
7.2 Some Coding Theory and the proof of Theorem 7.3

In this section we (very) briefly introduce error-correcting codes and use Reed-Solomon codes to prove
Theorem 7.3. We direct the reader to [GRS15] for more on the subject.

Lets say Alice wants to send a message to Bob but they can only communicate through a channel
that erases or replaces some of the letters in Alice’s message. If Alice and Bob are communicating with
an alphabet Σ and can send messages with lenght N they can pre-decide a set of allowed messages
(or codewords) such that even if a certain number of elements of the codeword gets erased or replaced
there is no risk for the codeword sent to be confused with another codeword. The set C of codewords
(which is a subset of ΣN ) is called the codebook and N is the blocklenght.

If every two codewords in the codebook differs in at least d coordinates, then there is no risk of
confusion with either up to d − 1 erasures or up to bd−1

2 c replacements. We will be interested in
codebooks that are a subset of a finite field, meanign that we will take Σ to be Fq for q a prime power
and C to be a linear subspace of Fq.

The dimension of the code is given by

m = logq |C|,

and the rate of the code by
m

R = .
N

Given two code words c1, c2 the Hamming distance ∆(c1, c2) is the number of entries where they
differ. The distance of a code is defined as
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d = min ∆(c1, c2).
c =c ∈C
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For linear codes, it is the same as the minimum weight

ω(C) = min ∆(c).
c∈C\{0}

We say that a linear code C is a [N,m, d]q code (where N is the blocklenght, m the dimension, d
the distance, and Fq the alphabet.

One of the main goals of the theory of error-correcting codes is to understand the possible values
of rates, distance, and q for which codes exist. We simply briefly mention a few of the bounds and
refer the reader to [GRS15]. An important parameter is given by the entropy function:
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• Hamming bound follows essentially by noting that if a code has distance d then balls of radius
bd−1

2 c centered at codewords cannot intersect. It says that

R ≤ 1−Hq

(
1

2

d
+

N

)
o(1)

• Another particularly simple bound is Singleton bound (it can be easily proven by noting that
the first n+ d+ 2 of two codewords need to differ in at least 2 coordinates)

d
R ≤ 1− + o(1).
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There are probabilistic constructions of codes that, for any ε > 0, satisfy

R ≥ 1−Hq

(
d

6

N

)
− ε.

This means that R∗ the best rate achievable satisties

R∗ ≥ 1−Hq

(
d
)
, (65)
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known as the GilbertVarshamov (GV) bound [Gil52, Var57]. Even for q = 2 (corresponding to binary
codes) it is not known whether this bound is tight or not, nor are there deterministic constructions
achieving this Rate. This motivates the following problem.

Open Problem 7.1 1. Construct an explicit (deterministic) binary code (q = 2) satisfying the
GV bound (65).

2. Is the GV bound tight for binary codes (q = 2)?
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