Definition 5.13 (The Restricted Isometry Property) An $M \times N$ matrix A (with either real or complex valued entries) is said to satisfy the (s, δ) -Restricted Isometry Property (RIP),

$$(1-\delta)\|x\|^2 \le \|Ax\|^2 \le (1+\delta)\|x\|^2,$$

for all s-sparse x.

Using Proposition 5.12 and Theorem 5.7 one can readily show that matrices with Gaussian entries satisfy the restricted isometry property with $M \approx s \log\left(\frac{N}{s}\right)$.

Theorem 5.14 Let A be an $M \times N$ matrix with i.i.d. standard gaussian entries, there exists a constant C such that, if

$$M \ge Cs \log\left(\frac{N}{s}\right),$$

then $\frac{1}{a_M}A$ satisfies the $\left(s, \frac{1}{3}\right)$ -RIP, with high probability.

Theorem 5.14 suggests that RIP matrices are abundant for $s \approx \frac{M}{\log(N)}$, however it appears to be very difficult to deterministically construct matrices that are RIP for $s \gg \sqrt{M}$, known as the square bottleneck [Tao07, BFMW13, BFMM14, BMM14, B⁺11, Mix14a]. The only known unconditional construction that is able to break this bottleneck is due to Bourgain et al. [B⁺11] that achieves $s \approx M^{\frac{1}{2}+\varepsilon}$ for a small, but positive, ε . There is a conditional construction, based on the Paley Equiangular Tight Frame, that will be briefly described in the next Lecture [BFMW13, BMM14].

Open Problem 5.1 Construct deterministic matrices $A \in \mathbb{C}^{M \times N}$ (or $A \in \mathbb{C}^{M \times N}$) satisfying $(s, \frac{1}{3})$ -*RIP for* $s \gtrsim \frac{M^{0.6}}{\text{polylog}(N)}$.

References

- [B⁺11] J. Bourgain et al. Explicit constructions of RIP matrices and related problems. *Duke* Mathematical Journal, 159(1), 2011.
- [BFMM14] A. S. Bandeira, M. Fickus, D. G. Mixon, and J. Moreira. Derandomizing restricted isometries via the Legendre symbol. Available online at arXiv:1406.4089 [math.CO], 2014.
- [BFMW13] A. S. Bandeira, M. Fickus, D. G. Mixon, and P. Wong. The road to deterministic matrices with the restricted isometry property. *Journal of Fourier Analysis and Applications*, 19(6):1123–1149, 2013.
- [BMM14] A. S. Bandeira, D. G. Mixon, and J. Moreira. A conditional construction of restricted isometries. Available online at arXiv:1410.6457 [math.FA], 2014.
- [Mix14a] D. G. Mixon. Explicit matrices with the restricted isometry property: Breaking the square-root bottleneck. *available online at arXiv:1403.3427 [math.FA]*, 2014.

[Tao07] T. Tao. What's new blog: Open question: deterministic UUP matrices. 2007.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.