Open Problem 8.1 Is the Unique Games conjecture true? In particular, can it be refuted by a constant degree Sum-of-squares relaxation?

Remarkably, approximating Max-Cut with an approximation ratio better than α_{GW} is has hard as refuting the Unique Games Conjecture (UG-hard) [KKMO05]. More generality, if the Unique Games Conjecture is true, the semidefinite programming approach described above produces optimal approximation ratios for a large class of problems [Rag08].

Not depending on the Unique Games Conjecture, there is a NP-hardness of approximation of $\frac{16}{17}$ for Max-Cut [Has02].

Conjecture 8.2 For any $\epsilon > 0$, the problem of distinguishing whether an instance of the Unique Games Problem is such that it is possible to agree with $a \ge 1 - \epsilon$ fraction of the constraints or it is not possible to even agree with a ϵ fraction of them, is NP-hard.

There is a sub-exponential time algorithm capable of distinguishing such instances of the unique games problem [ABS10], however no polynomial time algorithm has been found so far. At the moment one of the strongest candidates to break the Unique Games Conjecture is a relaxation based on the Sum-of-squares hierarchy that we will discuss below.

References

- [ABS10] S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique games related problems. 2010.
- [Has02] J. Hastad. Some optimal inapproximability results. 2002.
- [KKMO05] S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for max-cut and other 2-variable csps? 2005.
- [Rag08] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC '08, pages 245–254. ACM, 2008.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.