
1. Ito’s calculus

In the previous lecture, we have observed that a sample Brownian path is
nowhere differentiable with probability 1. In other words, the differentiation

dBt
dt

does not exist. However, while studying Brownain motions, or when using
Brownian motion as a model, the situation of estimating the difference of a
function of the type

f(Bt)

over an infinitesimal time difference occurs quite frequently (suppose that
f is a smooth function). To be more precise, we are considering a function
f(t, Bt) which depends only on the second variable. Hence there exists an
implicit dependence on time since the Brownian motion depends on time.

If the differentiation dBt
dt existed, then we can easily do this by using chain

rule:

df =

(
dBt
dt
· f ′(Bt)

)
dt.

We already know that the formula above makes no sense.
One possible way to work around this problem is to try to describe the

difference df in terms of the difference dBt. In this case, the equation above
becomes

(1.1) df = f ′(Bt)dBt.

Our new formula at least makes sense, since there is no need to refer to the
differentiation dBt

dt which does not exist. The only problem is that it does
not quite work. Consider the Taylor expansion of f to obtain

f(x+ ∆x)− f(x) = (∆x) · f ′(x) +
(∆x)2

2
f ′′(x) +

(∆x)3

6
f ′′′(x) + · · · .

To deduce Equation (1.1) from this formula, we must be able to say that
the significant term is the first term (∆x) · f ′(x) and all other terms are of
smaller order of magnitude. Is this true for x = Bt? For x = Bt, we have

∆f = (∆Bt) · f ′(Bt) +
(∆Bt)

2

2
f ′′(x) +

(∆Bt)
3
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f ′′′(x) +
6

· · · .

Now consider the term (∆Bt)
2. Since Bt is a Brownian motion, we know

that E[(∆B 2
t) ] = ∆t. Since a difference in Bt is necessarily accompanied by

a difference in t, we see that the second term is no longer negligable. The
theory of Ito calculus essentially tells us that we can make the substitution
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(∆Bt)
2 = ∆t, and the remaining terms are negligable. Hence the equation

above becomes

∆t
∆f = (∆Bt) · f ′(Bt) + f ′′(x) +

2
· · · ,

which in terms of infinitesimals becomes

1
(1.2) df(Bt) = f ′(Bt)dBt + f ′′(Bt)dt.

2

This equation known as the Ito’s lemma is the main equation of Ito’s cal-
culus.

More generally, consider a smooth function f(t, x) which depends on two
variables, and suppose that we are interested in the differential of f(t, Bt).
In classical calculus, we will get

∂f
df =

∂t
dt+

∂f

∂x
dx,

but in Ito calculus, we will have

df(t, Bt) =
∂f

∂t
dt+

∂f

∂x
dBt +

1

2

∂2f

∂x2
(dBt)

2

=

(
∂f

∂t
+

1

2

∂2f

∂x2

)
dt+

∂f

∂x
dBt.

Theorem 1.1. (Ito’s lemma) Let f(t, x) be a smooth function of two vari-
ables, and let Xt be a stochastic process satisfying dXt = µtdt+ σtdBt for a
Brownian motion Bt. Then

df(t,Xt) =

(
∂f

∂t
+ µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt+

∂f

∂x
dBt.

Proof. We have

df(t,Xt) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2

=

(
∂f

∂t
+ µt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt+ σt

∂f
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dBt + ..dtdBT + ..(dt)2.
∂x

We can ignore the terms dtdBt and (dt)2. �

Definition 1.2. We define integration as an inverse of differentiation, i.e.,

F (t, Bt) =

ˆ
f(t, Bt)dBt +

ˆ
g(t, Bt)dt,

if and only if

dF = f(t, Bt)dBt + g(t, Bt)dt.

Example 1.3. (i) The stochastic process Xt = µt + σBt is known as the
Brownian motion with drift µ and variance σ. For this process, we have

dXt = µdt+ σdBt.
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(ii) Consider the function f(x) = 1
2x

2. We see that

df(Bt) = BtdBt +
1
dt.

2

Equiavlently,

1

2
B2
T =

ˆ T

0
BtdBt +

ˆ T

0

1

2
dt =

ˆ T

0
BtdBt +

T

2
.

This implies that ˆ T

0
BtdBt =

1

2
B2
T −

T

2
.

Note how this ‘violates’ the fundamental theorem of calculus.
(iii) Let f(t, x) = exp(µt+ σx). Then

df(t, Bt) = (µ+
1

2
σ2)f(t, Bt)dt+ σf(t, Bt)dBt.

We can now answer the question of finding the stochastic process Xt(t, Bt)
such that

dXt = σXt · dBt.
To do this we can just set µ = −1

2σ
2 in the function above, i.e., Xt(t, Bt) =

exp(−1
2σ

2t+ σBt).

(iv) Let f(t, x) = t2 + x2, and Xt = µt+ σBt. Then

df(t,Xt) = 2tdt+ 2XtdXt + (dXt)
2

= 2tdt+ 2(µdt+ σdBt) + σ2dt

= (2t+ 2µ+ σ2)dt+ 2σdBt.

We discussed an elegant way to work around the fact that Bt is not
differentiable to understand the difference of a function of a Brownian motion
over a small period of time. For the remainder of this class, we will study
the properties of Ito calculus by addressing the following type of questions:

(1) Given g(t, Bt) =
´
a dBt +

´
b dt for some functions a and b, is there

a simple way to describe the variance of g?
(2) Given g(t, Bt) as above, when is g a martingale?
(3) Suppose that b = 0. Then when is g(t, Bt) normally distributed at

time t?

Remark. The theory of calculus can be extended to cover Brownian motions
in several different ways which are all ‘correct’ (in other words, there can
be several different versions of Ito’s calculus). For example, there exists a
theory of calculus where

df = f ′(Bt)dBt −
1
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f ′′(Bt)dt.
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However, Ito integral is the most natural one in the context of how the time
variable fits into the theory, because the fact that we cannot see the future
is the basis of the whole theory. We will further study this in next section.

2. Properties of Ito calculus

First theorem can be seen as an extension of the fact that the sum of
independent normal random variables is a random variable.

Theorem. Let B(t) be a Brownian motion, and let ∆(t) be a nonrandom
function of time. Suppose that a stochastic process I(t) satisfies

dI = ∆(s)dBs i.e. I(t) =

ˆ
∆(s)dBs.

where I(0) = 0. Then for each t ≥ 0, the random variable I(t) is normally
distributed.

What happens when we allow ∆(t) to be a random function of time?
Here is an interesting and natrual class of random varialbes ∆(t) that we
consider.

Definition 2.1. Let Xt be a stochastic process. A process ∆t is called an
adapted process (with respect to Xt) if for all t ≥ 0, the random variable ∆t

depends only on Xs for s ≤ t.

Example 2.2. Let Xt be a stochastic process.
(i) The process ∆(t) = Xt is an adapted process.
(ii) The process ∆(t) = min{Xt, c} is an adapted process (where c is a

constant).
(iii) The process ∆(t) = max0 t T Xt is not an adapted process.≤ ≤
(iv) If τ is a stopping time, then Xτ is an adapted process.

For example, suppose that we model the price of a stock using a stochastic
process, and are trying to find a strategy which has positive expected return.
Consider a simple strategy where at each time t, we either buy or sell one
stock, hence ∆t = 1 or −1. Our strategy only makes sense if ∆t is an
adapted process, since otherwise it contradicts the fact that we cannot see
the future.

Our second theorem asserts that for a Brownian motion Bt, the Ito inte-
gral of an adapted process with respect to Bt is also a martingale.

Theorem 2.3. Let Bt be a Brownian motion. Then for all adapted processes
g(t, Bt), the integral ˆ

g(t, Bt) dBs

is a martingale, as long as g is a ‘reasonable function’. Formally, if g ∈ L2,
i.e., ˆ ˆ t

g2(t, Bt)dtdBt <
0

∞.
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Example 2.4. The process Bt itself is an adapted process. Recall thatˆ t

0
BsdBs =

1

2
B2
t −

t

2
,

and E[B2
t ] = t. Hence

E[

ˆ t

0
BsdBs] = 0.

More generally,

E[

ˆ t2

t1

BsdBs | Ft1 ] = E[

(
1

2
B2
t2 −

t2
2

)
| F1]−

(
1

2
B2
t1 −

t1
2

)
=

1

2
(t2 − t1) +

1

2
B2
t1 −

t2
2
− 1

2
B2
t1 +

t1
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= 0.
2

This confirms the theorem above for ∆(t) = Bt.

Here is another useful fact about the Ito integral of an adapted process
known as Ito isometry. It can be used to compute the variance of the Ito
integral.

Theorem 2.5. (Ito isometry) Let Bt be a Brownian motion. Then for all
adapted processes ∆(t), we have[(ˆ t )2

] [ˆ t

E ∆(s)dBs = E ∆(s)2ds
0 0

]
.

Example 2.6. Let ∆(t) = 1. Then the left hand side of the theorem above
is

E

[(ˆ t

∆(s)dBs
0

)2
]

= E[B2
t ] = t,

and the right hand side of the above is

E
[ˆ t

∆(s)2ds
0

]
= E[t] = t.

t
Note that

´
∆(s)dBs = 0 by Theorem 2.1 given above. Hence Ito isom-0

etry tell us how to compute the variance of this integral .

3. Change of measure

Following is a quote from [3].

Can a stochastic process with drift also be viewed as a pro-
cess without drift? This modestly paradoxical question is
no mere curiosity. It has many important consequences, the
most immediate of which is the discovery that almost any
question about Brownian motion with drift may be rephrased
as a parallel question about standard Brownian motion.
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Recall that a stochastic process is a probability distribution over a set of
paths. A change of measure of a stochastic process is a method of shifting
the probability distribution into another probability distribution. In this
section, we fix a final time T and suppose that all paths are defined over the
time 0 ≤ t ≤ T . Also, we take a more abstract view of defining stochastic
processes in terms of an underlying space Ω. Hence a stochastic process X is
a function X : Ω→ [0, T ]∞ for ω ∈ Ω, where P is a probability distribution
over Ω and describes the probability distribution of paths through X−1, i.e.
P(A) = P(X−1(A)) for all set of paths A ⊂ [0, T ]∞. We denote a particular
realization of a stochastic process as Xω.

Let Z be a positive random variable satisfying
´
Z(ω) dX(ω) = 1. Then

we can define a new stochastic process X̃ whose probability distribution is
given by

P̃(A) =

ˆ
A
Z(ω) dX(ω),

for all sets A. Since Z is positive, we see that

(3.1) P(A) > 0⇔ P̃(A) > 0 ∀A.

Hence the set of paths ‘observed’ under the probability measures P and P̃
are the same.

Definition 3.1. We say that two probability distributions P and P̃ are
equivalent if (3.1) holds.

When changing measures, we fix a set Ω of possible paths, and change
a probability distribution P over Ω, and make it into another equivalent
(property 3.1) probability distribution over Ω. Thus the underlying space
is the same but we only change our point of view. This is not true for
general transformations. For example, consider the square of a path. The
probability distribution of the square of a Brownian motion B(t)2 is not
equivalent to the probability distribution of B(t).

The function Z is known as the Radon-Nikodým derivative of P̃ with
respect to P, and is denoted as

Z =
dP̃
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.
dP

Changing measures is of theoretical importance since it provides a tool
to understand the relation between two different but equivalent stochastic
processes. It is also of practical importance, since converting one probability
distribution into another can reveal hidden insights. For example, in finance,
we can convert a non-martingale stochastic process into a martingale by
changing measure, and this gives a method of pricing financial derivatives.

We now come back to the original question that we posted: ‘Can a sto-
chastic process with drift also be viewed as a process without drift?’. We
now see that this is the same question as asking whether the two stochastic
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processes are equivalent. Our first theorem asserts that this indeed is the
case for Brownian motions.

Theorem 3.2. (Girsanov’s theorem, simple version) Let (Ω,P) be a prob-
ability space, and let X : Ω → [0, T ]∞ be a stochastic process which is a
Brownian motion with drift µ under the probability distribution inudced by
(Ω,P). Consider the probability distribution P̃ over Ω defined as

dP̃

dP
(ω) = e−µω(T )−µ2T/2.

Then X is a Brownian motion with no drift under the probability distribution
induced by (Ω, P̃).

Following is a more general version of the theorem above.

Theorem 3.3. (Girsanov’s theorem) Let (Ω,P) be a probability space, and
let X : Ω→ [0, T ]∞ be a stochastic process which is a Brownian motion with
no drift under the probability distribution induced by (Ω,P). Let ∆(t) be a

bounded adapted process, and consider the probability distribution P̃ over Ω
defined as

dP̃

dP
(ω) = e−

´ T
0 ∆(u)dω− 1
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2
2

´ T ∆(u) du0 .

Then the stochastic process defined as

t

Yω(t) = Xω(t) +

ˆ
∆(u)du,

0

˜is a Brownian motion under the probability distribution induced by (Ω,P).

4. Remarks

We avoided all technalities in this lecture note. Formalizaing the theory
of Ito calculus requires a solid background in measure theory.
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