## 7.3.1 Shannon Capacity

The goal Shannon Capacity is to measure the amount of information that can be sent through a noisy channel where some pairs of messages may be confused with eachother. Given a graph G (called the confusion graph) whose vertices correspond to messages and edges correspond to messages that may be confused with each other. A good example is the following: say one has a alphabet of five symbols 1, 2, 3, 4, 5 and that each digit can be confused with the immediately before and after (and 1 and 5 can be confused with eachother). The confusion graph in this case is  $C_5$ , the cyclic graph

on 5 nodes. It is easy to see that one can at most send two messages of one digit each without confusion, this corresponds to the independence number of  $C_5$ ,  $\alpha(C_5) = 2$ . The interesting question arises when asking how many different words of two digits can be sent, it is clear that one can send at least  $\alpha(C_5)^2 = 4$  but the remarkable fact is that one can send 5 (for example: "11", "23", "35", "54", or "42"). The confusion graph for the set of two digit words  $C_5^{\oplus 2}$  can be described by a product of the original graph  $C_5$  where for a graph G on n nodes  $G^{\oplus 2}$  is a graph on n nodes where the vertices are indexed by pairs ij of vertices of G and

$$(ij,kl) \in E\left(G^{\oplus 2}\right)$$

if both a) i = k or  $i, k \in E$  and b) j = l or  $j, l \in E$  hold.

The above observation can then be written as  $\alpha(C_5^{\oplus 2}) = 5$ . This motivates the definition of Shannon Capacity [Sha56]

$$\theta_{S}\left(G\right)\sup_{k}\left(G^{\oplus k}\right)^{\frac{1}{k}}.$$

Lovasz, in a remarkable paper [Lov79], showed that  $\theta_S(C_5) = \sqrt{5}$ , but determining this quantity is an open problem for many graphs of interested [AL06], including  $C_7$ .

**Open Problem 7.3** What is the Shannon Capacity of the 7 cycle?

## References

- [AL06] N. Alon and E. Lubetzky. The shannon capacity of a graph and the independence numbers of its powers. *IEEE Transactions on Information Theory*, 52:21722176, 2006.
- [Lov79] L. Lovasz. On the shannon capacity of a graph. *IEEE Trans. Inf. Theor.*, 25(1):1–7, 1979.
- [Sha56] C. E. Shannon. The zero-error capacity of a noisy channel. IRE Transactions on Information Theory, 2, 1956.

## 18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.