Open Problem 2.3 (The planted clique problem) Let G be a random graph constructed by taking a $G\left(n, \frac{1}{2}\right)$ and planting a clique of size ω.

1. Is there a polynomial time algorithm that is able to find the largest clique of G (with high probability) for $\omega \ll \sqrt{n}$. For example, for $\omega \approx \frac{\sqrt{n}}{\log n}$.
2. Is there a polynomial time algorithm that is able to distinguish, with high probability, G from a draw of $G\left(n, \frac{1}{2}\right)$ for $\omega \ll \sqrt{n}$. For example, for $\omega \approx \frac{\sqrt{n}}{\log n}$.
3. Is there a quasi-linear time algorithm able to find the largest clique of G (with high probability) for $\omega \leq\left(\frac{1}{\sqrt{e}}-\varepsilon\right) \sqrt{n}$, for some $\varepsilon>0$.

This open problem is particularly important. In fact, the hypothesis that finding planted cliques for small values of ω is behind several cryptographic protocols, and hardness results in average case complexity (hardness for Sparse PCA being a great example [BR13]).

5 HHHFH

[BR13] Q. Berthet and P. Rigollet. Complexity theoretic lower bounds for sparse principal component detection. Conference on Learning Theory (COLT), 2013.

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

