define $f(x)=$ $\lim _{n \rightarrow \infty} x_{n}$.
(a) [1] Compute $f(\sqrt{2})$.
(b) [3.5] For what values of x does $f(x)$ exist?
36. [2] Let T be an equilateral triangle. Find all points x in T that minimize the sum $a+b+c$ of the distances a, b, c of x from the three sides of T.

37. [3] Let F_{n} denote the nth Fibonacci number. Let p be a prime not equal to 5 . Show that either F_{p-1} or F_{p+1} is divisible by p. Which?
38. Fix an integer $n>0$. Let $f(n)$ be the most number of rectangles into which a square can be divided so that every line which is parallel to one of the sides of the square intersects the interiors of at most n of the rectangles. For instance, in the following figure there are five rectangles, and every horizontal or vertical line intersects the interior of at most 3 of them. This is not best possible, since we can obviously do the same with nine rectangles.

(a) [2] It is obvious that $f(n) \geq n^{2}$. Show that in fact $f(n)>n^{2}$ for $n \geq 3$.
(b) [3] Show that $f(n)<\infty$, i.e., for any fixed n we cannot divide a square into arbitrarily many rectangles with the desired property. In fact, one can show $f(n) \leq n^{n}$.
(c) [5] Find the actual value of $f(n)$. The best lower bound known is $f(n) \geq 3 \cdot 2^{n-1}-2$.

