
Open Problem 2.2 (Erdős-Hajnal Conjecture [EH89]) Prove or disprove the following:
For any finite graph H, there exists a constant δH > 0 such that any graph on n nodes that does

not contain H as a subgraph (is a H-free graph) must have

r(G) & nδH .

It is known that r(G) & exp
(
cH
√

log n , for some constant cH > 0 (see [Chu13] for a survey
on this conjecture). Note that this lower

)
bound already shows that H-free graphs need to have

considerably larger r(G). This is an amazing local to global effect, where imposing a constraint on
small groups of vertices are connected (being H-free is a local property) creates extremely large cliques
or independence sets (much larger than polylog(n) as in random Erdős-Renýı graphs).

Since we do not know how to( deterministically construct graphs with r(G)
1

≤ polylogn, one ap-
proach could be to take G ∼ G n, and check that indeed it has small clique and independence2
number. However, finding the largest

)
clique on a graph is known to be NP-hard (meaning that there

is no polynomial time algorithm to solve it, provided that the widely believed conjecture NP 6= P
holds). That is a worst-case statement and thus it doesn’t necessarily mean that it is difficult to find
the clique number of random graphs. That being said, the next open problem suggests that this is
indeed still difficult.

First let us describe a useful construct.( Given n and ω, let us consider a random graph G that
consists of taking a graph drawn from G n, 1 , picking ω of its nodes (say at random) and adding an2
edge between every pair of those ω nodes, thus “planting” a clique of size ω. This will create a clique
of size ω in G. If ω > 2 log2 n this clique is larger

)
than any other clique that was in the graph before

planting. This means that, if ω > 2 log2 n, there is enough information in the graph to find the planted
clique. In fact, one can simply look at all subsets of size 2 log2 n+ 1 and check wether it is clique: if
it is a clique then it very likely these vertices belong to the planted clique. However, checking all such
subgraphs takes super-polynomial time ∼ nO(logn). This motivates the natural question of whether
this can be done in polynomial time.

Since the degrees of the nodes of a G
(
n, 1

2

)
have expected value n−1

2 and standard deviation ∼
√
n,

if ω > c
√
n (for sufficiently large constant c) then the degrees of the nodes involved in the planted

clique will have larger degrees and it is easy to detect (and find) the planted clique. Remarkably,
there is no known method to work for ω significant smaller than this. There is a quasi-linear
algorithm

√ time
[DM13] that finds the largest clique, with high probability, as long as ω ≥ n

e + o(
√
n).11

6

11There is an amplification technique that allows one to find the largest clique for ω ≈ c
√
n for arbitrarily small c in

polynomial time, where the exponent in the runtime depends on c. The rough idea is to consider all subsets of a certain
finite size and checking whether the planted clique contains them.
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