4.7.1 Oblivious Sparse Norm-Approximating Projections

There is an interesting random matrix problem related to Oblivious Sparse Norm-Approximating Projections [NN], a form of dimension reduction useful for fast linear algebra. In a nutshell, The idea is to try to find random matrices Π that achieve dimension reduction, meaning $\Pi \in \mathbb{R}^{m \times n}$ with $m \ll n$, and that preserve the norm of every point in a certain subspace [NN], moreover, for the sake of computational efficiency, these matrices should be sparse (to allow for faster matrix-vector multiplication). In some sense, this is a generalization of the ideas of the Johnson-Lindenstrauss Lemma and Gordon's Escape through the Mesh Theorem that we will discuss next Section.
Open Problem 4.4 (OSNAP [NN]) Let $s \leq d \leq m \leq n$.

1. Let $\Pi \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d. entries

$$
\Pi_{r i}=\frac{\delta_{r i} \sigma_{r i}}{\sqrt{s}}
$$

where $\sigma_{r i}$ is a Rademacher random variable and

$$
\delta_{r i}=\left\{\begin{array}{rlc}
\frac{1}{\sqrt{s}} & \text { with probability } & \frac{s}{m} \\
0 & \text { with probability } & 1-\frac{s}{m}
\end{array}\right.
$$

Prove or disprove: there exist positive universal constants c_{1} and c_{2} such that
For any $U \in \mathbb{R}^{n \times d}$ for which $U^{T} U=I_{d \times d}$

$$
\operatorname{Prob}\left\{\left\|(\Pi U)^{T}(\Pi U)-I\right\| \geq \varepsilon\right\}<\delta
$$

for $m \geq c_{1} \frac{d+\log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}$ and $s \geq c_{2} \frac{\log \left(\frac{d}{\delta}\right)}{\varepsilon^{2}}$.
2. Same setting as in (1) but conditioning on

$$
\sum_{r=1}^{m} \delta_{r i}=s, \quad \text { for all } i,
$$

meaning that each column of Π has exactly s non-zero elements, rather than on average. The conjecture is then slightly different:
Prove or disprove: there exist positive universal constants c_{1} and c_{2} such that
For any $U \in \mathbb{R}^{n \times d}$ for which $U^{T} U=I_{d \times d}$

$$
\operatorname{Prob}\left\{\left\|(\Pi U)^{T}(\Pi U)-I\right\| \geq \varepsilon\right\}<\delta
$$

for $m \geq c_{1} \frac{d+\log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}$ and $s \geq c_{2} \frac{\log \left(\frac{d}{\delta}\right)}{\varepsilon}$.
3. The conjecture in (1) but for the specific choice of U :

$$
U=\left[\begin{array}{c}
I_{d \times d} \\
0_{(n-d) \times d}
\end{array}\right]
$$

In this case, the object in question is a sum of rank 1 independent matrices. More precisely, $z_{1}, \ldots, z_{m} \in \mathbb{R}^{d}$ (corresponding to the first d coordinates of each of the m rows of Π) are i.i.d. random vectors with i.i.d. entries

$$
\left(z_{k}\right)_{j}=\left\{\begin{array}{clc}
-\frac{1}{\sqrt{s}} & \text { with probability } & \frac{s}{2 m} \\
0 & \text { with probability } & 1-\frac{s}{m} \\
\frac{1}{\sqrt{s}} & \text { with probability } & \frac{s}{2 m}
\end{array}\right.
$$

Note that $\mathbb{E} z_{k} z_{k}^{T}=\frac{1}{m} I_{d \times d}$. The conjecture is then that, there exists c_{1} and c_{2} positive universal constants such that

$$
\text { Prob }\left\{\left\|\sum_{k=1}^{m}\left[z_{k} z_{k}^{T}-\mathbb{E} z_{k} z_{k}^{T}\right]\right\| \geq \varepsilon\right\}<\delta
$$

for $m \geq c_{1} \frac{d+\log \left(\frac{1}{\delta}\right)}{\varepsilon^{2}}$ and $s \geq c_{2} \frac{\log \left(\frac{d}{\delta}\right)}{\varepsilon^{2}}$.
I think this would is an interesting question even for fixed δ, for say $\delta=0.1$, or even simply understand the value of

$$
\mathbb{E}\left\|\sum_{k=1}^{m}\left[z_{k} z_{k}^{T}-\mathbb{E} z_{k} z_{k}^{T}\right]\right\|
$$

5 HHHFH

[NN] J. Nelson and L. Nguyen. Osnap: Faster numerical linear algebra algorithms via sparser subspace embeddings. Available at arXiv:1211.1002 [cs.DS].

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

