Lecture 15: Factor Models

MIT 18.S096

Dr. Kempthorne

Fall 2013

э

Factor Models	Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Outline

Factor Models

Linear Factor Model

- Macroeconomic Factor Models
- Fundamental Factor Models
- Statistical Factor Models: Factor Analysis
- Principal Components Analysis
- Statistical Factor Models: Principal Factor Method

 Linear Factor Model

 Macroeconomic Factor Models

 Factor Models

 Factor Models

 Statistical Factor Models: Factor Analysis

 Principal Components Analysis

 Statistical Factor Models: Principal Factor Method

Linear Factor Model

Data:

- *m* assets/instruments/indexes: *i* = 1, 2, ..., *m*
- *n* time periods: $t = 1, 2, \ldots, n$
- *m*-variate random vector for each time period:

$$\mathbf{x}_t = (x_{1,t}, x_{2,t}, \dots, x_{m,t})'$$

E.g., returns on *m* stocks/futures/currencies;

interest-rate yields on m US Treasury instruments.

Factor Model

$$\begin{array}{rcl} x_{i,t} &=& \alpha_i + \beta_{1,i} f_{1,t} + \beta_{2,i} f_{2,t} + \dots + \beta_{k,i} f_{k,t} + \epsilon_{i,t} \\ &=& \alpha_i + \beta'_i \mathbf{f}_t + \epsilon_{i,t} \quad \text{where} \end{array}$$

- α_i: intercept of asset i
- $\mathbf{f}_t = (f_{1,t}, f_{2,t}, \dots, f_{K,t})'$: common factor variables at period t (constant over i)
- $\beta_i = (\beta_{1,i}, \dots, \beta_{K,i})'$: factor loadings of asset *i* (constant over *t*)
- $\epsilon_{i,t}$: the specific factor of asset *i* at period *t*.

	Linear Factor Model
Fastar Madala	
Factor Wodels	
	Principal Components Analysis

Linear Factor Model

Linear Factor Model: Cross-Sectional Regressions

 $\mathbf{x}_t = \boldsymbol{\alpha} + B \mathbf{f}_t + \boldsymbol{\epsilon}_t$ for each $t \in \{1, 2..., T\}$, where $\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \vdots \end{bmatrix} (m \times 1); \quad \boldsymbol{B} = \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2' \\ \vdots \\ \boldsymbol{\alpha}_1' \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \beta_{i,k} \end{bmatrix} (m \times K); \quad \boldsymbol{\epsilon}_t = \begin{bmatrix} \boldsymbol{\epsilon}_{1,t} \\ \boldsymbol{\epsilon}_{2,t} \\ \vdots \\ \boldsymbol{\epsilon}_{1,t} \end{bmatrix} (m \times 1)$ • α and B are the same for all t. • { \mathbf{f}_t } is (*K*-variate) covariance stationary *I*(0) with $E[\mathbf{f}_t] = \mu_f$ $Cov[\mathbf{f}_t] = E[(\mathbf{f}_t - \boldsymbol{\mu}_f)(\mathbf{f}_t - \boldsymbol{\mu}_f)'] = \boldsymbol{\Omega}_f$ • {\epsilon_t} is m-variate white noise with: $\begin{array}{rcl} E[\epsilon_t] &=& \mathbf{0}_m\\ Cov[\epsilon_t] &=& E[\epsilon_t \epsilon_t'] = \mathbf{\Psi}\\ Cov[\epsilon_t, \epsilon_{t'}] &=& E[\epsilon_t \epsilon_{t'}'] = \mathbf{0} \ \forall t \neq t' \end{array}$ Ψ is the $(m \times m)$ diagonal matrix with entries $(\sigma_1^2, \sigma_2^2, \dots, \sigma_m^2)$ where $\sigma_i^2 = var(\epsilon_{i,t})$, the variance of the *i*th asset specific factor. • The two processes $\{\mathbf{f}_t\}$ and $\{\boldsymbol{\epsilon}_t\}$ have null cross-covariances: MIT 18.S096 Factor Models

Factor Models Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Linear Factor Model

Summary of Parameters

- α : $(m \times 1)$ intercepts for m assets
- B: $(m \times K)$ loadings on K common factors for m assets
- μ_f : (K imes 1) mean vector of K common factors
- $\Omega_f: (K \times K)$ covariance matrix of K common factors
- $\Psi = diag(\sigma_1^2, \dots, \sigma_m^2)$: *m* asset-specific variances

Features of Linear Factor Model

 The *m*-variate stochastic process {x_t} is a covariance-stationary multivariate time series with

• Conditional moments:

$$E[\mathbf{x}_t | \mathbf{f}_t] = \alpha + B\mathbf{f}_t$$

$$Cov[\mathbf{x}_t | \mathbf{f}_t] = \mathbf{\Psi}$$
• Unconditional moments:

$$E[\mathbf{x}_t] = \mu_x = \alpha + B\mu_f$$

$$Cov[\mathbf{x}_t] = \mathbf{\Sigma} = -B\mathbf{\Omega}_t B' + \mathbf{W}_f$$

Factor Models	Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method
---------------	--

Linear Factor Model

Linear Factor Model: Time Series Regressions

 $\mathbf{x}_i = \mathbf{1}_T \alpha_i + \mathbf{F} \boldsymbol{\beta}_i + \boldsymbol{\epsilon}_i$ for each asset $i \in \{1, 2..., m\}$, where $\mathbf{x}_{i} = \begin{bmatrix} x_{i,1} \\ \vdots \\ x_{i,t} \\ \vdots \\ x_{1,T} \end{bmatrix} \quad \boldsymbol{\epsilon}_{i} = \begin{bmatrix} \epsilon_{i,t} \\ \vdots \\ \epsilon_{i,t} \\ \vdots \\ \epsilon_{i,T} \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} \mathbf{f}_{1}' \\ \vdots \\ \mathbf{f}_{t}' \\ \vdots \\ \mathbf{f}_{T}' \end{bmatrix} = \begin{bmatrix} f_{1,1} & f_{2,1} & \cdots & f_{K,1} \\ \vdots & \vdots & \vdots & \vdots \\ f_{1,t} & f_{2,t} & \cdots & f_{K,t} \\ \vdots & \vdots & \vdots & \vdots \\ f_{1,T} & f_{2,T} & \cdots & f_{K,T} \end{bmatrix}$ • α_i and $\beta_i = (\beta_{1,i}, \dots, \beta_{K,i})$ are regression parameters. • ϵ_i is the *T*-vector of regression errors with $Cov(\epsilon_i) = \sigma_i^2 \mathbf{I}_T$ Linear Factor Model: Multivariate Regression $\mathbf{X} = [\mathbf{x}_1 | \cdots | \mathbf{x}_m], \mathbf{E} = [\epsilon_1 | \cdots | \epsilon_m], \mathbf{B} = [\beta_1 | \cdots | \beta_m],$ $X = 1 \tau lpha' + FB + E$ (note that **B** equals the transpose of cross-sectional B)

Factor Models	Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

• Linear Factor Model

- Macroeconomic Factor Models
- Fundamental Factor Models
- Statistical Factor Models: Factor Analysis
- Principal Components Analysis
- Statistical Factor Models: Principal Factor Method

Linear Factor Model Macroeconomic Factor Models Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

< □ > < 同 > < 三 >

Macroeconomic Factor Models

Single Factor Model of Sharpe (1970)

 $x_{i,t} = \alpha_i + \beta_i R_{Mt} + \epsilon_{i,t} \ i = 1, \dots, m \quad t = 1, \dots, T$

where

- *R_{Mt}* is the return of the market index in excess of the risk-free rate; the **market risk factor**.
- $x_{i,t}$ is the return of asset *i* in excess of the risk-free rate.
- K = 1 and the single factor is $f_{1,t} = R_{Mt}$.
- Unconditional cross-sectional covariance matrix of the assets: Cov(x_t) = Σ_x = σ²_Mββ' + Ψ where
 σ²_M = Var(R_{Mt})
 - $\boldsymbol{\beta} = (\beta_1, \ldots, \beta_m)'$
 - $\Psi = diag(\sigma_1^2, \ldots, \sigma_m^2)$

Estimation of Sharpe's Single Index Model

- Single Index Model satisfies the Generalized Gauss-Markov assumptions so the least-squares estimates (â_i, β̂_i) from the time-series regression for each asset *i* are best linear unbiased estimates (BLUE) and the MLEs under Gaussian assumptions.
 x_i = 1_Tâ_i + R_Mβ̂_i + ê_i
- Unbiased estimators of remaining parameters:

•
$$\hat{\sigma}_i^2 = (\hat{\epsilon}_i'\hat{\epsilon}_i)/(T-2)$$

• $\hat{\sigma}_M^2 = [\sum_{t=1}^T (\mathbf{R}_{Mt} - \bar{\mathbf{R}}_M)^2]/(T-1)$ with $\bar{\mathbf{R}}_M = (\sum_{t=1}^T \mathbf{R}_{Mt})/T$
• $\hat{\mathbf{\Psi}} = diag(\hat{\sigma}_1^2, \dots, \hat{\sigma}_m^2)$

• Estimator of unconditional covariance matrix: $\widehat{Cov(\mathbf{x}_t)} = \hat{\mathbf{\Sigma}}_x = \hat{\sigma}_M^2 \hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}' + \hat{\boldsymbol{\Psi}}$

- Market risk
- Price indices (CPI, PPI, commodities) / Inflation
- Industrial production (GDP)
- Money growth
- Interest rates
- Housing starts
- Unemployment See Chen, Ross, Roll (1986). "Economic Forces and the Stock Market"

Linear Factor Model as Time Series Regressions

 $\mathbf{x}_i = \mathbf{1}_T \alpha_i + \mathbf{F} \boldsymbol{\beta}_i + \boldsymbol{\epsilon}_i, \text{ where }$

- $\mathbf{F} = [\mathbf{f}_1, \mathbf{f}_2, \dots \mathbf{f}_T]'$ is the $(T \times K)$ matrix of realized values of (K > 0) macroeconomic factors.
- Unconditional cross-sectional covariance matrix of the assets: $C_{OV}(\mathbf{x}) = R\mathbf{O}_{2}R' + \mathbf{W}$

where
$$B = (\beta_1, \dots, \beta_m)'$$
 is $(m \times K)$

Estimation of Multifactor Model

• Multifactor model satisfies the Generalized Gauss-Markov assumptions so the least-squares estimates $\hat{\alpha}_i$ and $\hat{\beta}_i$ ($\kappa \times 1$) from the time-series regression for each asset *i* are best linear unbiased estimates (BLUE) and the MLEs under Gaussian assumptions.

$$\mathbf{x}_i = \mathbf{1}_T \hat{\alpha}_i + \mathbf{F} \hat{\boldsymbol{\beta}}_i + \hat{\boldsymbol{\epsilon}}_i$$

• Unbiased estimators of remaining parameters:

•
$$\hat{\sigma}_i^2 = (\hat{\epsilon}_i'\hat{\epsilon}_i)/[T - (k+1)]$$

• $\hat{\Psi} = diag(\hat{\sigma}_1^2, \dots, \hat{\sigma}_m^2)$
• $\hat{\Omega}_f = [\sum_{t=1}^T (\mathbf{f}_t - \bar{\mathbf{f}})(\mathbf{f}_t - \bar{\mathbf{f}})']/(T-1)$
with $\bar{\mathbf{f}} = (\sum_{t=1}^T \mathbf{f}_t)/T$

• Estimator of unconditional covariance matrix: $\widehat{Cov}(\mathbf{x}_t) = \hat{\mathbf{\Sigma}}_x = \hat{\sigma}_M^2 \hat{B} \hat{\mathbf{\Omega}}_f \hat{B}' + \hat{\mathbf{\Psi}}$

Factor Models	Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Outline

Factor Models

- Linear Factor Model
- Macroeconomic Factor Models

• Fundamental Factor Models

- Statistical Factor Models: Factor Analysis
- Principal Components Analysis
- Statistical Factor Models: Principal Factor Method

Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Fundamental Factor Models

The common-factor variables $\{{\bf f}_t\}$ are determined using fundamental, asset-specific attributes such as

- Sector/industry membership.
- Firm size (market capitalization)
- Dividend yield
- Style (growth/value as measured by price-to-book, earnings-to-price, ...)
- Etc.

BARRA Approach (Barr Rosenberg)

- Treat observable asset-specific attributes as factor betas
- Factor realizations {f_t} are unobservable, but are estimated.

Fama-French Approach (Eugene Fama and Kenneth French)

- For every time period *t*, apply cross-sectional sorts to define factor realizations
 - For a given asset attribute, sort the assets at period *t* by that attribute and define quintile portfolios based on splitting the assets into 5 equal-weighted portfolios.
 - Form the hedge portfolio which is long the top quintile assets and short the bottom quintile assets.
- Define the common factor realizations for period t as the period-t returns for the K hedge portfolios corresponding to the K fundamental asset attributes.
- Estimate the factor loadings on assets using time series regressions, separately for each asset *i*.

Linear Factor Model Macroeconomic Factor Models Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Barra Industry Factor Model

- Suppose the *m* assets (*i* = 1, 2, ..., *m*) separate into *K* industry groups (*k* = 1, ..., *K*)
- For each asset *i*, define the factor loadings (k = 1, ..., K) $\beta_{i,k} = \begin{cases} 1 & \text{if asset } i \text{ is in industry group } k \\ 0 & \text{otherwise} \end{cases}$

These loadings are time invariant.

• For time period t, denote the realization of the K factors as $\mathbf{f}_t = (f_{1t}, \dots, f_{Kt})'$

These K- vector realizations are unobserved.

The Industry Factor Model is

$$X_{i,t} = \beta_{i,1}f_{1t} + \cdots + \beta_{i,K}f_{Kt} + \epsilon_{it}, \ \forall i, t$$

where

$$\begin{array}{rcl} \operatorname{var}(\epsilon_{it}) &=& \sigma_{i}^{2}, & \forall i\\ \operatorname{cov}(\epsilon_{it}, f_{kt}) &=& 0, & \forall i, k, t\\ \operatorname{cov}(f_{k't}, f_{kt}) &=& [\mathbf{\Omega}_{f}]_{k', k}, & \forall k', k, t & \quad \text{obs} \quad \text{def} \\ \hline & \text{MIT 18.5096} & \quad \text{Factor Models} & \quad 15 \end{array}$$

Barra Industry Factor Model

Estimation of the Factor Realizations

For each time period t consider the cross-sectional regression for the factor model:

 $\mathbf{x}_t = B \mathbf{f}_t + \mathbf{\epsilon}_t$ (lpha = 0 so it does not appear)

with

$$\mathbf{x}_{t} = \begin{bmatrix} x_{1,t} \\ x_{2,t} \\ \vdots \\ x_{m,t} \end{bmatrix} (m \times 1); \quad B = \begin{bmatrix} \beta'_{1} \\ \beta'_{2} \\ \vdots \\ \beta'_{m} \end{bmatrix} = [[\beta_{i,k}]] (m \times K); \quad \epsilon_{t} = \begin{bmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \\ \vdots \\ \epsilon_{m,t} \end{bmatrix} (m \times 1)$$

where $E[\epsilon_{t}] = \mathbf{0}_{m}, \quad E[\epsilon_{t}\epsilon'_{t}] = \Psi$, and $Cov(\mathbf{f}_{t}) = \mathbf{\Omega}_{f}$.

- Compute $\hat{\mathbf{f}}_t$ by least-squares regression of \mathbf{x}_t on B with regression parameter \mathbf{f}_t .
- B is $(m \times K)$ matrix of indicator variables (same for all t) $B'B = diag(m_1, \dots m_K),$

where m_k is the count of assets *i* in industry *k*, and $\sum_{k=1}^{K} m_k = m$.

• $\hat{\mathbf{f}}_t = (B'B)^{-1}B'\mathbf{x}_t$ (vector of industry averages!)

•
$$\hat{\boldsymbol{\epsilon}}_t = \mathbf{x}_t - B\hat{\mathbf{f}}_t$$

Barra Industry Factor Model

Estimation of Factor Covariance Matrix

$$\begin{split} \hat{\mathbf{\Omega}}_f &= \frac{1}{\mathcal{T}-1} \sum_{t=1}^{\mathcal{T}} (\hat{\mathbf{f}}_t - \bar{\hat{\mathbf{f}}}) (\hat{\mathbf{f}}_t - \bar{\hat{\mathbf{f}}})' \\ \bar{\hat{\mathbf{f}}} &= \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} \hat{\mathbf{f}}_t \end{split}$$

Estimation of Residual Covariance Matrix $\hat{\Psi}$

$$\hat{\mathbf{\Psi}} = diag(\hat{\sigma}_1^2, \dots, \hat{\sigma}_m^2)$$

where

$$\hat{\sigma}_i^2 = \frac{1}{T-1} \sum_{t=1}^T [\hat{\epsilon}_{i,t} - \bar{\hat{\epsilon}}_i]^2$$
$$\bar{\hat{\epsilon}}_i = \frac{1}{T} \sum_{t=1}^T \hat{\epsilon}_{i,t}$$

Estimation of Industry Factor Model Covariance Matrix $\hat{\Sigma} = B' \hat{\Omega}_f B + \hat{\Psi}$

Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Barra Industry Factor Model

Further Details

- Inefficiency of least squares estimates due to heteroscedasticity in Ψ.
 Resolution: apply Generalized Least Squares (GLS) estimating Ψ in the cross-sectional regressions.
- The factor realizations can be rescaled to represent **factor mimicking portfolios**
- The Barra Industry Factor Model can be expressed as a seemingly unrelated regression (SUR) model

Factor Models	Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

- Linear Factor Model
- Macroeconomic Factor Models
- Fundamental Factor Models

• Statistical Factor Models: Factor Analysis

- Principal Components Analysis
- Statistical Factor Models: Principal Factor Method

Statistical Factor Models

The common-factor variables $\{\mathbf{f}_t\}$ are hidden (*latent*) and their structure is deduced from analysis of the observed returns/data $\{\mathbf{x}_t\}$. The primary methods for extraction of factor structure are:

- Factor Analysis
- Principal Components Analysis

Both methods model the Σ , the covariance matrix of $\{\mathbf{x}_t, t = 1, ..., T\}$ by focusing on the sample covariance matrix $\hat{\Sigma}$, computed as follows:

$$\begin{split} \mathbf{X} &= \begin{bmatrix} \mathbf{x}_1 : \cdots & \mathbf{x}_T \end{bmatrix}_{(m \times T)} \\ \mathbf{X}^* &= \mathbf{X} \cdot \left(\mathbf{I}_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T' \right) \text{ ('de-meaned' by row)} \\ \hat{\mathbf{\Sigma}}_x &= \frac{1}{T} \mathbf{X}^* (\mathbf{X}^*)' \end{split}$$

	Linear Factor Model
	Macroeconomic Factor Models
actor Models	Fundamental Factor Models
	Statistical Factor Models: Factor Analysis
	Principal Components Analysis
	Statistical Factor Models: Principal Factor Method

Linear Factor Model as Cross-Sectional Regression

 $\mathbf{x}_t = \boldsymbol{\alpha} + B\mathbf{f}_t + \boldsymbol{\epsilon}_t,$

for each $t \in \{1, 2..., T\}$ (*m* equations expressed in vector/matrix form) where

- α and B are the same for all t.
- { f_t } is (*K*-variate) covariance stationary *I*(0) with $E[f_t] = \mu_f$, $Cov[f_t] = \Omega_f$
- $\{\epsilon_t\}$ is *m*-variate white noise with $E[\epsilon_t] = \mathbf{0}_m$ and $Cov[\epsilon_t] = \Psi = diag(\sigma_i^2)$

Invariance to Linear Tranforms of f_t

• For any
$$(K \times K)$$
 invertible matrix H define $\mathbf{f}_t^* = Hf_t$ and $B^* = BH^{-1}$

• Then the linear factor model holds replacing \mathbf{f}_t and B

$$\begin{aligned} \mathbf{x}_t &= \alpha + B^* \mathbf{f}_t^* + \epsilon_t = \alpha + B H^{-1} H \mathbf{f}_t + \epsilon_t \\ &= \alpha + B \mathbf{f}_t + \epsilon_t \\ \text{and replacing } \mu_f \text{ and } \Omega_f \text{ with} \\ \mathbf{\Omega}_f^* &= Cov(\mathbf{f}_t^*) = Cov(H \mathbf{f}_t) = H Cov(\mathbf{f}_t) H' = H \mathbf{\Omega}_f H' \\ \mu_f^* &= H \mu_f \end{aligned}$$

	Linear Factor Model
ctor Models	Macroeconomic Factor Models
	Fundamental Factor Models
	Statistical Factor Models: Factor Analysis
	Principal Components Analysis
	Statistical Factor Models: Principal Factor Method

Standard Formulation of Factor Analysis Model

- Orthonormal factors: $\Omega_f = I_K$ This is achieved by choosing $H = \Gamma \Lambda^{-\frac{1}{2}}$, where $\Omega_f = \Gamma \Lambda \Gamma'$ is the spectral/eigen decomposition with orthogonal $(K \times K)$ matrix Γ and diagonal matrix $\Lambda = diag(\lambda_1, \dots, \lambda_K)$, where $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_K > 0$.
- Zero-mean factors: $\mu_f = \mathbf{0}_K$ This is achieved by adjusting α to incorporate the mean contribution from the factors:

$$\alpha * = \alpha + B\mu_f$$

Under these assumptions the unconditional covariance matrix is $Cov(\mathbf{x}_t) = \mathbf{\Sigma}_x = BB' + \mathbf{\Psi}$

	Linear Factor Model
ctor Models	Macroeconomic Factor Models
	Fundamental Factor Models
	Statistical Factor Models: Factor Analysis
	Principal Components Analysis
	Statistical Factor Models: Principal Factor Method

Maximum Likelihood Estimation

For the model

$$\mathbf{x}_t = \mathbf{\alpha} + B\mathbf{f}_t + \mathbf{\epsilon}_t$$

• α and B are vector/matrix constants.

• All random variables are Normal/Gaussian:

Fa

•
$$\mathbf{x}_t$$
 i.i.d. $N_m(\alpha, \boldsymbol{\Sigma}_x)$
• \mathbf{f}_t i.i.d. $N_K(\mathbf{0}_K \mathbf{I}_K)$
• $\boldsymbol{\epsilon}_t$ i.i.d. $N_m(\mathbf{0}_m, \boldsymbol{\Psi})$
 $Cov(\mathbf{x}_t) = \boldsymbol{\Sigma}_x = BB' + \boldsymbol{\Psi}$

Model Likelihood

٠

$$L(\alpha, \mathbf{\Sigma}_{x}) = p(\mathbf{x}_{1}, \dots, \mathbf{x}_{T} \mid \alpha, \mathbf{\Sigma})$$

$$= \prod_{t=1}^{T} [p(\mathbf{x}_{t} \mid \alpha, \mathbf{\Sigma})]$$

$$= \prod_{t=1}^{T} [(2\pi)^{-m/2} |\mathbf{\Sigma}|^{-\frac{1}{2}} exp\left(-\frac{1}{2}(\mathbf{x}_{t} - \alpha)' \mathbf{\Sigma}_{x}^{-1}(\mathbf{x}_{t} - \alpha)\right)]$$

$$= (2\pi)^{-Tm/2} |\mathbf{\Sigma}|^{-\frac{T}{2}} exp\left[-\frac{1}{2} \sum_{t=1}^{T} (\mathbf{x}_{t} - \alpha)' \mathbf{\Sigma}_{x}^{-1}(\mathbf{x}_{t} - \alpha)\right]$$

	Linear Factor Model
	Macroeconomic Factor Models
actor Models	Fundamental Factor Models
	Statistical Factor Models: Factor Analysis
	Principal Components Analysis
	Statistical Factor Models: Principal Factor Method

Log Likelihood of the Factor Model

$$l(\alpha, \mathbf{\Sigma}_{x}) = \log L(\alpha, \mathbf{\Sigma}_{x}) \\ = -\frac{TK}{2} log(2\pi) - \frac{K}{2} log(|\mathbf{\Sigma}|) \\ -\frac{1}{2} \sum_{t=1}^{T} (\mathbf{x}_{t} - \alpha)' \mathbf{\Sigma}_{x}^{-1} (\mathbf{x}_{t} - \alpha)$$

Maximum Likelihood Estimates (MLEs)

- The MLEs of α , B, Ψ are the values which Maximize $l(\alpha, \Sigma_x)$ Subject to: $\Sigma_x = BB' + \Psi$
- The MLEs are computed numerically applying the Expectation-Maximization (EM) algorithm*

* Optional Reading: Dempster, Laird, and Rubin (1977), Rubin and Thayer (1983).

ML Specification of the Factor Model

- Apply EM algorithm to compute $\hat{\alpha}$ and \hat{B} and $\hat{\Psi}$.
- Estimate factor realizations $\{\mathbf{f}_t\}$
 - Apply the cross-sectional regression models for each time period *t*:

$$\mathbf{x}_t - \hat{\boldsymbol{\alpha}} = \hat{B}\mathbf{f}_t + \hat{\boldsymbol{\epsilon}}_t$$

Solving for $\hat{\mathbf{f}}$ as the regression parameter estimates of the regression of observed \mathbf{x}_t on the estimated factor loadings matrix. Taking account of the heteroscedasticity in ϵ , apply GLS estimates:

$$\hat{\mathbf{f}}_t = [\hat{B}' \hat{\mathbf{\Psi}}^{-1} \hat{B}]^{-1} [\hat{B}' \hat{\mathbf{\Psi}}^{-1} (\mathbf{x}_t - \hat{lpha})]$$

• (Optional) Consider coordinate rotations of orthonormal factors as alternate interpretations of model.

Factor Models	Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Further Details of ML Specification

- Estimated factor realizations can be rescaled to represent factor mimicking portfolios
- Likelihood Ratio test can be applied to test for the number of factors.

Test Statistic: $LR(K) = 2[I(\tilde{\alpha}, \tilde{\Sigma}) - I(\hat{\alpha}, \hat{B}, \hat{\Psi})]$ where H_0 : K factors are sufficient to model Σ and $\tilde{\alpha}$ and $\tilde{\Sigma}$ are the MLEs with no factor-model restrictions.

Factor Models	Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

- Linear Factor Model
- Macroeconomic Factor Models
- Fundamental Factor Models
- Statistical Factor Models: Factor Analysis
- Principal Components Analysis
- Statistical Factor Models: Principal Factor Method

Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Principal Components Analysis (PCA)

• An *m*-variate random variable:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}, \text{ with } E[\mathbf{x}] = \boldsymbol{\alpha} \in \Re^m, \text{ and } Cov[\mathbf{x}] = \boldsymbol{\Sigma}_{(m \times m)}$$

• Eigenvalues/eigenvectors of Σ :

•
$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m \ge 0$$
: *m* eigenvalues.
• $\gamma_1, \gamma_2, \dots, \gamma_m$: *m* orthonormal eigenvectors:
 $\mathbf{\Sigma} \gamma_i = \lambda_i \gamma_i, \quad i = 1, \dots, m$
 $\gamma'_i \gamma_i = 1, \quad \forall i$
 $\gamma'_i \gamma_{i'} = 0, \quad \forall i \ne i'$
• $\mathbf{\Sigma} = \sum_{i=1}^m \lambda_i \gamma_i \gamma'_i$

• Principal Component Variables:

$$p_i = \gamma'_i(\mathbf{x} - oldsymbol{lpha}), \quad i = 1, \dots, m$$

Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Principal Components Analysis

Principal Components in Vector/Matrix Form

- m-Variate \mathbf{x} : $E[\mathbf{x}] = \alpha$, $Cov[\mathbf{x}] = \boldsymbol{\Sigma}$ • $\Sigma = \Gamma \Lambda \Gamma'$, where
 $$\begin{split} \mathbf{\Lambda} &= diag(\lambda_1, \lambda_2, \dots, \lambda_m) \\ \mathbf{\Gamma} &= [\boldsymbol{\gamma}_1 : \boldsymbol{\gamma}_2 : \dots : \boldsymbol{\gamma}_m] \\ \mathbf{\Gamma}' \mathbf{\Gamma} &= \mathbf{I}_{-} \end{split}$$
 • $\mathbf{p} = \begin{vmatrix} p_1 \\ \vdots \end{vmatrix} = \mathbf{\Gamma}'(\mathbf{x} - \alpha), \ m$ -Variate PC variables $E[\mathbf{p}] = E[\mathbf{\Gamma}'(\mathbf{x} - \alpha)] = \mathbf{\Gamma}' E[(\mathbf{x} - E[\mathbf{x}])] = \mathbf{0}_m$ $Cov[\mathbf{p}] = Cov[\mathbf{\Gamma}'(\mathbf{x} - \alpha)] = \mathbf{\Gamma}'Cov[\mathbf{x}]\mathbf{\Gamma}$ $= \Gamma'\Sigma\Gamma = \Gamma'(\Gamma\lambda\Gamma')\Gamma = \Lambda$
 - **p** is a vector of zero-mean, uncorrelated random variables that provides an *orthogonal basis* for **x**.

Factor Model Factor Models Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Principal Components Analysis

m-Variate x in Principal Components Form

•
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = \boldsymbol{\alpha} + \mathbf{\Gamma} \mathbf{p}$$
, where $E[\mathbf{p}] = \mathbf{0}_m$, $Cov[\mathbf{p}] = \mathbf{\Lambda}$

- Partition Γ = [Γ₁Γ₂] where Γ₁ corresponds to the K (< m) largest eigenvalues of Σ.
- Partition $\mathbf{p} = \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \end{bmatrix}$ where \mathbf{p}_1 contains the first K elements.

•
$$\mathbf{x} = \alpha + \mathbf{\Gamma}_1 \mathbf{p}_1 + \mathbf{\Gamma}_2 \mathbf{p}_2 = \alpha + B\mathbf{f} + \epsilon$$

where

$$\begin{array}{rcl} B & = & \boldsymbol{\Gamma}_1 & (m \times K) \\ \boldsymbol{f} & = & \boldsymbol{p}_1 & (K \times 1) \\ \boldsymbol{\epsilon} & = & \boldsymbol{\Gamma}_2 \boldsymbol{p}_2 & (m \times 1) \end{array}$$

Like factor model except $Cov[\epsilon] = \Gamma_2 \Lambda_2 \Gamma'_2$, where Λ_2 is diagonal matrix of last (m - K) eigenvalues.

Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Empirical Principal Components Analysis

The principal components analysis of $\mathbf{X} = [\mathbf{x}_1 : \cdots \mathbf{x}_T]_{(m \times T)}$ consists of the following computational steps:

- Component/row means :
- 'De-meaned' matrix:
- Sample covariance matrix:
- Eigenvalue/vector decomposition: yielding estimates of Γ and Λ.
- Sample Principal Components:

$$\mathbf{P} = [\mathbf{p}_1 : \cdots : \mathbf{p}_T] = \hat{\mathbf{\Gamma}}' \mathbf{X}^*. \ (m \times \tau)$$

$$\begin{split} \bar{\mathbf{x}} &= (\frac{1}{T})\mathbf{X}\mathbf{1}_T \\ \mathbf{X}^* &= \mathbf{X} - \bar{\mathbf{x}}\mathbf{1}_T' \\ \hat{\mathbf{\Sigma}}_x &= \frac{1}{T}\mathbf{X}^*(\mathbf{X}^*)' \\ \hat{\mathbf{\Sigma}}_x &= \hat{\mathbf{\Gamma}}\hat{\mathbf{\Lambda}}\hat{\mathbf{\Gamma}}' \end{split}$$

Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Empirical Principal Components Analysis

PCA Using Singular Value Decomposition Consider the Singular Value Decomposition (SVD) of the de-meaned matrix:

$\mathbf{X}^* = \mathbf{V}\mathbf{D}\mathbf{U}'$

where

- V: $(m \times m)$ orthogonal matrix, $VV' = I_m$.
- U: $(m \times T)$ row-orthonormal matrix, $\mathbf{UV}' = \mathbf{I}_m$.
- **D**: $(m \times m)$ diagonal matrix, **D** = $diag(d_1, \ldots, d_m)$ with $d_1 \ge d_2 \ge \cdots \ge 0$.

Exercise: Show that

• $\hat{\Lambda} = \frac{1}{T}D^2$ • $\hat{\Gamma} = V$ • $P = \hat{\Gamma}'X^* = DU'$

Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Alternate Definition of PC Variables

Given the $m-\text{variate}\; \mathbf{x}: E[\mathbf{x}] = \alpha$ and $\textit{Cov}[\mathbf{x}] = \mathbf{\Sigma}$

• Define the First Principal Component Variable as

 $p_1 = \mathbf{w}'\mathbf{x} = (w_1x_1 + w_2x_2 + \dots + w_mx_m)$ where the coefficients $\mathbf{w} = (w_1, w_2, \dots, w_m)'$ are chosen to maximize: $Var(p_1) = \mathbf{w}'\mathbf{\Sigma}_x\mathbf{w}$ subject to: $|\mathbf{w}|^2 = \sum_{i=1}^m w_i^2 = 1$.

• Define the Second Principal Component Variable as

 $p_2 = \mathbf{v}'\mathbf{x} = (v_1x_1 + v_2x_2 + \dots + v_mx_m)$ where the coefficients $\mathbf{v} = (v_1, v_2, \dots, v_m)'$ are chosen to maximize: $Var(p_2) = \mathbf{v}'\mathbf{\Sigma}_x\mathbf{v}$ subject to: $|\mathbf{v}|^2 = \sum_{i=1}^m v_i^2 = 1$, and $\mathbf{v}'\mathbf{w} = 0$.

• Etc., defining up to p_m , The coefficient vectors are given by $[\mathbf{w}:\mathbf{v}:\cdots] = [\gamma_1:\gamma_2:\cdots] = \mathbf{\Gamma}$

Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Principal Components Analysis

Further Details

• PCA provides a decomposition of the **Total Variance**:

Total Variance (**x**) =
$$\sum_{i=1}^{m} Var(\mathbf{x}_i) = trace(\mathbf{\Sigma}_{\times})$$

= $trace(\mathbf{\Gamma}\mathbf{\Lambda}\mathbf{\Gamma}') = trace(\mathbf{\Lambda}\mathbf{\Gamma}'\mathbf{\Gamma}) = trace(\mathbf{\Lambda})$
= $\sum_{k=1}^{m} \lambda_k$
= $\sum_{k=1}^{m} Var(p_k)$
= Total Variance (**p**)

The transformation from x to p is a change in coordinate system which shifts the origin to the mean/expectation E[x] = α and rotates the coordinate axes to align with the Principal Component Variables. Distance in the space is preserved (due to orthogonality of the rotation).

Factor Models	Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

- Linear Factor Model
- Macroeconomic Factor Models
- Fundamental Factor Models
- Statistical Factor Models: Factor Analysis
- Principal Components Analysis
- Statistical Factor Models: Principal Factor Method

	Linear Factor Model
Factor Models	Macroeconomic Factor Models
	Fundamental Factor Models
	Statistical Factor Models: Factor Analysis
	Principal Components Analysis
	Statistical Factor Models: Principal Factor Method

For
$$\{\mathbf{x}_t, t = 1, ..., T\}$$
, the factor model is:
 $\mathbf{x}_t = \boldsymbol{\alpha} + B\mathbf{f}_t + \boldsymbol{\epsilon}_t$

- α and *B* are vector/matrix constants.
- All random variables are Normal/Gaussian:
 - x_t i.i.d. N_m(α, Σ_x)
 f_t i.i.d. N_K(0_KI_K)
 - ϵ_t i.i.d. $N_m(\mathbf{0}_m, \Psi)$
- $Cov(\mathbf{x}_t) = \mathbf{\Sigma}_x = BB' + \mathbf{\Psi}$

Principal Factor Method of Estimation

To fit a K-factor model with fixed K < m, define

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 : \cdots & \mathbf{x}_T \end{bmatrix} (m \times T)$$

Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Principal Factor Method of Estimation

Step 1: Conduct the computational steps of principal components analysis:

- Component/row means : $\bar{\mathbf{x}} = (\frac{1}{T})\mathbf{X}\mathbf{1}_T$
- 'De-meaned' matrix: $\mathbf{X}^* = \mathbf{X} \bar{\mathbf{x}} \mathbf{1}_T'$
- Sample covariance matrix: $\hat{\boldsymbol{\Sigma}}_{x} = \frac{1}{T} \boldsymbol{X}^{*} (\boldsymbol{X}^{*})'$

• Eigenvalue/vector decomposition: $\hat{\Sigma}_x = \hat{\Gamma} \hat{\Lambda} \hat{\Gamma}'$ yielding estimates of Γ and Λ .

Step 2: Specify initial estimates (index s = 0)

•
$$\tilde{\alpha}_0 = \bar{\mathbf{x}}$$

• $\tilde{B}_0 = \hat{\Gamma}^{(K)} (\hat{\Lambda}^{(K)})^{\frac{1}{2}}$, where
 $\hat{\Gamma}^{(K)}$ is submatrix of $\hat{\Gamma}$ (first K columns)
 $\hat{\Lambda}^{(K)}$ is submatrix of $\hat{\Lambda}$ (first K columns)
• $\tilde{\Psi}_0 = diag(\hat{\Sigma}_x) - diag(\tilde{B}_0\tilde{B}'_0)$
• $\tilde{\Sigma}_0 = \tilde{B}_0\tilde{B}'_0 + \tilde{\Psi}_0$

Linear Factor Model Macroeconomic Factor Models Fundamental Factor Models Statistical Factor Models: Factor Analysis Principal Components Analysis Statistical Factor Models: Principal Factor Method

Principal Factor Method of Estimation

Step 3: Adjust the sample covariance matrix to $\hat{\boldsymbol{\Sigma}}_{\times}^{*} = \hat{\boldsymbol{\Sigma}}_{\times} - \tilde{\boldsymbol{\Psi}}_{0}$ • Compute the eigenvalue/vector decomposition: $\hat{\boldsymbol{\Sigma}}_{v}^{*} = \tilde{\boldsymbol{\Gamma}}\tilde{\boldsymbol{\Lambda}}\tilde{\boldsymbol{\Gamma}}'$ yielding updated estimates of Γ and Λ Repeat Step 2 with these new estimates obtaining \tilde{B}_1 , $\tilde{\Psi}_1$, $\tilde{\Sigma}_1 = \tilde{B}_1 \tilde{B}_1' + \tilde{\Psi}_1$ Step 4: Repeat Step 3 generating a sequence of estimates $(\tilde{B}_s, \tilde{\Psi}_s, \tilde{\Sigma}_s) \ s = 1, 2, \ldots$, until successive changes in Ψ_{s} are sufficiently negligible.

Step 5: Use the estimates from the last iteration in Step 4.

18.S096 Topics in Mathematics with Applications in Finance $_{\mbox{Fall 2013}}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.