4.7.1 Oblivious Sparse Norm-Approximating Projections

There is an interesting random matrix problem related to Oblivious Sparse Norm-Approximating Projections [NN], a form of dimension reduction useful for fast linear algebra. In a nutshell, The idea is to try to find random matrices II that achieve dimension reduction, meaning $\Pi \in \mathbb{R}^{m \times n}$ with $m \ll n$, and that preserve the norm of every point in a certain subspace [NN], moreover, for the sake of computational efficiency, these matrices should be sparse (to allow for faster matrix-vector multiplication). In some sense, this is a generalization of the ideas of the Johnson-Lindenstrauss Lemma and Gordon's Escape through the Mesh Theorem that we will discuss next Section.

Open Problem 4.4 (OSNAP [NN]) Let $s \le d \le m \le n$.

1. Let $\Pi \in \mathbb{R}^{m \times n}$ be a random matrix with i.i.d. entries

$$\Pi_{ri} = \frac{\delta_{ri}\sigma_{ri}}{\sqrt{s}},$$

where σ_{ri} is a Rademacher random variable and

$$\delta_{ri} = \begin{cases} \frac{1}{\sqrt{s}} & \text{with probability} & \frac{s}{m} \\ 0 & \text{with probability} & 1 - \frac{s}{m} \end{cases}$$

Prove or disprove: there exist positive universal constants c_1 and c_2 such that For any $U \in \mathbb{R}^{n \times d}$ for which $U^T U = I_{d \times d}$

$$\operatorname{Prob}\left\{\left\|(\Pi U)^T(\Pi U) - I\right\| \ge \varepsilon\right\} < \delta,$$

for $m \ge c_1 \frac{d + \log\left(\frac{1}{\delta}\right)}{\varepsilon^2}$ and $s \ge c_2 \frac{\log\left(\frac{d}{\delta}\right)}{\varepsilon^2}$.

2. Same setting as in (1) but conditioning on

$$\sum_{r=1}^{m} \delta_{ri} = s, \quad \text{for all } i,$$

meaning that each column of Π has exactly s non-zero elements, rather than on average. The conjecture is then slightly different:

Prove or disprove: there exist positive universal constants c_1 and c_2 such that For any $U \in \mathbb{R}^{n \times d}$ for which $U^T U = I_{d \times d}$

$$\operatorname{Prob}\left\{\left\|(\Pi U)^{T}(\Pi U) - I\right\| \geq \varepsilon\right\} < \delta,$$

for $m \ge c_1 \frac{d + \log\left(\frac{1}{\delta}\right)}{\varepsilon^2}$ and $s \ge c_2 \frac{\log\left(\frac{d}{\delta}\right)}{\varepsilon}$.

3. The conjecture in (1) but for the specific choice of U:

$$U = \left[\begin{array}{c} I_{d \times d} \\ 0_{(n-d) \times d} \end{array} \right].$$

In this case, the object in question is a sum of rank 1 independent matrices. More precisely, $z_1, \ldots, z_m \in \mathbb{R}^d$ (corresponding to the first d coordinates of each of the m rows of Π) are i.i.d. random vectors with i.i.d. entries

$$(z_k)_j = \begin{cases} -\frac{1}{\sqrt{s}} & \text{with probability} & \frac{s}{2m} \\ 0 & \text{with probability} & 1 - \frac{s}{m} \\ \frac{1}{\sqrt{s}} & \text{with probability} & \frac{s}{2m} \end{cases}$$

Note that $\mathbb{E}z_k z_k^T = \frac{1}{m} I_{d \times d}$. The conjecture is then that, there exists c_1 and c_2 positive universal constants such that

$$\operatorname{Prob}\left\{\left\|\sum_{k=1}^{m}\left[z_{k}z_{k}^{T}-\mathbb{E}z_{k}z_{k}^{T}\right]\right\|\geq\varepsilon\right\}<\delta,$$

for $m \ge c_1 \frac{d + \log\left(\frac{1}{\delta}\right)}{\varepsilon^2}$ and $s \ge c_2 \frac{\log\left(\frac{d}{\delta}\right)}{\varepsilon^2}$.

I think this would is an interesting question even for fixed δ , for say $\delta = 0.1$, or even simply understand the value of

$$\mathbb{E}\left\|\sum_{k=1}^{m}\left[z_{k}z_{k}^{T}-\mathbb{E}z_{k}z_{k}^{T}\right]\right\|.$$

Tghgtgpeg

[NN] J. Nelson and L. Nguyen. Osnap: Faster numerical linear algebra algorithms via sparser subspace embeddings. *Available at arXiv:1211.1002 [cs.DS]*.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.