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PROFESSOR: OK. Well, last time I was lecturing, we were talking about regression analysis. And

we finished up talking about estimation methods for fitting regression models. I want

to recap the method of maximum likelihood, because this is really the primary

estimation method in statistical modeling that you start with. And so let me just

review where we were.

We have a normal linear regression model. A dependent variable y is explained by

a linear combination of independent variables given by a regression parameter,

beta. And we assume that there are errors about all the cases which are

independent identically distributed normal random variables.

So because of that relationship, the dependent variable vector, y, which is an n

vector for n cases, is a multivariate normal random variable. Now, the likelihood

function is equal to the density function for the data. And there's some ambiguity

really about how one manipulates the likelihood function.

The likelihood function becomes defined once we've observed a sample of data. So

in this expression for the likelihood function as a function of beta and sigma

squared, we're considering evaluating the probability density function for the data

conditional on the unknown parameters.

So if this were simply a univariate normal distribution with some unknown mean and

variance, then what we would have is just a bell curve for mu centered around a

single observation, y, if you look at the likelihood function and how it varies with the

underlying mean of the normal distribution. So this likelihood function is-- well, the

challenge really in maximum estimation is really calculating and computing the

likelihood function.
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And with normal linear regression models, it's very easy. Now, the maximum

likelihood estimates are those values that maximize this function. And the question

is, why are those good estimates of the underlying parameters? Well, what those

estimates do is they are the parameter values for which the observed data is most

likely.

So we're able to scale the unknown parameters by how likely those parameters

could have generated these data values. So let's look at the likelihood function for

this normal linear regression model. These first two lines here are highlighting-- the

first line is highlighting that our response variable values are independent. They're

conditionally independent given the unknown parameters.

And so the density of the full vector of y's is simply the product of the density

functions for those components. And because this is a normal linear regression

model, each of the y i's is normally distributed. So what's in there is simply the

density function of a normal random variable with mean given by the beta sum of

independent variables for each i, case i, given by the regression parameters.

And that expression basically can be expressed in matrix form this way. And what

we have is the likelihood function ends up being a function of our q of beta, which

was our least squares criteria. So the least squares estimation is equivalent to

maximum likelihood estimation for the regression parameters if we have a normal

linear regression model.

And there's this extra term, minus n. Well, actually, if we're going to maximize the

likelihood function, we can also maximize the log of the likelihood function, because

that's just a monotone function of the likelihood. And it's easier to maximize the log

of the likelihood function which is expressed here.

And so we're able to maximize over beta by minimizing q of beta. And then we can

maximize over sigma squared given our estimate for beta. And that's achieved by

taking the derivative of the log likelihood with respect to sigma squared.

So we basically have this forced order condition that finds the maximum because
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things are appropriately convex. And taking that derivative and solving for zero, we

basically get this expression. So this is just taking the derivative of the log likelihood

with respect to sigma squared.

And you'll notice here I'm taking the derivative with respect to sigma squared is a

parameter, not sigma. And that gives us that the maximum likelihood estimate of the

error variance is q of beta hat over n. So this is the sum of the squared residuals

divided by n. Now, I emphasize here that that's biased. Who can tell me why that's

biases or why it ought to be biased?

AUDIENCE: [INAUDIBLE].

PROFESSOR: OK. Well, it should be n minus 1 if we're actually estimating one parameter. So if the

independent variables were, say, a constant, 1, so we're just estimating a sample

from a normal with mean beta 1 corresponding to the unit's vector of the x, then we

would have a 1 degree of freedom correction to the residuals to get an unbiased

estimator.

But what if we have p parameters? Well, let me ask you this. What if we had n

parameters in our regression model? What would happen if we had a full rank in

independent variable matrix and n independent observations?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yes, you'd have an exact fit to the data. So this estimate would be 0. And so clearly,

if the data do arise from a normal linear regression model, 0 is not unbiased. And

you need to have some correction. Turns out you need to divide by n minus the

rank of the x matrix, the degrees of freedom in the model, to get a biased estimate.

So this is an important issue, highlights how the more parameters you add in the

model, the more precise your fitted values are. In a sense, there's dangers of curve

fitting which you want to avoid. But the maximum likelihood estimates, in fact, are

biased. You just have to be aware of that. And when you're using different software,

fitting different models, you need to know whether there are various corrections be

made for biasness or not.
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So this solves the estimation problem for normal linear regression models. And

when we have normal linear regression models, the theorem we went through last

time-- this is very important. Let me just go back and highlight that for you.

This theorem right here. This is really a very important theorem indicating what is

the distribution of the least squares, now the maximum likelihood estimates. Of our

regression model? They are normally distributed. And the residuals, sum of

squares, have a chi squared distribution with degrees of freedom given by n minus

p.

And we can look at how much signal to noise there is in estimating our regression

parameters by calculating a t statistic, which is take away from an estimate Its

expected value, its mean, and divide through by an estimate of the variability in

standard deviation units. And that will have a t distribution.

So that's a critical way to assess the relevance of different explanatory variables in

our model. And this approach will apply with maximum likelihood estimation in all

kinds of models apart from normal linear regression models. It turns out maximum

likelihood estimates generally are asymptotically normally distributed. And so these

properties here will apply for those models as well.

So let's finish up these nodes on estimation by talking about generalized m

estimation. So what we want to consider is estimating unknown parameters by

minimizing some function, q of beta, which is a sum of evaluations of another

function, h, evaluated for each of the individual cases. And choosing h to take on

different functional forms will define different kinds of estimators.

We've seen how when h is simply the square of the case minus its regression

prediction, that leads to least squares, and in fact, maximum likelihood estimation,

as we saw before. Rather than taking the square of the residual, the fitted residual,

we could take simply the modulus of that. And so that would be the mean absolute

deviation.

So rather than summing the squared deviations from the mean, we could sum the
4



absolute deviations from the mean. Now, from a mathematical standpoint, if we

want to solve for those estimates, how would you go about doing that? What

methodology would you use to maximize this function?

Well, we try and apply basicaly the same principles of if this is a convex function,

then we just want to take derivatives of that and solve for that being equal to 0. So

what happens when you take the derivative of the modulus of y minus xi beta with

respect to beta?

AUDIENCE: [INAUDIBLE].

PROFESSOR: What did you say? What did you say?

AUDIENCE: Yeah, it's not [INAUDIBLE]. The first [INAUDIBLE] derivative is not continuous.

PROFESSOR: OK. Well, this is not a smooth function. But let me just plot xi beta here, and yi minus

that. Basically, this is going to be a function that has slope 1 when it's positive and

slope minus 1 when it's negative. And so that will be true, component wise, or for

the y. So what we end up wanting to do is find the value of the regression estimate

that minimizes the sum of predictions that are below the estimate plus the sum of

the predictions that are above the estimate given by the regression line.

And that solves the problem. Now, with the maximum likelihood estimation, one can

plug in minus log the density of yi given beta x and sigma i squared. And that

function simply sums to the log of the joint density for all the data. So that works as

well.

With robust m estimators, we can consider another function, chi, which can be

defined to have good properties with estimates. And there's a whole theory of

robust estimation-- it's very rich-- which talks about how best to specify this chi

function. Now, one of the problems with least squares estimation is that the squares

of very large values are very, very large in magnitude.

So there's perhaps an undue influence of very large values, very large residuals

under least squares estimation and maximum [INAUDIBLE] estimation. So robust
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estimators allow you to control that by defining the function differently. Finally, there

are quantile estimators, which extend the mean absolute deviation criterion.

And so if we consider the h function to be basically a multiple of the deviation if the

residual is positive and a different multiple, a complimentary multiple if the

derivation, the residual, is less than 0, then by varying tau, you end up getting

quantile estimators, where what you're doing is minimizing the estimate of the tau

quantile.

So this general class of m estimators encompasses most estimators that we will

encounter in fitting models. So that finishes the technical or the mathematical

discussion of regression analysis. Let me highlight for you-- there's a case study

that I dragged to the desktop here. And I wanted to find that.

Let me find that. There's a case study that's been added to the course website. And

this first one is on linear regression models for asset pricing. And I want you to read

through that just to see how it applies to fitting various simple linear regression

models. And enter full screen.

This case study begins by introducing the capital asset pricing model, which

basically suggests that if you look at the returns on any stocks in an efficient market,

then those should depend on the return of the overall market but scaled by how

risky the stock is. And so if one looks at basically what the return is on the stock on

the right scale, you should have a simple linear regression model.

So here, we just look at a time series for GE stock in the S&P 500. And the case

study guide through how you can actually collect this data on the web using r. And

so the case notes provide those details. There's also the three-month treasury rate

which is collected. And so if you're thinking about return on the stock versus return

on the index, well, what's really of interest is the excess return over a risk free rate.

And the efficient markets models, basically the excess return of a stock is related to

the excess return of the market as given by a linear regression model. So we can fit

this model. And here's a plot of the excess returns on a daily basis for GE stock
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versus the market.

So that looks like a nice sort of point cloud for which a linear model might fit well.

And it does. Well, there are regression diagnostics, which I'll get to-- well, there are

regression diagnostics which are detailed in the problem set, where we're looking at

how influential are individual observations, what's their impact on regression

parameters.

This display here basically highlights with a very simple linear regression model

what are the influential data points. And so I've highlighted in red those values which

are influential. Now, if you look at the definition of leverage in a linear model, it's

very simple. A simple linear model is just those observations that are very far from

the mean have large leverage.

And so you can confirm that with your answers to the problem set. This x indicates a

significantly influential point in terms of the regression parameters given by Cook's

distance. And that definition is also given in the case notes.

AUDIENCE: [INAUDIBLE].

PROFESSOR: By computing the individual leverages with a function that's given here, and by

selecting out those that exceed a given magnitude. Now, with this very, very simple

model of stocks depending on one unknown factor, risk factor given the market, in

modeling equity returns, there are many different factors that can have an impact

on returns.

So what I've done in the case study is to look at adding another factor which is just

the return on crude oil. And so-- I need to go down here. So let me highlight

something for you here With GE's stock, what would you expect the impact of, say,

a high return on crude oil to be on the return of GE stock? Would you expect it to be

positively related or negatively related?

OK. Well, GE is a stock that's just a broad stock invested in many different

industries. And it really reflects the overall market, to some extent. Many years ago,

10, 15 years ago, GE represented maybe 3% of the GNP of the US market. So it
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was really highly related to how well the market does.

Now, crude oil is a commodity. And oil is used to drive cars, to fuel energy

production. So if you have an increase in oil prices, then the cost of essentially

doing business goes up. So it is associated with an inflation factor. Prices are rising.

So if you can see here, the regression estimate, if we add in the factor of the return

on crude oil, it's negative 0.03. And it has a t value of minus 3.561. So in fact, the

market, in a sense, over this period, for this analysis, was not efficient in explaining

the return on GE crude oil is another independent factor that helps explain returns.

So that's useful to know. And if you are clever about defining and identifying and

evaluating different factors, you can build factor asset pricing models that are very,

very useful for investing and trading. Now, as a comparison to this case study, also

applied the same analysis to Exxon Mobil. Now, Exxon Mobil is an oil company. So

let me highlight this here.

We basically are fitting this model. Now let's highlight it. Here, if we consider this two

factor model, the regression parameter corresponding to the crude oil factor is plus

0.13 with a t value of 16. So crude oil definitely has an impact on the return of Exxon

Mobil, because it goes up and down with oil prices.

This case study closes with a scatter plot of the independent variables and

highlighting where the influential values are. And so just in the same way that with a

simple linear regression it was those that were far away from the mean of the data

were influential, in a multivariate setting here, it's bivariate, the influential

observations are those that are very far away from the centroid.

And if you look at one of the problems in the problem set, it actually goes through

and you can see where these leveraged values are and how it indicates influences

associated with the Mahalanobis distance of cases from the centroid of the

independent variables. So if you're a visual type mathematician as opposed to an

algebraic type mathematician, I think these kinds of graphs are very helpful in

understanding what is really going on.
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And the degree of influence is associated with the fact that we're basically taking

least squares estimates, so we have the quadratic form associated with the overall

process. There's another case study that I'll be happy to discuss after class or

during office hours. I don't think we have time today during the lecture. But it

concerns exchange rate regimes.

And the second case study looks at the Chinese Yuan, which was basically pegged

to the dollar for many years. And then I guess through political influence from other

countries, they started to let the Yuan vary from the Dollar, but perhaps pegged it to

some basket of securities of currencies. And so how would you determine what that

basket of currencies is?

Well, there are regression methods that have been developed by economists that

help you do that. And that case study goes through the analysis of that. So check

that out to see how you can get immediate access to currency data and be fitting

these regression models and looking at the different results and trying to evaluate

those.

So let's turn now to the main topic-- let's see here-- which is time series analysis.

Today in the rest of the lecture, I want to talk about univariate time series analysis.

And so we're thinking of basically a random variable that is observed over time and

its discrete time process. And we'll introduce you to the Wold representation

theorem and definitions of stationarity and its relationship there.

Then, look at the classic models of how autoregressive moving average models.

And then extending those to nonstationarity with integrated autoregressive moving

average models. And then finally, talk about estimating stationary models and how

we test for stationarity.

So let's begin from basically first principles. We have a stochastic process, a

discrete time stochastic process, x, which consists of random variables indexed by

time. And we're thinking now discrete time. The stochastic behavior of this

sequence is determined by specifying the density or probability mass functions for

all finite collections of time indexes.
9



And so if we could specify all finite dimensional distributions of this process, we

would specify this probability model for the stochastic process. Now, this stochastic

process is strictly stationary if the density function for any collection of times, t1

through tm, is equal to the density function for a tau translation of that.

So the density function for any finite dimensional distribution is stationary is constant

under arbitrary translations. So that's a very strong property. But it's a reasonable

property to ask for if you're doing statistical modeling. And what do you want to do

when you're estimating models? You want to estimate things that are constant.

Constants are nice things to estimate.

And parameters [INAUDIBLE] are constant. So we really want the underlying

structure of the distributions to be the same. That was strict stationarity, which

requires knowledge of the entire distribution of the stochastic process. We're now

going to introduce a weaker definition, which is covariance stationarity. And a

covariant stationary process has a constant mean, mu, a constant variance, sigma

squared, and a covariance over increments tau, given by a function gamma of tau

that is also constant.

Gamma isn't a constant function, but basically for all t, covariance of xt, xt plus tau is

this gamma of tau function. And we also can introduce the autocorrelation function

of the stochastic process, rho of tau. And so the correlation of two random variables

is the covariance of those random variables divided by the square root of the

product of the variances.

And [INAUDIBLE] I think introduced that a bit. in one of his lectures, where we were

talking about the correlation function. But essentially, the correlation function is if

you standardize the data or the random variables to have mean 0-- so subtract off

the means and then divide through by their standard deviations. So those translated

variables have mean 0 and variance 1. Then the correlation coefficient is the

covariance between those standardized random variables.

So this is going to come up again and again in time series analysis. Now, the Wold
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representation theorem is a very, very powerful theorem about covariant stationary

processes. It basically states that if we have a zero mean covariance stationary time

series, then it can be decomposed into two components at a very nice structure.

Basically, xt can be decomposed into vt plus st. vt is going to be a linearly

deterministic process, meaning that past values of vt perfectly predict what vt is

going to be. So this could be like a linear trend or some fixed function of past

values. It's basically a deterministic process. So there's nothing random in vt. It's

something that's fixed without randomness.

And st is a sum of coefficients, psi i times eta t minus i, where the eta t's are linearly

unpredictable white noise. So what we have is st is a weighted average of white

noise with coefficients given by the psi i. And the coefficients psi i such that psi 0 is

1. And the sum of the squared psi i's is finite.

And the white noise eta t-- what's white noise? It has expectation zero. It has

variance given by sigma squared that's constant. And it has covariance across

different white noise elements that's 0 for all t and s. So eta t's are uncorrelated with

themselves, and of course, they are uncorrelated with the deterministic process. So

this is really a very, very powerful concept.

If you are modeling a process and it has covariant stationarity, then there exists a

representation like this of the function. So it's a very compelling structure, which

we'll see how it applies in different circumstances. Now, before getting into the

definition of autoregressive moving average models, I just want to give you an

intuitive understanding of what's going on with the Wold decomposition.

And this, I think, will help motivate why the Wold decomposition should exist from a

mathematical standpoint. So consider just some univariate stochastic process,

some time series xt that we want to model. And we believe that it's covariant

stationary. And so we want to specify essentially the Wold decomposition of that.

Well, what we could do is initialize a parameter p, the number of past observations,

in the linearly deterministic term. And then estimate the linear projection of xt on the
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last p lag values. And so what I want to do is consider estimating that relationship

using a sample of size n with some ending point, t0, less than or equal to t.

And so we can consider y values like a response variable being given by the

successive values of our time series. And so our response variables, yj, can be

considered to be x t0 minus n plus j. And define a y vector and a z matrix as follows.

So we have values of our stochastic process in y. And then our z matrix, which is

essentially a matrix of independent variables, is just the lagged values of this

process. So let's apply ordinary least squares to specify the projection. This

projection matrix should be familiar now. And that basically gives us a prediction of y

hat depending on p lags.

And we can compute the projection residual from that fit. Well, we can conduct time

series methods to analyze these residuals, which we'll be introducing here in a few

minutes, to specify a moving average model. We can then have estimates of the

underlying coefficients psi and estimates of these residuals, eta t. And then we can

evaluate whether this is a good model or not.

What does it mean to be an appropriate model? Well, the residual should be

orthogonal to longer lags than t minus s, or longer lags than p. So we basically

shouldn't have any dependence of our residuals on lags of the stochastic process

that weren't included in the model. Those should be orthogonal.

And the eta t hats should be consistent with white noise. So those issues can be

evaluated. And if there's evidence otherwise, then we can change the specification

of the model. We can add additional lags. We can add additional deterministic

variables if we can identify what those might be. And proceed with this process.

But essentially that is how the Wold decomposition could be implemented. And

theoretically, as our sample gets large, if we're observing this time series for a long

time, then well certainly the limit of the projections as p, the number of lags we

include, gets large, should be essentially the projection of our data on its history.

And that, in fact, is the projection corresponding to defining the coefficient's psi i.
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And so in the limit, that projection will converge and it will converge in the sense that

the coefficients of the projection definition correspond to the psi i. And now if p goes

to infinity is required, now p means that there's basically a long term dependence in

the process. Basically, it doesn't stop at a given lag. The dependence persists over

time. Then we may require that p goes to infinity.

Now, what happens when p goes to infinity? Well, if you let p go to infinity too

quickly, you run out of degrees of freedom to estimate your models. And so from an

implementation standpoint, you need to let p/n go to 0 so that you have essentially

more data than parameters that you're estimating. And so that is required.

And in time series modeling, what we look for are models where finite values of p

are required. So we're only estimating a finite number of parameters. Or if we have

a moving average model which has coefficients that are infinite number, perhaps

those can be defined by a small number of parameters. So we'll be looking for that

kind of feature in different models.

Let's turn to talking about the lag operator. The lag operator is a fundamental tool in

time series models. We consider the operator, L, that shifts a time series back by

one time increment. And applying this operator recursively, we get, if it's operating 0

times, there's no lag, one time, there's one lag, two times, two lags-- doing that

iteratively.

And in thinking of these, what we're dealing with is like a transformation on infinite

dimensional space, where it's like the identity matrix sort of shifted by one element--

or not the identity, but an element. It's like the identity matrix shifted by one column

or two columns. So anyway, inverses of these operators are well defined in terms of

what we get from them.

So we can represent the Wold representation in terms of these lag operators by

saying that our stochastic process, xt, is equal to vt plus this psi of L function,

basically a functional of the lag operator, which is a potentially infinite order

polynomial of the lags.
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So this notation is something that you need to get very familiar with if you're going to

be comfortable with the different models that are introduced with ARMA and ARIMA

models. Any questions about that?

Now relating to this-- let me just introduce now, because this will come up somewhat

later. But there's the impulse response function of the covariant stationary process.

If we have a stochastic process, xt, which is given by this Wold representation, then

you can ask yourself what happens to the innovation at time t, which is eta a, how

does that affect the process over time?

And so, OK, pretend that you are chairman of the Federal Reserve Bank. And

you're interested in the GNP or basically economic growth. And you're considering

changing interest rates to help the economy. Well, you'd like to know what an

impact is of your change in this factor, how that's going to affect the variable of

interest, perhaps GNP.

Now, in this case, we're thinking of just a simple covariant stationary stochastic

process. It's basically a process that is a random awaited sum, a moving average of

innovations, eta t. But the question is, basically an covariant stationary process

could be represented in this form. And the impulse response function relates to

what is the impact of eta t. What's its impact over time?

Basically, it affects the process at time t. That, because of the moving average

process, it affects it at t plus 1, affects it at t plus 2. And so this impulse response is

basically the derivative of the value of the process with the j previous innovation is

given by psi j. So the different innovations have an impact on the current value

given by this impulse response function.

So looking backward, that definition is pretty well defined. But you can also think

about how does an impact of the innovation affect the process going forward. And

the long run cumulative response is essentially what is the impact of that innovation

in the process ultimately? And eventually, it's not going to change the value of the

process.
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But what is the value to which the process is moving because of that one

innovation? And so the long run cumulative response is given by basically the sum

of these individual ones. And it's given by the sum of the psi i's. So that's the

polynomial of psi with lag operator, where we replace the lag operator by 1. We'll

see this again when we talk about vector autoregressive processes with multivariate

time series.

Now, the Wold representation, which is a infinite order moving average, possibly

infinite order, can have an autoregressive representation. Suppose that there is

another polynomial psi i star of the lags, which we're going to call psi inverse of L,

which satisfies the fact if you multiply that with psi of L, you get the identity lag 0.

Then this psi inverse, if that exists, is basically the inverse of the psi of L. So if we

start with psi of L, if that's invertible, then there exists a psi inverse of L, with

coefficients psi i star. And one can basically take our original expression for the

stochstic process, which is as this moving average of the eta's, and express it as

this essentially moving averages of the x's.

And so we've essentially inverted the process and shown that the stochastic

process can be expressed as an infinite order autoregressive representation. And

so this infinite order autoregressive representation corresponds to that intuitive

understanding of how the Wold representation exists. And it actually works with the

regression coefficients in that projection several slides back corresponds to this

inverse operator.

So let's turn to some specific time series models that are widely used. The class of

autoregressive moving average processes has this mathematical definition. We

define the xt to be equal to a linear combination of lags of x, going back p lags, with

coefficients phi 1 through phi p. And then there are residuals which are expressed in

terms of a qth order moving average.

So in this framework, the eta t's are white noise. And white noise, to reiterate, has

mean 0, constant variance, zero covariance between those. In this representation,

I've simplified things a little bit by subtracting off the mean from all of the x's. And
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that just makes the formulas a little bit more simpler.

Now, with lag operators, we can write this ARMA model as phi of L of pth order

polynomial of lag L given with coefficients 1 phi 1 up to phi p, and theta of L given by

1 theta 1 theta 2 up to theta q.

This is basically a representation of the ARMA time series model. Basically, we're

taking a set of lags of the values of the stochastic process up to order p. And that's

equal to a weighted average of the eta t's. If we multiply by the inverse of phi of L, if

that exists, then we get this representation here, which is simply the Wold

decomposition.

So the ARMA models basically have a Wold decomposition if this phi of L is

invertible. And we'll explore these by looking at simpler cases of the ARMA models

by just focusing on autoregressive models first and then moving average processes

second so that you'll get a better feel for how these things are manipulated and

interpreted. So let's move on to the pth order autoregressive process. So we're

going to consider ARMA models that just have autoregressive terms in them.

So we have phi of L xt minus mu is equal to eta t, which is white noise. So a linear

combination of the series is white noise. And xt follows then a linear regression

model on explanatory variables, which are lags of the process x. And this could be

expressed as xt equal to c plus the sum from 1 to p of phi j xt minus j, which is a

linear regression model with regression parameters phi j.

And c, the constant term, is equal to mu times phi of 1. Now, if you basically take

expectations of the process, you basically have coefficients of mu coming in from all

the terms. And phi of 1 times mu is the regression coefficient there. So with this

autoregressive model, we now want to go over what are the stationarity conditions.

Certainly, this autoregressive model is one where, well, a simple random walk

follows an autoregressive model but is not stationary. We'll highlight that in a minute

as well. But if you think it, that's true.

And so stationarity is something to be understood and evaluated. This polynomial
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function, phi, where if we replace the lag operator, L, by z, a complex variable, the

equation phi of z equal to 0 is the characteristic equation associated with this

autoregressive model.

And it turns out that we'll be interested in the roots of this characteristic equation .

Now, if we consider writing phi of L as a function of the roots of the equation, we get

this expression where you'll notice if you multiply all those terms out, the 1's all

multiply out together, and you get 1. And with the lag operator, L, to the pth power,

that would be the product of 1 over lambda 1 times 1 over lambda 2, or actually

negative 1 over lambda 1 times negative 1 over lambda 2, and so forth-- negative 1

over lambda p.

Basically, if there are p roots to this equation, this is how it would be written out. And

the process xt is covariant and stationary if and only if all the roots of this

characteristic equation lie outside the unit circle. So what does that mean? That

means that the norm modulus of the complex z is greater than 1. So they're outside

the unit circle where it's less than or equal to 1.

And the roots, if they are outside the unit circle, then the modulus of the lambda j's

is greater than 1. And if we then consider taking a complex number, lambda,

basically the root, and have an expression for 1 minus 1 over lambda L inverse, we

can get this series expression for that inverse. And that series will exist and be

bounded if the lambdi are greater than 1 in magnitude.

So we can actually compute an inverse of phi of L by taking the inverse of each of

the component products in that polynomial. So an introductory time series, of

courses, as they talk about stationarity and unit roots, but they don't really get into it,

because people don't know complex math, don't know about root. So anyway, but

this is just very simply how that framework is applied.

So we have a polynomial equation for the characteristic equation whose roots we're

looking for. Those roots have to be outside the unit circle for stationarity of the

process. Well, it's basically conditions for invertibility of the process of the

autoregressive process. And that invertibility renders the process in infinite order
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moving average process.

So let's go through these results for the auto regressiveprocess of order one, where

things-- always start with the simplest cases to understand things. The characteristic

equation for this model is just 1 minus phi z. The root is 1/phi. So lambda is greater

than 1-- if the modulus of lambda is greater than 1, meaning the root is outside the

unit circle, then phi is less than 1.

So for covariant stationarity of this autoregressive process, we need the magnitude

of phi to be less than 1 in magnitude. The expected value of x is mu. The variance

of x is sigma squared x. This has this form, sigma squared over 1 minus phi. That

expression is basically obtained by looking at the infinite order moving average

representation.

But notice that if phi is positive, then the variance of x is actually greater than the

variance of the innovations. And if phi is less than 0, then it's going to be smaller. So

the innovation variance basically is scaled up a bit in the autoregressive process.

The covariance matrix is phi times sigma squared x. You'll be going through this in

the problem set.

And the covariance of x is phi to the j power sigma squared x. And these

expressions can all be easily evaluated by simply writing out the definition of these

covariances in terms of the original model and looking at what terms are

independent, cancel out, and that proceeds.

Let's just go through these cases. Let's show it all here. So we have if phi is

between 0 and 1, then the process experiences exponential mean reversion to mu.

So an autoregressive process with phi between 0 on 1 corresponds to a mean

reverting process. This process is actually one that has been used theoretically for

interest rate models and a lot of theoretical work in finance.

The Vasicek model is actually an example of the Ornstein-Uhlenbeck process,

which is basically a mean reverting Brownian motion. And any variables that exhibit

or could be thought of as exhibiting mean reversion, this model can be applied to
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those processes, such as interest rate spreads or real exchange rates, variables

where one can expect that things never get too large or too small. They come back

to some mean.

Now, the challenge is, that usually may be true over short periods of time. But over

very long periods of time, the point to which youre reverting to changes. So these

models tend to not have broad application over long time ranges. You need to

adapt.

Anyway, with the AR process, we can also have negative values of phi, which

results in exponential mean reversion that's oscillating in time, because the

autoregressive coefficient basically is a negative value. And for phi equal to 1, the

Wold decomposition doesn't exist. And the process is the simple random walk.

So basically, if phi is equal to 1, that means that basically just changes in value of

the process are independent and identically distributed white noise. And that's the

random walk process. And that process was covered in earlier lectures as non

stationary.

If phi is greater than 1, then you have an explosive process, because basically the

values are scaling up every time increment. So those are features of the AR 1

model. For a general autoregressive process of order p, there's a method-- well, we

can look at the second order moments of that process, which have a very nice

structure, and then use those to solve for estimates of the ARMA parameters, or

autoregressive parameters.

And those happen to be specified by what are called the Yule-Walker equations. So

the Yule-Walker equations is a standard topic in time series analysis. What is it?

What does it correspond to?

Well, we take our original autoregressive process of order p. And we write out the

formulas for the covariance at lag j between two observations. So what's the

covariance between xt and xt minus j?

And that expression is given by this equation. And so this equation for gamma of j is
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determined simply by evaluating the expectations where we're taking the

expectation of xt in the autoregressive process times the fix xt minus j minus mu.

So just evaluating those terms, you can validate that this is the equation. If we look

at the equations corresponding to j equals 1-- so lag 1 up through lag p-- this is

what those equations look like. Basically, the left hand side is gamma 1 through

gamma p. The covariance to lag 1 up to lag p is equal to basically linear functions

given by the phi of the other covariances.

Who can tell me what the structure is of this matrix? It's not a diagonal matrix? What

kind of matrix is this? Math trivia question here. It has a special name. Anyone?

It's a Toeplitz matrix. The off diagonals are all the same value. And in fact, because

of the symmetry of the covariance, basically the gamma of 1 is equal to gamma of

minus 1. Gamma of minus 2 is equal to gamma plus 2. Because of the covariant

stationarity, it's actually also symmetric.

So these equations allow us to solve for the phis so long as we have estimates of

these covariances. So if we have a system of estimates, we can plug these in in an

attempt to solve this. If they're consistent estimates of the covariances, then there

will be a solution.

And then the 0th equation, which was not part of the series of equations-- if you go

back and look at the 0th equation, that allows you to get an estimate for the sigma

squared. So these Yule-Walker equations are the way in which many ARMA models

are specified in different statistics packages and in terms of what principles are

being applied. Well, if we're using unbiased estimates of these parameters, then this

is applying what's called the method of moments principle for statistical estimation.

And with complicated models, where sometimes the likelihood functions are very

hard to specify and compute, and then to do optimization over those is even harder.

It can turn out that there are relationships between the moments of the random

variables, which are functions of the unknown parameters. And you can solve for

basically the sample moments equalling the theoretical moments and you apply the
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method of moments estimation method.

Econometrics is rich with many applications of that principle. The next section goes

through the moving average model. Let me highlight this. So with an order q moving

average, we basically have a polynomial in lag operator, L, which is operated upon

the eta t's. And if you write out the expectations of xt, you get mu.

The variance of xt, which is gamma 0, is sigma squared times 1 plus the squares of

the coefficients in the polynomial. And so this feature, this property here is due to

the fact that we have uncorrelated innovations in the eta t's. The eta t's are white

noise.

So the only thing that comes through in the square of xt and the expectation of that

is the squared powers of the etas, which have coefficients given by the theta i

squared. So these properties are left-- I'll leave you just to verify very

straightforward.

But let's now turn to the final minutes of the lecture today to accommodating non

stationary behavior in time series. The original approaches with time series was to

focus on estimation methodologies for covariant stationary process. So if the series

is not covariant stationary, then we would want to do some transformation of the

data, of the series, into a stationary so that the resulting process is stationary.

And with the difference in operators, delta, Box and Jenkins advocated moving non-

stationary trending behavior, which is exhibited often in economic time series, by

using a first difference, maybe a second difference, or a kth order difference. So

these operators are defined in this way.

Basically with the kth order operator having this expression here, this is the binomial

expansion of a kth power, which can be useful. It comes up all the time in probability

theory. And if a process has a linear time trend, then delta xt is going to have no

time trend at all, because you're basically taking out that linear component by taking

successive differences.

Sometimes, if you have a real series and you look at the difference, it appears non-
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stationary, you look at first differences, that can still not appear to be growing over

time, in which case sometimes the second difference will result in a process with no

trend. So these are sort of convenient tricks, techniques to render the series

stationary.

And let's see. There's examples here of linear trend reversion models which are

rendered covariant stationary under first differencing. In this case, this is an

example where you have a deterministic time trend. But then you have reversion to

the time trend over time.

So we basically have eta t, the error about the deterministic trend, is a first order

autoregressive process. And the moments here can be derived this way. Leave that

as an exercise.

One could also consider the pure integrated process and talk about stochastic

trends. And basically, random walk processes are you are often referred to in

econometrics as stochastic trends. And you may want to try and remove those from

the data, or accommodate them.

And so the stochastic trend process is basically given by the first difference, xt, is

just equal to eta t. And so we have essentially this random walk from a given

starting point. And it's easy to verify it if you knew the 0th point, then the variance of

the t'th time point would be t sigma squared, because we're summing t independent

innovations.

And the covariance between t and lag t minus j is simply t minus j sigma squared.

And the correlation between those has this form. What you can see is that this

definitely depends on time. So it's not a stationary process. So this first differencing

results in stationarity. And the end difference process has those features.

Let's see where we are. Final topic for today is just how you incorporate non-

stationary process into ARMA processes. Well, if you take first differences or second

differences and the resulting process is covariant stationary, then we can just

incorporate that differencing into the model specification itself, and define ARIMA
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models, Autoregressive Integrated Moving Average Processes.

And so to specify these models, we need to determine the order of the differencing

required to move trends, deterministic or stochastic, and then estimating the

unknown parameters, and then applying model selection criteria. So let me go very

quickly through this and come back to it the beginning of next time.

But in specifying the parameters of these models, we can apply maximum

likelihood, again, if we assume normality of these innovations eta t. And we can

express the ARMA model in state space form, which results in a form for the

likelihood function, which we'll see a few lectures ahead.

But then we can apply limited information, maximum likelihood, where we just

condition on the first observations of the data and maximize the likelihood. Or not

condition on the first few observations, but also use their information as well, and

look at their density functions, incorporating those into the likelihood relative to the

stationary distribution for their values.

And then the issue becomes, how do we choose amongst different models? Now,

last time we talked about linear regression models, how you'd specify a given

model, here, we're talking about autoregressive, moving average, and even

integrated moving average processes and how do we specify those, well, with the

method of maximum likelihood, there are procedures which there are measures of

how effectively a fitted model is, given by an information criterion that you would

want to minimize for a given fitted model.

So we can consider different sets of models, different numbers of explanatory

variables, different orders of autoregressive parameters, moving average

parameters, and compute, say, the Akaike information criterion or the Bayes

information criterion or the Hannan-Quinn criterion as different ways of judging how

good different models are. And let me just finish today by pointing out that what

these information criteria are is basically a function of the log likelihood function,

which is something we're trying to maximize with maximum likelihood estimates.
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And then adding some penalty for how many parameters we're estimating. And so

what I'd like you to think about for next time is what kind of a penalty is appropriate

for adding an extra parameter. Like, what evidence is required to incorporate extra

parameters, extra variables, in the model. Would it be t statistics that exceeds some

threshold or some other criteria.

Turns out that these are all related to those issues. And it's very interesting how

those play out. And I'll say that for those of you who have actually seen these

before, the Bayes information criterion corresponds to an assumption that there is

some finite number of variables in the model. And you know what those are.

The Hannon-Quinn criterion says maybe there's an infinite number of variables in

the model, but you want to be able to identify those. And so anyway, it's a very

challenging problem with model selection. And these criteria can be used to specify

those. So we'll go through that next time.
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