
Open Problem 5.2 Theorem 5.14 guarantees that if we take A to have i.i.d. Gaussian entries then
it should be RIP for s ≈ M . If we were able to, given A, certify that it indeed is RIP for some slog(N)

then one could have a randomized algorithm to build RIP matrices (but that is guaranteed to eventually
find one). This motives the following question

1. Let N = 2M , for which s is there a polynomial time algorithm that is guaranteed to, with high
probability, certify that a gaussian matrix A is

(
s, 1

3

)
-RIP?

2. In particular, a
(
s, 1 -RIP matrix has to not have s sparse vectors in its nullspace. This mo-3

tivates a second question: Let N = 2M , for which s is there a polynomial time algorithm that
is guaranteed to, with

)
high probability, certify that a gaussian matrix A does not have s-sparse

vectors in its nullspace?

The second√ question is tightly connected to the question of sparsest vector on a subspace (for
which s ≈ M is the best known answer), we refer the reader to [SWW12, QSW14, BKS13b] for
more on this problem and recent advances. Note that checking whether a matrix has RIP or not is,
in general, NP-hard [BDMS13, TP13].
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