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Disclaimer 

The views represented herein are the authors’ own views and do not necessarily 
represent the views of Morgan Stanley or its affiliates and are not a product of 
Morgan Stanley Research. 

Carr/Yu (Morgan Stanley) Can We Recover? December 5, 2013 2 / 50 

Developed for educational use at MIT and for publication through MIT OpenCourseware.

No investment decisions should be made in reliance on this material.



Can We Recover? 

1 

2 

3 

The question in the title of this talk is intended as a triple entendre. 

“Can We Recover?” could refer either to: 

the systemic risk arising from the credit crisis, or 
the main result in a recent paper by MIT professor Steve Ross, or 
academic and practitioner reaction to item #2 (especially mine!) 

The title of this talk actually refers to items #2 and #3. 
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The Recovery Theorem 

Steve Ross has a forthcoming JF paper called “The Recovery Theorem, 
which is also the title of his Theorem 1. The theorem gives a sufficient set 
of conditions under which “natural” probabilities at a point in time are 
uniquely determined (i.e. recovered) from exact knowledge of Arrow-Debreu 
(AD) security prices on that date. 

There are many ways to impose additional and consistent assumptions which 
uniquely determine a snapshot of AD security prices from a snapshot of 
derivative security prices. 

When both sets of assumptions hold, a snapshot of derivative security prices 
yields the market’s contemporaneous forward-looking view on the 
underlying. In particular, one gets the likelihood of large rare moves and one 
gets the mean. This contrasts with the classical time series approach which 
assumes that the future behaves like the past, looks backward, and generally 
only obtains a highly noisy estimate of these desired quantities. 
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P, Q, and R 

Let P be physical probability measure, whatever that means to you 

Assume no arbitrage and the existence of a money market account (MMA). 
The first fundamental theorem of asset pricing says there exists a probability 
measure Q such that MMA-deflated prices evolve as Q local-martingales. 

Suppose for a moment that the market’s beliefs differ from P. If we attempt 
to recover P from Q in such a world, we obtain a 3rd probability measure 
that we can call R (for recovered). 

If the market’s beliefs reflect reality, then R = P. We allow the possibility 
that they do not, so it is only the probability measures Q and R that will 
necessarily be equivalent. 

In this talk, we refer to R as representative beliefs and we will show how to 
recover R from Q. Believers in market efficiency can replace R with P 
whenever they see an R. 
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Natural Assumptions for Obtaining Natural Probabilities 

Ross shows how to recover the natural probability measure R from market 
prices of derivative securities. In Ross’ theorem 1, one starts with “a world 
with a representative agent“. 

While worlds of this type may be natural for financial economists, my 
subsequent discussions with industry practitioners and math finance 
academics suggested that worlds of this type were less than natural for them. 

The purpose of this talk is to show that R can be determined under an
 
alternative set of sufficient conditions, which hopefully this alternative
 
audience will find more natural.
 

In a nutshell, we will switch attention away from “worlds with a 
representative agent” and instead model the value of a portfolio which has 
been called “the natural numeraire” (cf. Flesaker & Hughston and Platen), 
the “growth optimal portfolio”, (cf. Kelly, 1956), and the “numeraire 
portfolio” (cf. Long, 1990). 
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Overview of this Talk 

Arrow-Debreu Security Prices & Market Beliefs 

Ross Recovery for Finite State Markov Chains 

Change of Numeraire in a Univariate Diffusion Setting 

The Numeraire Portfolio in a Univariate Diffusion Setting 

Recovering R for Time Homog. Diffusion over a Bounded State Space 

Failures and Successes for Unbounded State Space 

There are six parts to this talk: 

The operating assumptions will be different in different sections. Within a 
section, only one set of assumptions holds. 
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-Part I:Arrow Debreu(AD) Security Prices & Market Beliefs 
A binary option pays one unit of a specified currency eg. $1, if an event
 
comes true, eg ST > K , and they pay zero otherwise.
 

AD securities are defined as binary claims trading implicitly or explicitly on 
some underlying uncertainty X in a spot market. In a single-period 
discrete-state setting, Aj|i is the dollar price paid at time 0 given X0 = i for 
an A-D security paying $1 at time 1 if X1 = j , and zero otherwise. 

From Breeden and Litzenberger (1978), Aj|i is the market spot price given 
X0 = i of a single period butterfly spread centered at X1 = j . Knowing the 
market prices of options of all strikes determines Aj|i for one initial state i 
and for all terminal states j . 

By restricting dynamics sufficiently, eg. nearest neighbor transitions or
 
spatial homogeneity, one can also determine how Aj|i varies across initial
 
states i , for each j .
 

In this talk, we assume that the problem of determining all of the elements 
of the matrix A has been solved, even when we later go to continuous time 
and a continuum state space. 
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-Arrow Debreu Securities in a Multi-period Setting 

Now consider a multi-period discrete-time discrete-state setting. 

An Arrow-Debreu security pays $1 if a particular path occurs and zero 
otherwise. 

For example, with 2 periods/3 dates, Ajk|i is the dollar price paid at time 0 
given X0 = i for an A-D security paying $1 at time 2 if and only if X1 = j 
and X2 = k. 

The payoff of this A-D security is path-dependent, whereas the payoff of the 
one period AD security priced at Aj|i is path-independent. 
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Replicating Arrow Debreu Securities 

Recall that with 2 periods/3 dates, Aj|i is the initial $-price in state i for a 
path-independent AD security paying $1 at time 1 if and only if X1 = j , 
while Ajk|i is the initial $-price in state i for a path-dependent AD security 
paying $1 at time 2 if and only if X1 = j and X2 = k. 

Let Ak|i be the initial $-price in state i for a path-independent AD security 
paying $1 at time 2 if and only if X2 = k. 

Suppose we buy all of the path-dependent securities for a total cost ofu 
j Ajk|i . Then we replicate the payoff of the later-dated path-independent 

security. u 
No arbitrage implies Ak|i = j Ajk|i . 
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Conditioning Arrow Debreu Security Prices 

Recall that with 2 periods/3 dates, Aj|i is the initial $-price in state i for a 
path-independent AD security paying $1 at time 1 if and only if X1 = j , 
while Ajk|i is the initial $-price in state i for a path-dependent AD security 
paying $1 at time 2 if and only if X1 = j and X2 = k. 

We have Ajk|i  because an additional condition is required for the = Aj|i 
path-dependent AD to pay off and we have Ajk|i ≤ Aj|i if the interest rate 
over [1, 2] is non-negative given X1 = j . 

Let Ak|ij ≡ Ajk|i /Aj|i denote the proportion of the larger earlier value that 
ends up in the smaller later value. We refer to Ak|ij as the price of the AD 
security conditioned on both i and j . 

The conditioned AD security prices Aj |i and Ak|ij are both positive 
measures, but they are not probability measures unless interest rates vanish. 
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Replicating Path-Indep. AD using Path-Dependent AD 

Recall that with 2 periods/3 dates, Aj|i is the initial $-price in state i for a 
path-independent A-D security paying $1 at time 1 if and only if X1 = j , 
while Ajk|i is the initial $-price in state i for a path-dependent A-D security 
paying $1 at time 2 if and only if X1 = j and X2 = k. 

Recall Ak|ij ≡ Ajk|i /Aj|i is the price of the AD security conditioned on both i 
and j . 

Finally recall Ak|i is the initial $-price in state i for a path-independent A-D 
security paying $1 at time 2 if and only if X2 = k and that no arbitrage u 
implies Ak|i = j Ajk|i . u 
It follows that no arbitrage also implies Ak|i = j Ak|ji Aj|i . 
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Markovian and Time-Homogeneous A-D Securities 

u 
Recall that no arbitrage implies Ak|i = j Ak|ji Aj|i . 

If the positive transition measure Ak|ij does not depend on i , i.e. if
 
Ak|ij = Ak|j for all j and k, then we say X is a Markov process under A.
 u 
In this case, no arbitrage implies Ak|i = Ak|j Aj|i which is a matrix j 
multiplication. 

In this talk, we will always assume that the A-D security prices extracted 
from market prices are consistent with X being a Markov process, even when 
we later go to continuous time and a continuum state space. 

If in addition, shifting all 3 dates by the same positive integer does not affect 
Ak|ij , then we can say X is a time-homogeneous Markov process under A. 
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Market Beliefs in a Multi-period Markovian Setting 

Suppose that derivatives trade on a single underlying uncertainty X . 

Suppose we would like to know what “the market” believes about the
 
likelihood that X is in each possible state at each future date.
 

It’s tempting to try to infer these beliefs from presumed knowledge of AD 
security prices, but these prices are contaminated by effects from both 
“time-value-of-money” and from “risk-aversion”. 

What we would like to do is decontaminate these prices and thereby learn 
both market beliefs and the combined effect of 
time-value-of-money/risk-aversion. 

Mathematically, we want to find a 1-1 map between A-D security prices,
 
quantified by a positive measure A, and market beliefs, quantified by a
 
probability measure R.
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Part II: Ross’ Recovery for Finite State Markov Chains 

Think of the probability measure R as quantifying the market’s beliefs about 
the frequencies of future states, to the extent that these frequencies end up 
in market prices. Suppose that R is ex ante unknown by us, but we know 
market prices of derivative securities. 

From these prices and a sufficiently strong set of assumptions, we can learn 
the positive measure A describing Arrow Debreu security prices. Having 
done so, we know A ex ante, but not R. 

In 2011, Professor Steve Ross of MIT began circulating a working paper 
called “The Recovery Theorem”, whose first theorem gives sufficient 
conditions under which knowing A implies knowing R exactly. 
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Some Terms Used in Ross Theorem 1 (My Notation) 

pricing matrix A(x , y) 

natural probability transition matrix p(x , y) 

pricing kernel φ(x , y) ≡ A(x,y) 
p(x,y) 

“world with a representative investor”: In an intertemporal model with 
additively time separable preferences and a constant discount factor δ, the 
pricing kernel can be written as: 

δU '(c(y))
φ(x , y) = ,

U '(c(x))
 

where c denotes consumption at time t as a function of the state.
 

Intuitively, the pricing kernel captures the combined effect of
 
time-value-of-money and risk-aversion.
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Ross Theorem 1 (My Notation) 

The theorem below is quoted verbatim from Ross, except for notation 
changes: 

In a world with a representative agent, if the pricing matrix A is 
positive or irreducible, then there exists a unique (positive) 
solution of the problem of finding P, the discount rate δ, and the 
pricing kernel φ. That is for any given set of state prices, there is 
one and only one corresponding natural measure and therefore a 
unique pricing kernel φ. 
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Remarks on Ross Theorem 1 

The input pricing matrix A must be unique (which is equivalent to complete 
markets under no arbitrage). 

The proof in Ross’ paper assumes that under A, the single state variable X 
is a finite-state time-homogeneous Markov chain. 

Ross’ assumptions imply that R exists and that X is also a finite-state
 
time-homogeneous Markov chain under R.
 

The assumptions also imply uniqueness for the transition probability matrix 
P of X , the discount factor δ (which can exceed one), and the pricing kernel 

δU'(c(y))φ(x , y) = , which could be increasing in y .U' (c(x)) 
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Are Ross’ Assumptions Necessary? 

My co-author and I wondered whether it was necessary that the Markovian 
state variable X transition between a finite number of states. In industry, we 
often use diffusions which have a continuous state space. Supposing that X 
is a univariate time-homogeneous diffusion, could the infinitessimal generator 

a (x) d2 
of X under R, G R ≡ 

2

+ bR(x) d , be determined by the infinitessimal x 2 dx2 dx 
a (x) d2 

generator of X under A, viz G A ≡ 
2

+ bQ(x) d − r(x)I?x 2 dx2 dx 

We also wondered whether it was necessary to consider “a world with a 
representative agent”. When X is a univariate diffusion rather than a finite 
state Markov chain, Ross’ use of a representative investor forces the state 
variable X underlying AD securities to drive the price of every asset in the 
whole economy. While some asset prices may be driven by a single 
uncertainty, it’s a stretch to assume all are. Could we bypass the notion of a 
representative investor and hence consider some strict subset of the 
economy? If so, then for a small enough subset of the assets, it would be 
reasonable that their prices are all driven by a single diffusing state variable 
X . 
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Part III: Changing Numeraire w. a Univ. Diffusion Driver 

From now on, we work in a continuous time setting with a continuous state
 

space. 

The purpose of this part of the talk is to develop the theory for changing the
 

numeraire from the dividend-paying asset widely known as “one dollar” to 
some other non-dividend paying asset. In contrast, the standard change of 
numeraire theorem due to El Karoui, Géman and Rochet involves switching

 
between 2 non-dividend paying assets. 

In the next part, we will discuss an important choice for the new numeraire,
 

which we call John Long’s numeraire portfolio. 

The standard change of numeraire theorem and John Long’s numeraire 
portfolio are both well known to be very general results. We present both 
results from a very restricted perspective, simplifying their derivation. 

The perspective will in fact be specialized further in a later part to achieve 
our objective of recovering the probability measure R from the positive 
measure A. 

Carr/Yu (Morgan Stanley) Can We Recover? December 5, 2013 20 / 50 

Developed for educational use at MIT and for publication through MIT OpenCourseware.

No investment decisions should be made in reliance on this material.



Assumptions 

Suppose that we have a money market account (MMA) whose growth rate 
at time t defines the stochastic short rate rt , t ≥ 0. 

Suppose we also have a set of n ≥ 1 risky assets, which in general would be 
a strict subset of all of the assets in the economy. We impose two 
restrictions on the subset: 

there is no arbitrage between the n + 1 assets.
 
The observed Arrow-Debreu security prices are consistent with a
 
univariate diffusion X driving all n + 1 prices.
 

The first restriction implies there is a probability measure Q under which the 
cum-dividend prices of all n + 1 assets grow in expectation at rate r . 

The second restriction implies Q is unique and its effects are explored in
 
more detail on the next slide.
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Risk-Neutral Infinitessimal Generator 

On the last slide, we assumed that the observed Arrow-Debreu security 
prices are consistent with a univariate diffusion X driving the money market 
account and the n ≥ 1 risky asset prices. 

This implies inter alia that there exists a spot rate function
 
r(x , t) : R × R+  → R such that rt = r(Xt , t), t ≥ 0.
 

This also implies that for each risky asset 1 = 1, 2 . . . n, there exists a spot 
value function Si (x , t) : R × R+  → R such that Sit = Si (Xt , t), t ≥ 0. 

Under the unique risk-neutral measure Q, each spot value function solves: 

G QSi (x , t) = r(x , t)Si (x , t), i = 1, . . . , n,x 

Qwhere G denotes the infinitessimal generator of X under Q, viz xt 

∂ a2(x , t) ∂2 ∂ 
GQ ≡ + + bQ(x , t) .x ∂t 2 ∂x2 ∂x 
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From Dollars to a New Numeraire 

Let Nt > 0 denote the $ value of some new numeraire at time t. 

Let’s call the new numeraire a “newm”. 

Since A is the $ value of an AD security, the newm value of an AD security 
is just the stochastic process: AtT , t ∈ [0, T ].Nt 

In our univariate diffusion setting, there exists a spot value function
 
n(x , t) : R × R+  → R++ such that Nt = n(Xt , t), t ≥ 0.
 

Since N is the spot value of a self-financing portfolio of the n + 1 assets, the 
newm’s spot value function n(x , t) solves: 

QGxt n(x , t) = r(x , t)n(x , t), x ∈ R, t ∈ [0, T ]. 

We say that the numeraire’s value function n is space-time harmonic. 
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The Numeraire Transform 

For each AD security with “strike” y & expiry T , consider holding a static 
position in n(y , T ) AD securities. Each static position pays off either zero or 
one newm and for each t ∈ [0, T ] has a spot value given by the fraction 

≡ AtT n(y ,T )FtT newms. Nt 

In our Markovian setting, we may also define the corresponding positive
 
density function:
 

ad (x , t; y , T )n(y , T )
f (x , t; y , T ) ≡ , x ∈ R, t ∈ [0, T ]. 

n(x , t)  
dWhen r(t, x) = 0, ad (x , t; y , T )dy = 1, so a is not a probability density 

function (PDF) (think of the superscript d as denoting defective probability). 

dWhen r(t, x) = 0, then a is a PDF. When in addition, 
ad (x , t; y , T ) = ad (x , T − t, y), and n(x , t) = h(x), probabilists refer to our 
middle equation as Doob’s h transform (h for harmonic). In our more general 

dsetting, we analogously call f the n transform of a (n for numeraire). 
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Convexity/Covariation 
Recall that the fraction f is the n transform of a:
 

f (x , t; y , T ) ≡ a d (x , t; y , T )n(y , T )/n(x , t), x ∈ R, t ∈ [0, T ].
 

Equivalently, defining FtT ≡ f (Xt , t; y , T ), AtT ≡ a(Xt , t; y , T ), and 
Nt ≡ n(Xt , t) as 3 positive continuous processes for t ∈ [0, T ):
 

FtT ≡ AtT n(y , T )/Nt , t ∈ [0, T ).
 

Computing the percentage change on each side: � �2
dFtT dAtT dNt dNt dAtT dNt 

= − − + , t ∈ [0, T ),
FtT AtT Nt Nt AtT Nt 

since n(y , T ) is invariant to t. 

Factoring out dNt :Nt 

dFtT dAtT dNt dNt dAtT dNt dNt dFtT− + = − − = − , t ∈ [0, T ). 
FtT AtT Nt Nt AtT Nt Nt FtT 
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N Transform of AD Prices 
We defined the F process as the N transform of the A process, i.e.: 

FtT ≡ AtT n(y , T )/Nt , t ∈ [0, T ),
 

and from the bottom of the last slide:
 

dFtT dNt dFtT dAtT dNt 
+ = − , t ∈ [0, T ). 

FtT Nt FtT AtT Nt 

dFtTIf N has sample paths of bounded variation, then dNt = 0, so the Nt FtT 

percentage change in the fraction F is just the percentage change of the 
numerator process AtT n(y , T ) less the the percentage change in the 
denominator process Nt . 

If N has sample paths of unbounded variation, then the percentage change 
in F can deviate from this difference. 
Multiplying both sides by F : 

dFtT + d ln Nt dFtT = 
n(y , T ) 

Nt 
dAtT − 

AtT n(y , T ) 
N2 

t 
dNt , t ∈ [0, T ). 
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The Newm Numeraire Generates a New Generator 
n(y ,T )Recall: dFtT + d ln Nt dFtT = dAtT − AtT n

N
(
2 
y ,T ) dNt , t ∈ [0, T ).Nt t 

Taking Q expectations and switching to the infinitessimal generator view: 
∂f (x , t; y , T )GQ f (x , t; y , T ) + a 2(x , t)σn(x , t) = xt ∂x
 

n(y , T ) ad (x , t; y , T )n(y , T )
GQ d (x , t; y , T )− GQ x ∈ R, t ∈ [0, T ),xt a xt n(x , t), 
n(x , t) n2(x , t) 

(x , t) ≡ ∂ ln n(x,t) Q ∂ a (x,t) ∂2 

xt 2where σn and recall G ≡ + 
2 

+ bQ(x , t) ∂ .∂x ∂t 2 ∂x ∂x 

So far, we have used the positivity of A and N, but not their harmonicity, viz: 
Q QGxt n(x , t) = r(x , t)n(x , t), Gxt a d (x , t; y , T ) = r(x , t)a d (x , t; y , T ), 

for x ∈ R, t ∈ [0, T ]. Using this harmonicity implies that: 

∂f (x , t; y , T )GQ f (x , t; y , T ) + a 2(x , t)σn(x , t) = 0,xt ∂x 

so f is in the null space of a new generator GF ≡ GQ 2(x , t)σn(x , t) ∂ .xt xt + a ∂x 
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Probability from Prices 
is in the null space of the new generator GFRecall that f xt : 

∂ GF f (x , t; y , T ) ≡ GQ 2(x , t)σn(x , t) f (x , t; y , T ) = 0.xt xt + a 
∂x 

QAlso, the solution to the PDE Gxt n(x , t) = r(x , t)n(x , t) is just: 
∞ dn(x , t) = ad (x , t; y , T )n(y , T )dy , since a is the fundamental solution. −∞ 

Recalling that the fraction f (x , t; y , T ) = ad (x , t; y , T )n(y , T )/n(x , t), it 
follows that f is a transition probability density function: 
∞ ∞0 0 

n(y , T )
f (x , t; y , T )dy = a d (x , t; y , T ) dy = 1, for all x , y ∈ R, T ≥ t. 

n(x , t) 
−∞ −∞ 

If we use the frequency function f to define a probability measure F, then 
under F, the process X is a diffusion with drift coeff. 

∂ ln n(x,t)bF(x , t) = bQ(x , t) + a2(x , t) and the same diffusion coeff. a(x , t)∂x 
as under the risk-neutral probability measure Q. 
Furthermore it follows from the top equation that the process
 
Ft ≡ f (Xt , t; y , T ), t ∈ [0, T ], is a local F martingale.
 

Carr/Yu (Morgan Stanley) Can We Recover? December 5, 2013 28 / 50 

Recall that f is in the null space of the new generator GF
xt :

GF
xt f (x , t; y ,T ) ≡

[
GQ

xt + a2(x , t)σn(x , t)
∂

]

Developed for educational use at MIT and for publication through MIT OpenCourseware.

No investment decisions should be made in reliance on this material.



Could R be a Martingale Measure? 

To summarize, we n− transformed the positive transition density
 
ad (x , t; y , T ) into a transition probability density function f (x , t; y , T ).
 

One can show that if the new numeraire is the money market account, then 
the resulting transition probability density function is just the risk-neutral 
one q(x , t; y , T ) associated to Q. 

Other numeraires create other transition probabilities. 

We usually think of these equivalent martingale measures as fictitious, i.e. 
different from the probability measure R capturing market beliefs. 

Might it be the case that there is some numeraire which numeraire
 
transforms ad (x , t; y , T ) into the transition probability density function
 
p(x , t; y , T ) associated to R?
 

The next part shows that under no arbitrage, the answer is yes. 
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Part IV: John Long’s Numeraire Portfolio 

In 1990, Long introduced a notion which he called the numeraire portfolio. 

Long showed that if any set of assets includes the MMA and is 
arbitrage-free, then there always exists a self-financing portfolio of them 
whose value is always positive, i.e. a numeraire. 

Furthermore, if the spot price Si of each asset is expressed relative to the 
value L > 0 of Long’s numeraire portfolio, then the relative price Si /L is a R 
martingale. 
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Existence of the Numeraire Portfolio 

Let S0t be the spot price of the MMA and suppose that we have n risky 
assets with spot prices Si for i = 1, . . . , n. 

Assuming no arbitrage between these n + 1 assets, Long (1990) proved that 
there exists a portfolio with value L > 0 such that for all times u and t with 
u ≥ t ≥ 0: 

E R Siu 

Lu

    Sit 
= , i = 0, 1, . . . , n. 

LtFt 

In words, assuming no arbitrage between a set of assets, implies that one 
can always construct a portfolio of them with value L > 0 such that each 
asset’s relative price Si /L is a R martingale. Hence, when P&L is measured 
in units of the numeraire portfolio, all assets have the same mean P&L. 
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Numeraire Transforming the $ Value of an AD Security 
Let PtT denote the probability measure capturing the market’s beliefs 
regarding XT at time t, AtT denote the $ price of an AD security at time t 
maturing at T , and let Lt denote the $ value of Long’s NP at time t. 

From Long: 

E R ST Sit 
= , i = 0, 1, . . . , n. 

LT LtFt 

When a market is complete, we can replicate every AD security and hence: 

E R AT At 
= , i = 0, 1, . . . , n. 

LT LtFt 

Equivalently, in our univariate diffusion setting: 

ad (x , t; y , T )L(y , T ) 
p(x , t; y , T ) = , t ∈ [0, T ]. 

L(x , t) 

In words, the transition probability density function p(x , t; y , T ) capturing 
market beliefs R is just the L numeraire transform of ad (x , t; y , T ). 
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Drift Effect of Numeraire Change 
Recall that the PDF f (x , t; y , T ) obtained by n(x , t) transforming
 
ad (x , t; y , T ) solves:
  

∂ a2(x , t) ∂2   ∂ 
+ 

∂x2 
+ bQ(x , t) + a 2(x , t)σn(x , t) f (x , t; y , T ) = 0. 

∂t 2 ∂x

When n(x , t) = L(x , t), then σn(x , t) = σL(x , t) and
 
f (x , t; y , T ) = p(x , t; y , T ).
 

It follows that:  
∂ a2(x , t) ∂2   ∂ 

+ + bQ(x , t) + a 2(x , t)σL(x , t) p(x , t; y , T ) = 0. 
∂t 2 ∂x2 ∂x

Hence, changing measure from Q to R raises X ’s drift by a2(Xt , t)σL(Xt , t). 

If the short rate rt = r(Xt , t) for some known function r(x , t), then one 
thinks of a2(Xt , t) as directly observed through the volatility of the short 
rate. In the next part, we will also restrict the form and dynamics of Lt , so 
as to achieve both uniqueness and identification of σLt . 
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Part V: Recovering R for Time Homog. Diffusion over a 
Bounded State Space 

We add a few more assumptions in order to identify the lognormal volatility 
function of Long’s NP. 

In particular, we assume that X and L are both time-homogeneous under A. 
As a result, a(x , t) = a(x) > 0, bQ(x , t) = bQ(x), r(x , t) = r(x), and 
σL(x , t) = σL(x). 

In this section, we also assume that the state space (£, h) of X is bounded. 
In the next section, we explore some examples with unbounded state space. 

We show that these additional assumptions determine the R dynamics of X 
and all of the spot prices of the assets in the given set. 
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Our Assumptions In Equations 

We assume no arbitrage for some finite set of assets which includes a money 
market account (MMA). 

As a result, there exists a risk-neutral measure Q under which spot prices 
deflated by the MMA balance evolve as local martingales. 

We assume that under Q, the driver X is a time-homogeneous diffusion: 

dXt = bQ(Xt )dt + a(Xt )dWt , t ∈ [0, T ], 

with bounded state space (£, u), t ≥ 0, a(x) > 0, and where W is Q−SBM. 

We also assume that under Q, the value Lt of the numeraire portfolio just 
depends on Xt and t and solves: 

dLt 
= r(Xt )dt + σL(Xt )dWt , t ∈ [0, T ]. 

Lt 

We know the functions bQ(x), a(x), and r(x), but not σL(x). How can we 
find it? 
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Value Function of the Numeraire Portfolio 
Recalling that X is our driver, we have assumed that: 

Lt ≡ L(Xt , t), t ∈ [0, T ], 

where L(x , t) is a positive function of x ∈ R and time t ∈ [0, T ]. 
Applying Itô’s formula, the volatility of L is:
 

1 ∂ ∂
 
σL(x) ≡ L(x , t)a(x) = a(x) ln L(x , t). 

L(x , t) ∂x ∂x 

Dividing by a(x) > 0 and integrating w.r.t. x : 0 x σL(y)
ln L(x , t) = dy + f (t), where f (t) is the constant of integration. 

a(y) 

Exponentiating implies that the value of the numeraire portfolio separates 
multiplicatively into a positive function π(x) of the level x of the driver X 
and a positive function p(t) of time t: 

L(x , t) = π(x)p(t), R x σL(y) 
a(y) dy f (t)where π(x) = e and p(t) = e . 
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Separation of Variables 

The numeraire portfolio value function L(x , t) must solve the following linear 
parabolic PDE to be self-financing: 

∂ a2(x) ∂2 ∂ 
L(x , t) + 

∂x2 
L(x , t) + bQ(x) L(x , t) = r(x)L(x , t), x ∈ (£, u). 

∂t 2 ∂x 

On the other hand, the last slide shows that this value separates as:
 

L(x , t) = π(x)p(t), x ∈ (£, u), t ∈ [0, T ].
 

Using Bernoulli’s classical separation of variables argument, we know that: 

λt p(t) = p(0)e , t ∈ [0, T ],
 

for each separating constant λ and that:
 

a2(x)
 
π '' (x) + bQ(x)π ' (x) − r(x)π(x) = −λπ(x), x ∈ (£, u). 

2 
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Regular Sturm Liouville Problem 

Recall the problem at the bottom of the last slide: 

a2(x) 
π '' (x) + bQ(x)π ' (x) − r(x)π(x) = −λπ(x), x ∈ (£, u),

2 

where π(x) and λ are unknown. 

Whichever boundary conditions we are allowed to impose, they will be
 
separated. As a result, we have a regular Sturm Liouville problem.
 

From Sturm Liouville theory, we know that there exists an eigenvalue
 
λ0 > −∞, smaller than all of the other eigenvalues, and an associated
 
positive eigenfunction, π0(x), which is unique up to positive scaling.
 

All of the eigenfunctions associated to the other eigenvalues switch signs at 
least once. 

One can numerically solve for both the smallest eigenvalue λ0 and its 
associated positive eigenfunction, π0(x). The positive eigenfunction π0(x) is 
unique up to positive scaling. 
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Value Function of the Numeraire Portfolio 

Recall that λ0 is the known lowest eigenvalue and π0(x) is the associated 
eigenfunction, positive and known up to a positive scale factor. 

Knowing π0(x) up to positive scaling and knowing λ0 implies that we also 
know the value function of the numeraire portfolio up to positive scaling, 
since: 

L(x , t) = π0(x)e λ0 t , x ∈ [£, u], t ∈ [0, T ]. 

As a result, the volatility of the numeraire portfolio is uniquely determined: 

∂ 
σL(x) = a(x) ln π0(x), x ∈ [£, u]. 

∂x 

Mission accomplished! Let’s see what the market believes. 
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R Dynamics of the Driver X 

Recall that the Q dynamics of X were assumed to be: 

dXt = bQ(Xt )dt + a(Xt )dWt , t ≥ 0,
 

where recall W is a standard Brownian motion under Q.
 

By our previous analysis, the dynamics of the driver X under the probability 
measure R are:
 

dXt = [bQ(Xt ) + σL(Xt )a(Xt )]dt + a(Xt )dBt , t ≥ 0.
 

Hence, we now know the R dynamics of the driver X .
 

We still have to determine the R transition density of the driver X .
 

Carr/Yu (Morgan Stanley) Can We Recover? December 5, 2013 40 / 50 

Developed for educational use at MIT and for publication through MIT OpenCourseware.

No investment decisions should be made in reliance on this material.



R Transition PDF of the Driver X and r 

From the change of numeraire theorem, the Radon Nikodym derivative dR 
dA is: 

dR L(XT , T ) π0(XT ) λ0T = = e ,
dA L(X0, 0) π0(X0) 

since L(x , t) = π0(x)eλ0t . 

Solving for the PDF dR gives:
 

π0(XT )

dR = e λ0T dA. 

π0(X0) 

π0(y)As we know the positive function , the positive function eλ0T , and the π0(x) 
Arrow Debreu state pricing density dA, we know dR, the transition PDF 
under R of X . 

Since the short rate rt = r(Xt ) for known function r(X ), we also know the 
transition PDF under R of r . 
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t ∈ [0,T ],

R Dynamics of Spot Prices 

Also from Girsanov’s theorem, the dynamics of the i−th spot price Sit under 
R are uniquely determined as: 

dSit = [r(Xt )Si (Xt , t)+σL(Xt ) 
∂ 

Si (Xt , t)a 2(Xt )]dt+ 
∂ 

Si (Xt , t)a(Xt )dBt ,
∂x ∂x
 

where for x ∈ (£, u), t ∈ [0, T ], Si (x , t) solves the following linear PDE:
 

∂ a2(x) ∂2 ∂ 
Si (x , t) + Si (x , t) + bQ(x) Si (x , t) = r(x)Si (x , t),

∂t 2 ∂x2 ∂x 

subject to appropriate boundary and terminal conditions. 

The instantaneous (arithmetic) risk premium of Si ,
 
σL(Xt ) ∂ Si (Xt , t)a2(Xt )dt, is just d(Si , ln L)t , i.e. the increment of the
 ∂x 
quadratic covariation of Si and ln L. 
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Part VI: Failures & Successes for Unbounded State Space 

Most diffusions used in derivatives pricing have an unbounded state space. 

For example, the standard model for a stock price is geometric Brownian 
motion, whose state space is the unbounded interval (0, ∞). 

The analysis presented thus far has required that the state variable X
 
diffuses over a bounded state space.
 

To let X diffuse over an unbounded interval, we have been using a Hilbert 
space approach, which requires that functions in the domain of the 
infinitessimal generator be square-integrable. 

So far, these theoretical results don’t apply if X follows geometric Brownian 
motion. 

Hence, when we focus on the Black Scholes model, our technical 
assumptions prevent us from learning the R dynamics of a stock price from 
stock option prices and our assumptions. 
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Short Rate Models 

A classical approach for valuing interest rate derivatives assumes that the 
short interest rate r is a so-called mean-reverting square-root process under 
the risk-neutral measure Q. 

In this so-called Cox, Ingersoll, and Ross (CIR) model, the state space is 
again an unbounded interval, now [0, ∞). 

When we focus on CIR model, we find that one can learn the R generator of 
the time homogeneous diffusion r from the risk-neutral generator 

σ2 d2 rGA = + κQ(θQ − r) d − rI. The R generator is also in the CIR class, r 2 dr2 dr 
but with a higher speed of mean reversion κR ≥ κQ. 

More generally, Vadim Linetsky and a student have determined that the 
infinitessimal generator under R can be recovered from its A counterpart 
whenever the state variable X is a continuous multi-variate diffusion with 
affine coefficients. 

Knowing in general when you can recover on unbounded state space is at 
present an open problem. 
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Summary 

We highlighted Ross’ Theorem 1 and proposed an alternative preference-free 
way to derive the same financial conclusion. 

Our approach is based on imposing time homogeneity on the Q dynamics of 
the value L of Long’s numeraire portfolio, when it is driven by a 
time-homogeneous diffusion process X with bounded state space. 

Under these assumptions, separation of variables allows us to separate beliefs 
from preferences. We learn both the market’s beliefs and the risk premium. 

Lately, we have been exploring diffusions with unbounded state space. 
Sometimes our technical restrictions prevent recovery (eg. Black Scholes) 
and in other examples (eg. CIR model for the short interest rate), we were 
able to recover the R dynamics of the short rate. 

At present, we do not have a general theory giving sufficient conditions for 
when Ross recovery succeeds for a diffusion over an unbounded state space. 
Since these diffusions are widely used, this is a good open problem for future 
research. 
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Disclaimer 

The information herein has been prepared solely for informational purposes and is 
not an offer to buy or sell or a solicitation of an offer to buy or sell any security or 
instrument or to participate in any trading strategy. Any such offer would be 
made only after a prospective participant had completed its own independent 
investigation of the securities, instruments or transactions and received all 
information it required to make its own investment decision, including, where 
applicable, a review of any offering circular or memorandum describing such 
security or instrument, which would contain material information not contained 
herein and to which prospective participants are referred. No representation or 
warranty can be given with respect to the accuracy or completeness of the 
information herein, or that any future offer of securities, instruments or 
transactions will conform to the terms hereof. Morgan Stanley and its affiliates 
disclaim any and all liability relating to this information. Morgan Stanley, its 
affiliates and others associated with it may have positions in, and may effect 
transactions in, securities and instruments of issuers mentioned herein and may 
also perform or seek to perform investment banking services for the issuers of 
such securities and instruments. 
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Disclaimer (Con’d) 

The information herein may contain general, summary discussions of certain tax, 
regulatory, accounting and/or legal issues relevant to the proposed transaction. 
Any such discussion is necessarily generic and may not be applicable to, or 
complete for, any particular recipient’s specific facts and circumstances. Morgan 
Stanley is not offering and does not purport to offer tax, regulatory, accounting or 
legal advice and this information should not be relied upon as such. Prior to 
entering into any proposed transaction, recipients should determine, in 
consultation with their own legal, tax, regulatory and accounting advisors, the 
economic risks and merits, as well as the legal, tax, regulatory and accounting 
characteristics and consequences, of the transaction. 
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Disclaimer (Con’d) 

Notwithstanding any other express or implied agreement, arrangement, or 
understanding to the contrary, Morgan Stanley and each recipient hereof are 
deemed to agree that both Morgan Stanley and such recipient (and their 
respective employees, representatives, and other agents) may disclose to any and 
all persons, without limitation of any kind, the U.S. federal income tax treatment 
of the securities, instruments or transactions described herein and any fact 
relating to the structure of the securities, instruments or transactions that may be 
relevant to understanding such tax treatment, and all materials of any kind 
(including opinions or other tax analyses) that are provided to such person 
relating to such tax treatment and tax structure, except to the extent 
confidentiality is reasonably necessary to comply with securities laws (including, 
where applicable, confidentiality regarding the identity of an issuer of securities or 
its affiliates, agents and advisors). 
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Disclaimer (Con’d) 
The projections or other estimates in these materials (if any), including estimates 
of returns or performance, are forward-looking statements based upon certain 
assumptions and are preliminary in nature. Any assumptions used in any such 
projection or estimate that were provided by a recipient are noted herein. Actual 
results are difficult to predict and may depend upon events outside the issuers or 
Morgan Stanley’s control. Actual events may differ from those assumed and 
changes to any assumptions may have a material impact on any projections or 
estimates. Other events not taken into account may occur and may significantly 
affect the analysis. Certain assumptions may have been made for modeling 
purposes only to simplify the presentation and/or calculation of any projections or 
estimates, and Morgan Stanley does not represent that any such assumptions will 
reflect actual future events. Accordingly, there can be no assurance that 
estimated returns or projections will be realized or that actual returns or 
performance results will not be materially different than those estimated herein. 
Any such estimated returns and projections should be viewed as hypothetical. 
Recipients should conduct their own analysis, using such assumptions as they 
deem appropriate, and should fully consider other available information in making 
a decision regarding these securities, instruments or transactions. Past 
performance is not necessarily indicative of future results. Price and availability 
are subject to change without notice. 
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Disclaimer (Con’d) 
The offer or sale of securities, instruments or transactions may be restricted by 
law. Additionally, transfers of any such securities, instruments or transactions 
may be limited by law or the terms thereof. Unless specifically noted herein, 
neither Morgan Stanley nor any issuer of securities or instruments has taken or 
will take any action in any jurisdiction that would permit a public offering of 
securities or instruments, or possession or distribution of any offering material in 
relation thereto, in any country or jurisdiction where action for such purpose is 
required. Recipients are required to inform themselves of and comply with any 
legal or contractual restrictions on their purchase, holding, sale, exercise of rights 
or performance of obligations under any transaction. Morgan Stanley does not 
undertake or have any responsibility to notify you of any changes to the attached 
information. With respect to any recipient in the U.K., the information herein has 
been issued by Morgan Stanley & Co. International Limited, regulated by the 
U.K. Financial Services Authority. THIS COMMUNICATION IS DIRECTED IN 
THE UK TO THOSE PERSONS WHO ARE MARKET COUNTER PARTIES OR 
INTERMEDIATE CUSTOMERS (AS DEFINED IN THE UK FINANCIAL 
SERVICES AUTHORITYS RULES). ADDITIONAL INFORMATION IS 
AVAILABLE UPON REQUEST. 
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