Open Problem 3.1 Does there exists a constant c > 0 such that it is NP-hard to, given ϕ , and G distinguis between the cases

- 1. $h_G \leq \phi$, and
- 2. $h_G \ge c\sqrt{\phi}$?

It turns out that this is a consequence [RST12] of an important conjecture in Theoretical Computer Science (see [BS14] for a nice description of it). This conjecture is known [RS10] to imply the Unique-Games Conjecture [Kho10], that we will discuss in future lectures.

Conjecture 3.10 (Small-Set Expansion Hypothesis [RS10]) For every $\epsilon > 0$ there exists $\delta > 0$ such that it is NP-hard to distinguish between the cases

- 1. There exists a subset $S \subset V$ with $\operatorname{vol}(S) = \delta \operatorname{vol}(V)$ such that $\frac{\operatorname{cut}(S)}{\operatorname{vol}(S)} \leq \epsilon$,
- 2. $\frac{\operatorname{cut}(S)}{\operatorname{vol}(S)} \ge 1 \epsilon$, for every $S \subset V$ satisfying $\operatorname{vol}(S) \le \delta \operatorname{vol}(V)$.

References

- [BS14] B. Barak and D. Steurer. Sum-of-squares proofs and the quest toward optimal algorithms. Survey, ICM 2014, 2014.
- [RST12] P. Raghavendra, D. Steurer, and M. Tulsiani. Reductions between expansion problems. *IEEE CCC*, 2012.
- [RS10] P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. STOC, 2010.
- [Kho10] S. Khot. On the unique games conjecture (invited survey). In Proceedings of the 2010 IEEE 25th Annual Conference on Computational Complexity, CCC '10, pages 99–121, Washington, DC, USA, 2010. IEEE Computer Society.

18.S096 Topics in Mathematics of Data Science Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.