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Stationarity and Wold Representation Theorem

A stochastic process {...,Xt 1,Xt ,Xt+1, . . .} consisting of random−
variables indexed by time index t is a time series.

The stochastic behavior of {Xt} is determined by specifying the
probability density/mass functions (pdf’s)

p(xt1 , xt2 , . . . , xtm)
for all finite collections of time indexes

{(t1, t2, . . . , tm), m <∞}
i.e., all finite-dimensional distributions of {Xt}.

Definition: A time series {Xt} is Strictly Stationary if
p(t1 + τ, t2 + τ, . . . , tm + τ) = p(t1, t2, . . . , tm),
∀τ, ∀m, ∀(t1, t2, . . . , tm).

(Invariance under time translation)
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Definitions of Stationarity

Definition: A time series {Xt} is Covariance Stationary if
E (Xt) = µ
Var(Xt) = σ2X
Cov(Xt ,Xt+τ ) = γ(τ)

(all constant over time t)

The auto-correlation function of {Xt} is

ρ(τ) = Cov(Xt ,Xt+τ )/
√

Var(Xt) · Var(Xt+τ )
= γ(τ)/γ(0)
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Representation Theorem

Wold Representation Theorem: Any zero-mean covariance
stationary time series {Xt} can be decomposed as Xt = Vt + St
where

{Vt} is a linearly deterministic process, i.e., a linear
combination of past values of Vt with constant coefficients.

St =
∑∞

i=0 ψiηt−i is an infinite moving average process of
error terms, where

ψ0 = 1,
∑∞

i=0 ψ
2
i <∞

{ηt} is linearly unpredictable white noise, i.e.,
E (ηt) = 0, E (η2t ) = σ2, E (ηtηs) = 0 ∀t, ∀s 6= t,

and {ηt} is uncorrelated with {Vt} :
E (ηtVs) = 0, ∀t, s
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Intuitive Application of the Wold Representation Theorem

Suppose we want to specify a covariance stationary time series
{Xt} to model actual data from a real time series

{xt , t = 0, 1, . . . ,T}
Consider the following strategy:

Initialize a parameter p, the number of past observations in
the linearly deterministic term of the Wold Decomposition of
{Xt}
Estimate the linear projection of Xt on (Xt−1,Xt−2, . . . ,Xt−p)

Consider an estimation sample of size n with endpoint t0 ≤ T .
Let {j = −(p − 1), . . . , 0, 1, 2, . . . n} index the subseries of
{t = 0, 1, . . . ,T} corresponding to the estimation sample and
define {yj : yj = xt0−n+j}, (with t0 ≥ n + p)
Define the vector Y (T × 1) and matrix Z (T × [p + 1]) as:
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Estimate the linear projection of Xt on (Xt−1,Xt−2, . . . ,Xt−p)
(continued) 

y1
 

1 y0 y 1 · y− · · −(p−1)
y2 1 y1 y0 y (p 2)

y =


Z =
− − . . . .

·
.
· ·
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.

  .

n


. .

y

 
. .

1 yn y y−1 n−2 · · · n−p


Apply OLS to specify the projection:

ŷ = Z(ZTZ)−1Zy

= P̂(Yt
(

| Yt−1,Yt−2, . . .Yt−p)
= ŷ p)

Compute the projection residual
ε̂(p) = y − ŷ(p)
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Apply time series methods to the time series of residuals

{ (p)
ε̂j } to specify a moving average model:

(p)
εt =

∑∞
i=0 ψjηt−i

yielding {ψ̂j} and {η̂t}, estimates of parameters and
innovations.

Conduct a case analysis diagnosing consistency with model
assumptions

Evaluate orthogonality of ε̂(p) to Yt s , s > p.−
If evidence of correlation, increase p and start again.
Evaluate the consistency of {η̂t} with the white noise
assumptions of the theorem.
If evidence otherwise, consider revisions to the overall model

Changing the specification of the moving average model.
Adding additional ‘deterministic’ variables to the projection
model.
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Note:

Theoretically,
limp ŷ(p) = ŷ = P(Yt | Yt 1,Y ,→∞ − t−2 . . .)

but if p →∞ is required, then n→∞ while p/n→ 0.

Useful models of covariance stationary time series have

Modest finite values of p and/or include
Moving average models depending on a parsimonious number
of parameters.
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Lag Operator L()

Definition The lag operator L() shifts a time series back by one
time increment. For a time series {Xt} :

L(Xt) = Xt−1.
Applying the operator recursively we define:

L0(Xt) = Xt

L1(Xt) = Xt−1
L2(Xt) = L(L(Xt)) = Xt−2

Ln
· · ·

(Xt) = L(Ln−1(Xt)) = Xt−n

Inverses of these operators are well defined as:
L−n(Xt) = Xt+n, for n = 1, 2, . . .
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Wold Representation with Lag Operators

The Wold Representation for a covariance stationary time series
{Xt} can be expressed as

Xt =
=

∑∑∞i=0 ψiηt−i + Vt
∞
i=0 ψiL

i (ηt) + Vt

= ψ(L)ηt + Vt

where ψ(L) =
∑∞

i=0 ψiL
i .

Definition The Impulse Response Function of the covariance
stationary process {Xt} is

IR(j) = ∂Xt = ψj .∂ηt−j

The long-run∑ cumulative response of {Xt} is
∞
i=0 IR(j) =

∑∞
i=0 ψi = ψ(L) with L = 1.
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Equivalent Auto-regressive Representation

Suppose that the operator ψ(L) is invertible, i.e.,
ψ−1(L) = ∞

i=0 ψi
∗Li such that

ψ−1(L)ψ(L

∑
) = I = L0.

Then, assuming Vt = 0 (i.e., Xt has been adjusted to
Xt
∗ = Xt − Vt), we have the following equivalent expressions of the

time series model for {Xt}
Xt = ψ(L)ηt

ψ−1(L)Xt = ηt

Definition When ψ−1(L) exists, the time series {Xt} is Invertible
and has an auto-regressive representation:

Xt = (
∑∞

i=0 ψi
∗Xt−i ) + ηt
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ARMA(p,q) Models

Definition: The times series {Xt} follows the ARMA(p, q) Model
with auto-regressive order p and moving-average order q if

Xt = µ+ φ1(Xt−1 − µ) + φ2(Xt µ−1 − ) + · · ·φp(Xt−p − µ)
+ ηt + θ1ηt−1 + θ2ηt +−2 · · · θqηt−q

where {ηt} is WN(0, σ2), “White Noise” with
E (ηt) = 0, ∀t
E (η2t ) = σ2 <∞, ∀t , and E (ηtηs) = 0, ∀t 6= s

With lag operators
φ(L) = (1− φ 2 P

1L− φ2L − · · ·φpL ) and
θ(L) = (1 + θ1L + θ2L

2 + · · ·+ θqL
q)

we can write
φ(L) · (Xt − µ) = θ(L)ηt

and the Wold decomposition is
Xt = µ+ ψ(L)ηt , where ψ(L) = [φ(L)])−1θ(L)
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AR(p) Models

Order-p Auto-Regression Model: AR(p)
φ(L) · (Xt − µ) = ηt where

{ηt} is WN(0, σ2) and
φ(L) = 1− φ1L− φ2L2 − · · ·+ φpL

p

Properties:

Linear combination of {Xt ,Xt−1, . . .Xt−p} is WN(0, σ2).

Xt follows a linear regression model on explanatory variables
(Xt 1,Xt 2, . . . ,Xt p), i.e− − −

Xt = c +
∑p

j=1 φjXt j + η− t

where c = µ · φ(1), (replacing L by 1 in φ(L)).
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AR(p) Models

Stationarity Conditions
Consider φ(z) replacing L with a complex variable z .

φ(z) = 1− φ1z − φ2z2 − · · ·φ p
pz .

Let λ1, λ2, . . . λp be the p roots of φ(z) = 0.
φ(L) = (1− 1

λ1
L) · (1− 1

λ2
L) · · · (1− 1 L)λp

Claim: {Xt} is covariance stationary if and only if all the roots of
φ(z) = 0 (the“characteristic equation”) lie outside the unit circle
{z : |z | ≤ 1}, i.e., |λj | > 1, j = 1, 2, . . . , p

For complex number λ: |λ| > 1,
(1− 1

λL)−1 = 1 + ( 1
λ)L + ( 1

λ)2L2 + ( 1∑ )3L3 +λ · · ·
= ∞

i=0( 1
λ)iLi

pφ−1(L) =
∏

j=1

[(
1− 1

λj
L
)−1]
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AR(1) Model

Suppose {Xt} follows the AR(1) process, i.e.,
Xt − µ = φ(Xt−1

2
− µ) + ηt , t = 1, 2, . . .

where ηt ∼WN(0, σ ).

The characteristic equation for the AR(1) model is
(1− φz) = 0

with root λ = 1
φ .

The AR(1) model is covariance stationary if (and only if)
|φ| < 1 (equivalently |λ| > 1)

The first and second moments of {Xt} are
E (Xt) = µ
Var(Xt) = σ2X = σ2/(1− φ) (= γ(0))
Cov(Xt ,Xt 1) = φ σ− · 2

X

Cov(Xt ,Xt j) = φj · σ2X (= γ(j))−
Corr(Xt ,Xt−j) = φj = ρ(j) (= γ(j)/γ(0))
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AR(1) Model

For φ : |φ| < 1, the W∑old decomposition of the AR(1) model
is: Xt = µ+ ∞

j=0 φ
jηt−j

For φ : 0 < φ < 1, the AR(1) process exhibits exponential
mean-reversion to µ
For φ : 0 > φ > −1, the AR(1) process exhibits oscillating
exponential mean-reversion to µ

For φ = 1, the Wold decomposition does not exist and the
process is the simple random walk (non-stationary!).
For φ > 1, the AR(1) process is explosive.

Examples of AR(1) Models (mean reverting with 0 < φ < 1)

Interest rates (Ornstein Uhlenbeck Process; Vasicek Model)
Interest rate spreads
Real exchange rates
Valuation ratios (dividend-to-price, earnings-to-price)
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Yule Walker Equations for AR(p) Processes

Second Order Moments of AR(p) Processes

From the specification of the AR(p) model:
(Xt − µ) = φ1(Xt 1 − µ) + φ2(Xt 1 − µ) + · · ·+ φp(X µ− − t−p − ) + ηt

we can write the Yule-Walker Equations (j = 0, 1, . . .)

E [(Xt − µ)(Xt−j − µ)] = φ1E [(Xt−1 − µ)(Xt−j − µ)]
+ φ2E [(Xt−1 − µ)(Xt−j − µ)]+
· · · + φpE [(Xt−p − µ)(Xt−j − µ)]

+ E [ηt(Xt−j − µ)]
γ(j) = φ1γ(j − 1) + φ2γ(j − 2)+

· · ·+ φpγ(j − p) + δ 2
0,jσ

Equations j = 1, 2, . . . p yield a system of p linear equations in φj :
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Yule-Walker Equations


γ(1)

 
γ(0) γ(−1) γ(−2) · · · γ(−(p − 1)) φ1 γ(2)   γ(1) γ(0) γ(−1) · · · γ( (

=
− p − 2))

 .    . .


 φ2 . . .  .. . . . . . .


. . . . . . .

γ(p) γ(p − 1) γ(p − 2) γ(p − 3) · · · γ(0)) φ


p


Given estimates γ̂(j), j = 0, . . . , p (and µ̂) the solution of these equations are
the Yule-Walker estimates of the φj ; using the property γ(−j) = γ(+j), ∀j
Using these in equation 0

γ(0) = φ1γ(−1) + φ2γ(−2) + · · ·+ φpγ(−p) + δ0,0σ
2

provides an estimate of σ2

σ̂2 p= γ̂(0)−
∑

φ̂ )j− j γ̂(j1

When all the estimates γ̂(j) and µ̂ are unbiased, then the Yule-Walker estimates
apply the Method of Moments Principle of Estimation.
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MA(q) Models

Order-q Moving-Average Model: MA(q)
(Xt − µ) = θ(L)ηt , where

{η 2
t} is WN(0, σ ) and

θ(L) = 1 + θ1L + θ2L
2 + · · ·+ θqL

q

Properties:

The process {Xt} is invertible if all the roots of θ(z) = 0 are
outside the complex unit circle.

The moments of Xt are:
E (Xt) = µ
Var(Xt) = γ(0) = σ2 · (1 + θ21 + θ22 + · · ·+ θ2q)

{
0, j > q

Cov(Xt ,Xt+j ) = σ2 · (θj + θj+1θ1 + θj+2θ2 + · · · θqθq−j ), 1 < j ≤ q
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Accommodating Non-Stationarity by Differencing

Many economic time series exhibit non-stationary behavior
consistent with random walks. Box and Jenkins advocate removal
of non-stationary trending behavior using

Differencing Operators:
∆ = 1− L
∆2 = (1− L)2 = 1− 2L + L2

∆k = (1− L)k k=
∑

j=0

(
k
j

)
(−L)j , (integral k > 0)

If the process {Xt} has a linear trend in time, then the process
{∆Xt} has no trend.

If the process {Xt} has a quadratic trend in time, then the
second-differenced process {∆2Xt} has no trend.
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Examples of Non-Stationary Processes

Linear Trend Reversion Model: Suppose the model for the time
series {Xt} is:

Xt = TDt + ηt , where

TDt = a + bt, a deterministic (linear) trend
ηt ∼ AR(1), i.e.,

ηt = φηt 1 + ξt , where φ− | | < 1 and
{ξt} is WN(0, σ2).

The moments of {Xt} are:
E (Xt) = E (TDt) + E (ηt) = a + bt
Var(Xt) = Var(ηt) = σ2/(1− φ).

The differenced process {∆Xt} can be expressed as
∆Xt = b + ∆ηt

= b + (ηt − ηt−1)
= b + (1− L)ηt
= b + (1− L)(1− φL)−1ξtMIT 18.S096 Time Series Analysis 24
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Non-Stationary Trend Processes

Pure Integrated Process I(1) for {Xt}:
Xt = X 2

t 1 + ηt , where ηt is WN(0, σ ).−
Equivalently:

∆Xt = (1− L)Xt + ηt , where {ηt} is WN(0, σ2).
Given X0, we can∑write Xt = X0 + TSt where

tTSt = j=0 ηj
The process {TSt} is a Stochastic Trend process with

TSt = TSt−1 + ηt , where {ηt} is WN(0, σ2).
Note:

The Stochastic Trend process is not perfectliy predictable.
The process {Xt} is a Simple Random Walk with
white-noise steps. It is non-stationary because given X0:

Var(Xt) = tσ2

Cov(Xt ,Xt−j ) = (t − j)σ2 for 0 < j < t.

Corr = (Xt ,Xt−j ) =
√
t − j/

√
t =

√
1− j/t
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ARIMA(p,d,q) Models

Definition: The time series {Xt} follows an ARIMA(p, d , q) model
(“Integrated ARMA”) if {∆dXt} is stationary (and non-stationary
for lower-order differencing) and follows an ARMA(p, q) model.

Issues:

Determining the order of differencing required to remove time
trends (deterministic or stochastic).

Estimating the unknown parameters of an ARIMA(p, d , q)
model.

Model Selection: choosing among alternative models with
different (p, d , q) specifications.
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Estimation of ARMA Models

Maximum-Likelihood Estimation

Assume that {ηt} are i.i.d. N(0, σ2) r.v.’s.

Express the ARMA(p, q) model in state-space form.

Apply the prediction-error decomposition of the log-likelihood
function.

Apply either or both of

Limited Information Maximum-Likelihood (LIML) Method

Condition on the first p values of {Xt}
Assume that the first q values of {ηt} are zero.

Full Information Maximum-Likelihood (FIML) Method

Use the stationary distribution of the first p values to specify
the exact likelihood.
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Model Selection

Statistical model selection critera are used to select the orders
(p, q) of an ARMA process:

Fit all ARMA(p, q) models with 0 ≤ p ≤ pmax and
0 ≤ q ≤ qmax , for chosen values of maximal orders.

Let σ̃2(p, q) be the MLE of σ2 = Var(ηt), the variance of
ARMA innovations under Gaussian/Normal assumption.

Choose (p, q) to minimize one of:

Akaike Information Criterion
AIC (p p, q) = log(σ̃2(p, q)) + 2 +q

n
Bayes Information Criterion

BIC (p, q) = log(σ̃2(p, q)) + log(n)p+q
n

Hannan-Quinn Criterion
HQ(p, q) = log(σ̃2(p, q)) + 2log(log(n))p+q

n
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Testing for Stationarity/Non-Stationarity

Dickey-Fuller (DF) Test : Suppose {Xt} follows the AR(1)
model

Xt = φXt 1 + ηt , with {ηt} a WN(0, σ2).−
Consider testing the following hypotheses:

H0: φ = 1 (unit root, non-stationarity)
H1: |φ| < 1 (stationarity)

(“Autoregressive Unit Root Test”)

Fit the AR(1) model by least squares and define the test
ˆ

statistic: tφ=1 = φ−1
se(φ̂)

where φ̂ is the least-squares estimate of φ and se(φ̂) is the

least-squares estimate of the standard error of φ.ˆ

If |φ| < 1, then
√
T (φ̂− φ) d

−→ N(0, (1− φ2)).

If φ = 1, then φ̂ is super-consistent with rate (1/T ),
√
Ttφ=1 has DF

distribution.
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Accommodating Non-Stationarity: ARIMA Models
Estimation of Stationary ARMA Models
Tests for Stationarity/Non-Stationarity

References on Tests for Stationarity/Non-Stationarity*

Unit Root Tests (H0 : Nonstationarity)

Dickey and Fuller (1979): Dickey-Fuller (DF) Test

Said and Dickey (1984): Augmented Dickey-Fuller (ADF) Test

Phillips and Perron (1988) Unit root (PP) tests

Elliot, Rothenberg, and Stock (2001) Efficient unit root
(ERS) test statistics.

Stationarity Tests (H0 : stationarity)

Kwiatkowski, Phillips, Schmidt, and Shin (1922): KPSS test.

* Optional reading
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