18.S096 Problem Set 6 Fall 2013
 Time Series II and Portfolio Theory Due Date: 11/7/2013

1. Suppose $\boldsymbol{X}_{t}=\left[\begin{array}{l}X_{1, t} \\ X_{2, t}\end{array}\right]$ follows a $\operatorname{VAR}(1)$ model where

$$
\begin{aligned}
X_{1, t} & =0.3+.8 \cdot X_{1, t-1}+\epsilon_{1, t} \\
X_{2, t} & =0.2+.6 \cdot X_{1, t-1}+.4 \cdot X_{2, t-1}+\epsilon_{2, t}
\end{aligned}
$$

where $\left(\epsilon_{1, t}, \epsilon_{2, t}\right)^{T}$ are i.i.d. $N\left(0_{2}, \Sigma\right)$, and

$$
\Sigma=\left[\begin{array}{rr}
3 & -1 \\
-1 & 3
\end{array}\right]
$$

1(a) Compute $\mu=E\left[\boldsymbol{X}_{t}\right]$.
1(b) Compute $\Gamma(0)=\operatorname{Cov}\left[\boldsymbol{X}_{t}\right]$.
1(c) Compute $\Gamma(1)=\operatorname{Cov}\left[\boldsymbol{X}_{t}, \boldsymbol{X}_{t-1}\right]$
1(d) Derive a formula for computing $\Gamma(h)=\operatorname{Cov}\left[\boldsymbol{X}_{t}, \boldsymbol{X}_{t-h}\right], h \geq 1$.
2. For $\left\{\epsilon_{t}\right\}$ i.i.d. $W N\left(0, \sigma^{2}\right)$, define processes $\left\{w_{t}\right\}$ and $\left\{v_{t}\right\}$ as follows

$$
\begin{aligned}
& w_{t}=5(1-.5 L)^{-1} \epsilon_{t} \\
& v_{t}=4(1-.4 L)^{-1} \epsilon_{t}
\end{aligned}
$$

Define $\left\{x_{t}\right\}: x_{t}=w_{t}-v_{t}$.
2(a) Solve for coefficients θ_{i} in the infinite-order moving average process for x_{t} :

$$
x_{t}=\epsilon_{t}+\sum_{i=1}^{\infty} \theta_{t} \epsilon_{t}
$$

2(b) Prove that $\left\{x_{t}\right\}$ is an $A R(2)$ process.
2(c) Solve for ϕ_{1} and ϕ_{2} in the representation:

$$
x_{t}=\phi_{1} x_{t-1}+\phi_{2} x_{t-2}+\epsilon_{t}
$$

2(d) Prove that any stationary $A R(2)$ process can be expressed as the difference of two (possibly infinite order) moving average processes on the same innovation process $\left\{\epsilon_{t}\right\}$.
3. Consider a single-period analysis of 2 risky assets with

Returns:

$$
\boldsymbol{R}=\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right]
$$

Mean and Covariance of Returns:

$$
E[R]=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right], \quad \text { and } \operatorname{Cov}[\boldsymbol{R}]=\Sigma=\left[\begin{array}{ll}
\Sigma_{1,1} & \Sigma_{1,2} \\
\Sigma_{1,2} & \Sigma_{2,2}
\end{array}\right]=\left[\begin{array}{rr}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
$$

where $\sigma_{1}=\sqrt{\Sigma_{1,1}}, \sigma_{2}=\sqrt{\Sigma_{2,2}}$ and ρ is the correlation between R_{1} and R_{2}.

A portfolio $\boldsymbol{w}=\left(w_{1}, w_{2}\right)^{T}$ identified by its investment weights in the assets, has return:

$$
R_{w}=w_{1} R_{1}+w_{2} R_{2}=\boldsymbol{w}^{T} \boldsymbol{R} .
$$

Assume that w is fully invested $\left(w_{1}+w_{2}=1\right)$ and that no short sales are allowed ($w_{1} \geq 0$ and $w_{2} \geq 0$).
(3a) Prove that $\operatorname{Var}\left(R_{w}\right) \leq \max \left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)$ for all portfolios w.
(3b) Suppose $\sigma_{1}=\sigma_{2}$, and $\rho=0$.

- Solve for w^{*}, the portfolio with minimum return variance.
- Compute $\operatorname{Var}\left(R_{w^{*}}\right)$.
(3c) Suppose $\sigma_{1}=\sigma_{2}$ (no assumptions about ρ)
- Solve for w^{*}, the portfolio with minimum return variance.
- Compute $\operatorname{Var}\left(R_{w^{*}}\right)$.
- Graph the variance of the mininum-variance portfolio as a function of $\rho:-1 \leq \rho \leq 1$.

4. Consider a single-period analysis of $m>2$ risky assets with

Returns:

$$
\boldsymbol{R}=\left[\begin{array}{c}
R_{1} \\
\vdots \\
R_{m}
\end{array}\right] \text { with mean } E[R]=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{m}
\end{array}\right]
$$

and covariance
$\operatorname{Cov}[\boldsymbol{R}]=\Sigma=\left[\begin{array}{rlr}\Sigma_{1,1} & \cdots & \Sigma_{1, m} \\ \vdots & \ddots & \vdots \\ \Sigma_{m, 1} & \cdots & \Sigma_{m, m}\end{array}\right]=\left[\begin{array}{rrlr}\sigma_{1}^{2} & \rho_{1,2} \sigma_{1} \sigma_{2} & \cdots & \rho_{1, m} \sigma_{1} \sigma_{m} \\ \rho_{2,1} \sigma_{1} \sigma_{2} & \sigma_{2}^{2} & \cdots & \rho_{2, m} \sigma_{2} \sigma_{m} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{m, 1} \sigma_{m} \sigma_{2} & \rho_{m, 2} \sigma_{m} \sigma_{2} & \cdots & \sigma_{m}^{2}\end{array}\right]$
where $\sigma_{j}=\sqrt{\Sigma_{j, j}}, j=1, \ldots, m$, is the standard deviation of asset j 's return, $j=1, \ldots, m$
and $\rho_{i, j}=\Sigma_{i, j} / \sqrt{\Sigma_{i, i} \Sigma_{j, j}}$ is the return correlation between assets i and j, for $1 \leq i, j \leq m$.
A portfolio $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)^{T}$ identified by its investment weights in the assets, has return:

$$
R_{w}=\sum_{j=1}^{m} w_{j} R_{j}=\boldsymbol{w}^{T} \boldsymbol{R} .
$$

Assume that w is fully invested $\left(\sum_{j=1}^{m} w_{j}=1\right)$ and that no short sales are allowed ($w_{j} \geq 0$, for all j).

4(a) Prove that $\operatorname{Var}\left(R_{w}\right) \leq \max \left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{m}^{2}\right)$ for all portfolios w.
4(b) Suppose $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{m}$, and $\rho=0$.

- Solve for w^{*}, the portfolio with minimum return variance.
- Compute $\operatorname{Var}\left(R_{w^{*}}\right)$ and express it as a function of m, the number of assets.
- What is the limit of $\operatorname{Var}\left(R_{w^{*}}\right)$ as $m \rightarrow \infty$.

4(c) Suppose $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{m}$ and $\rho_{i, j} \equiv \rho$ for all $i \neq j$. The correlation matrix of the m-vector of returns is said to be an equicorrelation matrix because all assets have the same pairwise correlations.

- For the case of $m=2$, there is no constraint on ρ except the usual one: $-1 \leq \rho \leq 1$.
Prove generally that $\rho \geq-\frac{1}{m-1}$.
Hint: $\mathbf{1}_{m}=(1, \ldots, 1)^{T}$ is an eigen-vector of the matrix Σ : confirm, compute the eigen-value, and apply constraints for Σ to be positive semi-definite.
- Solve for w^{*}, the portfolio with minimum return variance.
- Compute $\operatorname{Var}\left(R_{w^{*}}\right)$.
- Graph the variance of the mininum-variance portfolio as a function of $\rho:-\frac{1}{m-1} \leq \rho \leq 1$.
- What is the limit of $\operatorname{Var}\left(R_{w^{*}}\right)$ as $m \rightarrow \infty$?
- Compare this limit with that in (b) and comment on the ability to diversify away portfolio variability by adding additional (equi-correlated) assets to a portfolio.

5. Consider a single-period analysis of m risk assets as in problems 3 and 4.

5(a) Suppose $m=2, \sigma_{1} \neq \sigma_{2}$, and $\rho=\Sigma_{1,2} / \sqrt{\Sigma_{1,1} \Sigma_{2,2}}=0$.

- Solve for w^{*}, the portfolio with minimum return variance.
- Compute $\operatorname{Var}\left(R_{w^{*}}\right)$.
$5(\mathrm{~b})$ Suppose $m>2$, and $\Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}\right)$, a diagonal matrix with no constraints on the asset variances $\left(\sigma_{j}^{2}\right)$ and zero correlations between assets ($\rho_{i, j}=\Sigma_{i, j} / \sqrt{\Sigma_{i, j} \Sigma_{i, j}} \equiv 0$).
- Solve for w^{*}, the portfolio with minimum return variance.
- Compute $\operatorname{Var}\left(R_{w^{*}}\right)$.
- Express $\operatorname{Var}\left(R_{w^{*}}\right)$ as a function of m and $\tilde{\sigma}^{2}=\frac{1}{\frac{1}{m} \sum_{j=1}^{m} \sigma_{j}^{-2}}$

5 (c) Suppose $m>2$, and no constraints on the positive definite matrix Σ.

- Solve for w^{*}, the portfolio with minimum return variance.
- Compute $\operatorname{Var}\left(R_{w^{*}}\right)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Mathematical Applications in Financial Industry

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

