7.2 Some Coding Theory and the proof of Theorem 7.3

In this section we (very) briefly introduce error-correcting codes and use Reed-Solomon codes to prove Theorem 7.3. We direct the reader to [GRS15] for more on the subject.

Lets say Alice wants to send a message to Bob but they can only communicate through a channel that erases or replaces some of the letters in Alice's message. If Alice and Bob are communicating with an alphabet Σ and can send messages with lenght N they can pre-decide a set of allowed messages (or codewords) such that even if a certain number of elements of the codeword gets erased or replaced there is no risk for the codeword sent to be confused with another codeword. The set C of codewords (which is a subset of Σ^N) is called the codebook and N is the blocklenght.

If every two codewords in the codebook differs in at least d coordinates, then there is no risk of confusion with either up to d-1 erasures or up to $\lfloor \frac{d-1}{2} \rfloor$ replacements. We will be interested in codebooks that are a subset of a finite field, meanign that we will take Σ to be \mathbb{F}_q for q a prime power and C to be a linear subspace of \mathbb{F}_q .

The dimension of the code is given by

$$m = \log_a |C|,$$

and the rate of the code by

$$R = \frac{m}{N}$$

Given two code words c_1, c_2 the Hamming distance $\Delta(c_1, c_2)$ is the number of entries where they differ. The distance of a code is defined as

$$d = \min_{c = c \in C} \Delta(c_1, c_2).$$

We say that a linear code C is a $[N, m, d]_q$ code (where N is the blocklenght, m the dimension, d the distance, and \mathbb{F}^q the alphabet.

One of the main goals of the theory of error-correcting codes is to understand the possible values of rates, distance, and q for which codes exist. We simply briefly mention a few of the bounds and refer the reader to [GRS15]. An important parameter is given by the entropy function:

$$H_q(x) = x \frac{\log(q-1)}{\log q} - x \frac{\log x}{\log q} - (1-x) \frac{\log(1-x)}{\log q}.$$

• Hamming bound follows essentially by noting that if a code has distance d then balls of radius $\lfloor \frac{d-1}{2} \rfloor$ centered at codewords cannot intersect. It says that

$$R \le 1 - H_q\left(\frac{1}{2}\frac{d}{N}\right) + o(1)$$

• Another particularly simple bound is Singleton bound (it can be easily proven by noting that the first n + d + 2 of two codewords need to differ in at least 2 coordinates)

$$R \le 1 - \frac{d}{N} + o(1).$$

There are probabilistic constructions of codes that, for any $\epsilon > 0$, satisfy

$$R \ge 1 - H_q\left(\frac{d}{N}\right) - \epsilon.$$

This means that R^* the best rate achievable satisfies

$$R^* \ge 1 - H_q\left(\frac{d}{N}\right),\tag{65}$$

known as the GilbertVarshamov (GV) bound [Gil52, Var57]. Even for q = 2 (corresponding to binary codes) it is not known whether this bound is tight or not, nor are there deterministic constructions achieving this Rate. This motivates the following problem.

Open Problem 7.1 1. Construct an explicit (deterministic) binary code (q = 2) satisfying the *GV* bound (65).

2. Is the GV bound tight for binary codes (q = 2)?

References

- [GRS15] V. Guruswami, A. Rudra, and M. Sudan. *Essential Coding Theory*. Available at: http: //www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book/, 2015.
- [Gil52] E. N. Gilbert. A comparison of signalling alphabets. *Bell System Technical Journal*, 31:504–522, 1952.
- [Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Dokl. Acad. Nauk SSSR, 117:739–741, 1957.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.